JPH04111482A - Superconductive element and manufacture thereof - Google Patents
Superconductive element and manufacture thereofInfo
- Publication number
- JPH04111482A JPH04111482A JP2230221A JP23022190A JPH04111482A JP H04111482 A JPH04111482 A JP H04111482A JP 2230221 A JP2230221 A JP 2230221A JP 23022190 A JP23022190 A JP 23022190A JP H04111482 A JPH04111482 A JP H04111482A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- superconductor
- layer
- superconducting
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 27
- 239000002887 superconductor Substances 0.000 claims description 75
- 239000010409 thin film Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 4
- 239000012212 insulator Substances 0.000 abstract description 14
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000004544 sputter deposition Methods 0.000 abstract description 4
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、超電導素子およびその作製方法に関する。よ
り詳細には、酸化物超電導体による超電導体層とこの超
電導体層に隣接する半導体層を具備し、新規な構成の超
電導素子およびその作製方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting element having a novel configuration, including a superconductor layer made of an oxide superconductor and a semiconductor layer adjacent to the superconductor layer, and a method for manufacturing the same.
従来の技術
酸化物超電導体を超電導素子に使用する場合、酸化物超
電導体層を絶縁体、半導体等の層と積層した構造とする
ことが必要となる。例えば、超電導ベーストランジスタ
と称される超電導素子は、第1図に示すよう、超電導体
または常電導体で構成されたエミッタ21、絶縁体で構
成されたトンネル障壁22、超電導体で構成されたベー
ス23、半導体アイソレータ24および常電導体で構成
されたコレクタ25を積層した構成になっている。BACKGROUND ART When using an oxide superconductor in a superconducting element, it is necessary to have a structure in which the oxide superconductor layer is laminated with layers of an insulator, a semiconductor, etc. For example, a superconducting element called a superconducting base transistor, as shown in FIG. 1, has an emitter 21 made of a superconductor or a normal conductor, a tunnel barrier 22 made of an insulator, and a base made of a superconductor. 23, a semiconductor isolator 24 and a collector 25 made of a normal conductor are stacked.
上記の超電導ベーストランジスタでは、超電導トンネル
接合と、超電導ベースにより高速動作を実現している。The above superconducting base transistor achieves high-speed operation using a superconducting tunnel junction and a superconducting base.
超電導トンネル接合のトンネル障壁の厚さは、超電導体
のコヒーレンス長の数倍程度にしなければならない。酸
化物超電導体は、コヒーレンス長が非常に短いため、酸
化物超電導体を使用した超電導トンネル接合では、トン
ネル障壁の厚さを数nm程度にしなければならない。The thickness of the tunnel barrier of a superconducting tunnel junction must be several times the coherence length of the superconductor. Since oxide superconductors have a very short coherence length, in superconducting tunnel junctions using oxide superconductors, the thickness of the tunnel barrier must be approximately several nm.
また、上記の超電導ベーストランジスタでは、超電導体
ベース23と半導体アイソレータ24との界面で超電導
体ベース23を走行してきた電子が反射されることがあ
る。従って、超電導体−半導体の界面制御も重要である
。Further, in the above superconducting base transistor, electrons traveling through the superconducting base 23 may be reflected at the interface between the superconducting base 23 and the semiconductor isolator 24. Therefore, controlling the superconductor-semiconductor interface is also important.
一方、素子としての特性を考慮すると、上記の各層の結
晶性がよくなければならない。即ち、全ての層が単結晶
で形成されていることが好ましく、多結晶またはアモル
ファスの層がある場合には、素子の性能は安定しない。On the other hand, in consideration of the characteristics as an element, each of the above layers must have good crystallinity. That is, it is preferable that all the layers be formed of single crystal, and if there is a polycrystalline or amorphous layer, the performance of the device will not be stable.
発明が解決しようとする課題
従来の酸化物超電導体を用いた超電導ベーストランジス
タは、適当な基板上に上記の各層を順に積層することで
実現されていた。従って、優れた特性の素子を作製する
には、数nmの厚さの単結晶の絶縁体薄膜、酸化物超電
導薄膜および半導体薄膜を積層することが必要であった
。Problems to be Solved by the Invention Conventional superconducting base transistors using oxide superconductors have been realized by sequentially stacking the above-mentioned layers on a suitable substrate. Therefore, in order to produce an element with excellent characteristics, it is necessary to laminate a single crystal insulator thin film, an oxide superconducting thin film, and a semiconductor thin film several nanometers thick.
しかしながら、酸化物超電導薄膜上に結晶性のよい他の
材料の薄膜を作製することは困難であり、また、結晶性
のよい酸化物超電導薄膜が成膜できる下地基板も限られ
ている。However, it is difficult to form a thin film of another material with good crystallinity on an oxide superconducting thin film, and there are also a limited number of base substrates on which an oxide superconducting thin film with good crystallinity can be formed.
また、上記従来の方法で作製した従来の構成の超電導ベ
ーストランジスタでは、酸化物超電導薄膜と半導体薄膜
との界面の状態が良好でなく所望の特性が得られなかっ
た。Furthermore, in a superconducting base transistor having a conventional structure manufactured by the conventional method described above, the interface between the oxide superconducting thin film and the semiconductor thin film was not in good condition, and desired characteristics could not be obtained.
そこで、本発明の目的は、上記従来技術の問題点を解決
した、新規な構成の超電導素子およびそれを作製する方
法を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a superconducting element having a novel configuration and a method for manufacturing the same, which solves the problems of the prior art described above.
課題を解決するための手段
本発明に従うと、超電導体層と該超電導体層に隣接する
半導体層とを有する超電導素子において、前記超電導体
層および前記半導体層が同一の基板上に配置され、前記
超電導体層が酸化物超電導体で構成され、前記半導体層
が、不純物を含む前記酸化物超電導体で構成され、前記
いずれの酸化物もC軸が、前記基板と平行な平面内にあ
り、且つ主電流が流れる方向に垂直である配向性を有す
ることを特徴とする超電導素子が提供される。Means for Solving the Problems According to the present invention, in a superconducting element having a superconductor layer and a semiconductor layer adjacent to the superconductor layer, the superconductor layer and the semiconductor layer are arranged on the same substrate, and the superconductor layer and the semiconductor layer are arranged on the same substrate, The superconductor layer is made of an oxide superconductor, the semiconductor layer is made of the oxide superconductor containing impurities, and the C axis of each of the oxides is in a plane parallel to the substrate, and A superconducting element characterized by having an orientation perpendicular to the direction in which a main current flows is provided.
また、本発明では、上記の超電導素子と等しく、超電導
体層と隣接半導体層とが配置され、前記超電導体層が酸
化物超電導体で構成され、前記半導体層が、前記酸化物
超電導体と実質的に等しい構成元素からなり、且つその
組成比が前記酸化物超電導体と異なる酸化物で構成され
、前記いずれの酸化物もC軸が、前記基板と平行な平面
内にあり、且つ主電流が流れる方向に垂直である配向性
を有することを特徴とする超電導素子が提供される。Further, in the present invention, as in the above superconducting element, a superconductor layer and an adjacent semiconductor layer are arranged, the superconductor layer is composed of an oxide superconductor, and the semiconductor layer is substantially the same as the oxide superconductor. The oxide superconductor is composed of oxides that are composed of the same constituent elements and whose composition ratio is different from that of the oxide superconductor, and the C-axis of each of the oxides is in a plane parallel to the substrate, and the main current is A superconducting element characterized by having an orientation perpendicular to a flowing direction is provided.
さらに、本発明においては、上記それぞれの超電導素子
の作製方法として、基板上にC軸が前記基板と平行な平
面内にある配向性を有する酸化物超電導体結晶で構成さ
れた酸化物超電導薄膜を成膜し、
前記酸化物超電導体結晶のC軸と垂直な方向に前記超電
導素子を構成する各層が隣接して並列するように、該酸
化物超電導薄膜の一部に不純物を拡散させることによっ
て前記半導体層を形成する工程を含むことを特徴とする
超電導素子の作製方法が提供される。上記の不純物の代
わりに前記酸化物超電導体を構成する元素の一部を過剰
になるよう拡散させることによって前記半導体層を形成
する工程を含む超電導素子の作製方法も本発明には含ま
れる。Furthermore, in the present invention, as a method for manufacturing each of the above-mentioned superconducting elements, an oxide superconducting thin film composed of oxide superconducting crystals having an orientation such that the C axis is in a plane parallel to the substrate is formed on a substrate. forming a film, and diffusing impurities into a part of the oxide superconducting thin film so that the layers constituting the superconducting element are arranged adjacently in parallel in a direction perpendicular to the C axis of the oxide superconducting crystal. A method for manufacturing a superconducting element is provided, which includes a step of forming a semiconductor layer. The present invention also includes a method for manufacturing a superconducting element that includes a step of forming the semiconductor layer by diffusing a portion of the elements constituting the oxide superconductor in excess instead of the impurities.
作用
本発明の超電導素子は、酸化物超電導体による超電導体
層右よび半導体層が同一の基板上に隣接して配置されて
いる。また、半導体層は、超電導体層を構成している酸
化物超電導体で、不純物を含むかまたは酸化物超電導体
を構成する元素の一部を過剰に含むことにより半導体的
特性を示す酸化物で構成されている。特に作製方法の面
から換言すれば、本発明の超電導素子は、基板上に形成
された酸化物超電導薄膜の一部に「不純物を加えて」形
成した半導体層または「酸化物超電導体を構成する元素
の一部を過剰にして」形成した半導体層を具備する。Function In the superconducting element of the present invention, a superconductor layer and a semiconductor layer made of an oxide superconductor are arranged adjacent to each other on the same substrate. In addition, the semiconductor layer is an oxide superconductor that constitutes the superconductor layer, and is an oxide that exhibits semiconducting characteristics by containing impurities or containing an excessive amount of a part of the elements that constitute the oxide superconductor. It is configured. In other words, particularly from the viewpoint of the manufacturing method, the superconducting element of the present invention is a semiconductor layer formed by "adding impurities" to a part of an oxide superconducting thin film formed on a substrate, or a superconducting layer forming "an oxide superconductor". The method includes a semiconductor layer formed with a portion of an element in excess.
本発明の超電導素子においては、上記の超電導体層およ
び半導体層を構成する酸化物が、いずれもC軸が基板に
平行な配向性を有し、超電導素子の主電流が流れる方向
に対し、C軸が垂直であることが好ましい。これは、酸
化物超電導体は、その超電導特性に異方性を有し、特に
臨界電流密度、コヒーレンス長は、C軸に垂直な方向に
大きいからである。In the superconducting element of the present invention, the oxides constituting the superconductor layer and the semiconductor layer have an orientation in which the C axis is parallel to the substrate, and the C axis is parallel to the direction in which the main current of the superconducting element flows. Preferably the axis is vertical. This is because the oxide superconductor has anisotropy in its superconducting properties, and particularly the critical current density and coherence length are large in the direction perpendicular to the C-axis.
上記のような構成を有する本発明の超電導素子は、もと
もと一体に形成した酸化物超電導薄膜で構成されており
、また、結晶構造は、どの部分も等しい。従って、従来
の超電導素子と異なり、全ての層の結晶性がよい。The superconducting element of the present invention having the above structure is originally composed of an integrally formed oxide superconducting thin film, and the crystal structure is the same in all parts. Therefore, unlike conventional superconducting elements, all layers have good crystallinity.
上記の本発明の超電導素子は、基板上に酸化物超電導薄
膜を形成し、この薄膜に、全幅および全厚に亘って不純
物を拡散させるか、酸化物超電導体を構成する元素の一
部を過剰にした部分を形成することにより作製できる。In the superconducting element of the present invention described above, an oxide superconducting thin film is formed on a substrate, and impurities are diffused into this thin film over the entire width and thickness, or a part of the elements constituting the oxide superconductor is added in excess. It can be manufactured by forming a portion that is
この部分は、半導体層となるが、この半導体層と超電導
体層とは、C軸に垂直な方向に並ぶように形成する。This portion becomes a semiconductor layer, and this semiconductor layer and superconductor layer are formed so as to be aligned in a direction perpendicular to the C-axis.
酸化物超電導薄膜中に不純物を拡散させる方法には、拡
散させる不純物を含んだ薄膜を酸化物超電導薄膜上に積
層して熱処理を行う方法、イオン注入を行う方法がある
。特に、酸化物超電導体は、結晶のC軸と垂直な方向に
不純物が拡散し易い。Methods for diffusing impurities into an oxide superconducting thin film include a method in which a thin film containing the impurity to be diffused is laminated on an oxide superconducting thin film and then subjected to heat treatment, and a method in which ion implantation is performed. In particular, in oxide superconductors, impurities tend to diffuse in a direction perpendicular to the C axis of the crystal.
従って、結晶のC軸が基板表面に平行な、即ちC軸また
はb軸配向の薄膜を形成し、この薄膜上の一部に不純物
を含んだ層を形成し、熱処理、を行うことにより、本発
明の超電導素子を作製可能である。また、酸化物超電導
体を構成する元素の一部を過剰にするのも同様な方法に
より可能である。Therefore, by forming a thin film in which the C axis of the crystal is parallel to the substrate surface, that is, in the C axis or b axis orientation, forming a layer containing impurities on a part of this thin film, and performing heat treatment, the present invention can be realized. The superconducting element of the invention can be manufactured. It is also possible to make some of the elements constituting the oxide superconductor excessive by a similar method.
酸化物超電導薄膜中に拡散させる不純物としては、Si
等が好ましい。これは、Slを酸化物超電導体に拡散さ
せると、半導体的特性を示すようになるからである。従
って、Siを不純物として含む上記半導体−酸化物超電
導体界面の状態は極めて良好となる。一方、半導体層を
形成するために過剰にする元素には、例えば酸化物超電
導体にY、Ba2Cu30.−Xを使用した場合にはY
が好ましい。The impurity to be diffused into the oxide superconducting thin film is Si.
etc. are preferred. This is because when Sl is diffused into an oxide superconductor, it exhibits semiconductor-like characteristics. Therefore, the state of the semiconductor-oxide superconductor interface containing Si as an impurity is extremely good. On the other hand, elements used in excess to form a semiconductor layer include, for example, Y, Ba2Cu30, etc. for the oxide superconductor. -Y when using X
is preferred.
本発明の超電導素子には、任意の酸化物超電導体が使用
できるが、Y HBa2Cu+ 07−X系酸化物超電
導体は安定的に高品質の結晶性のよい薄膜が得られるの
で好ましい。また、Bi25r2Ca2Cu30X系酸
化物超電導体は、特にその超電導臨界温度Tcが高いの
で好ましい。Although any oxide superconductor can be used in the superconducting element of the present invention, Y HBa2Cu+ 07-X based oxide superconductor is preferred because it can stably provide a high quality thin film with good crystallinity. Furthermore, Bi25r2Ca2Cu30X-based oxide superconductors are particularly preferred because their superconducting critical temperature Tc is high.
以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.
実施例
本発明の方法により本発明の超電導素子の一例として超
電導ベーストランジスタを作製した。基板にはMgO単
結晶基板を用い、酸化物超電導体にはY 、Ba2CU
307−xを使用した。第2図(a)〜(1)ヲ参照し
て、作製手順を説明する。EXAMPLE A superconducting base transistor was fabricated as an example of a superconducting element of the present invention by the method of the present invention. An MgO single crystal substrate is used for the substrate, and Y and Ba2CU are used for the oxide superconductor.
307-x was used. The manufacturing procedure will be explained with reference to FIGS. 2(a) to (1).
まず、MgO(100)基板4上に、スパッタリング法
により、第2図(a)に示すよう基板表面にa軸が垂直
なくa軸配向の) YIBa2Cu30t−x超電導薄
膜1を形成した。主な成膜条件を以下に示す。First, a YIBa2Cu30t-x superconducting thin film 1 was formed on an MgO (100) substrate 4 by sputtering, as shown in FIG. 2(a), with the a-axis not perpendicular to the substrate surface but oriented along the a-axis. The main film forming conditions are shown below.
基板温度 630℃
スパッタリングガス Ar 90%
0210%
圧 力 5 Xl0−2Torr膜
厚 400nm
上記の条件で成膜を行った後、この酸化物超電導薄膜1
を構成するYIBa2Cu30t−x結晶の結晶方向を
電子線回折により測定した。Substrate temperature 630℃ Sputtering gas Ar 90% 0210% Pressure 5 Xl0-2Torr film
Thickness: 400 nm After film formation under the above conditions, this oxide superconducting thin film 1
The crystal direction of the YIBa2Cu30t-x crystal constituting the was measured by electron beam diffraction.
次に、この酸化物超電導薄膜1上に第2図(b)に示す
よう、厚さ300 nmのAu薄膜5を真空蒸着法によ
り形成した。Next, as shown in FIG. 2(b), a 300 nm thick Au thin film 5 was formed on this oxide superconducting thin film 1 by vacuum evaporation.
続いて、超電導トランジスタを構成する半導体層および
絶縁層を上記の酸化物超電導薄膜1中に作り込んでいく
が、この際先程行った結晶方向の測定結果をもとに、各
層が酸化物超電導薄膜1を構成しているY、Ba2Cu
、○?−X結晶のa軸に垂直な方向に並ぶよう、各層の
配置を決定する。本実施例では、第2図(C)〜(2)
までは酸化物超電導薄膜1を構成しているY 1Ba2
Cu307−X結晶のa軸が紙面に垂直であるとする。Next, the semiconductor layer and insulating layer constituting the superconducting transistor are built into the oxide superconducting thin film 1. At this time, based on the results of the crystal orientation measurements made earlier, each layer is made into the oxide superconducting thin film 1. 1 consists of Y, Ba2Cu
, ○? The arrangement of each layer is determined so that they are aligned in a direction perpendicular to the a-axis of the -X crystal. In this example, Fig. 2 (C) to (2)
Up to Y1Ba2, which constitutes the oxide superconducting thin film 1
It is assumed that the a-axis of the Cu307-X crystal is perpendicular to the plane of the paper.
上記の結晶方向の測定をもとに、酸化物超電導薄膜1を
構成するY lBa2Cu30 q−8結晶のa軸に垂
直な方向の端に半導体層を形成する。Au薄膜5上の図
面で左側を第2図(C)に示すようフォトレジスト6で
被覆した。第2図(d)に示すようArイオンミリング
により酸化物超電導薄膜1の図面で右側が露出するまで
エツチングを行った。この酸化物超電導薄膜1の露出し
た部分は、半導体層となる部分である。Based on the above measurement of the crystal direction, a semiconductor layer is formed at the end of the Y lBa2Cu30 q-8 crystal constituting the oxide superconducting thin film 1 in the direction perpendicular to the a-axis. The left side of the Au thin film 5 was covered with a photoresist 6 as shown in FIG. 2(C). As shown in FIG. 2(d), etching was performed by Ar ion milling until the right side of the oxide superconducting thin film 1 was exposed. The exposed portion of this oxide superconducting thin film 1 is a portion that will become a semiconductor layer.
フォトレジスト6および酸化物超電導薄膜1の露出した
部分上に、スパッタリング法により、第2図(e)に示
すようY薄膜71および72をAu薄膜5と同じ<30
0nmの厚さに形成する。リフトオフ法によりフォトレ
ジスト6およびY薄膜71を除去し、第2図(f)に示
すようAu薄膜5およびY薄膜72上にフォトレジスト
61および62を形成する。この場合、フォトレジスト
61および62はできるだけ接近させ、また、両者の間
の隙間は、Au薄膜5上になるように形成する。On the exposed parts of the photoresist 6 and the oxide superconducting thin film 1, Y thin films 71 and 72 are formed by sputtering to form the same thickness as the Au thin film 5, as shown in FIG. 2(e).
It is formed to a thickness of 0 nm. Photoresist 6 and Y thin film 71 are removed by a lift-off method, and photoresists 61 and 62 are formed on Au thin film 5 and Y thin film 72 as shown in FIG. 2(f). In this case, the photoresists 61 and 62 are placed as close as possible, and the gap between them is formed so as to be on the Au thin film 5.
再びArイオンミリングによるエツチングを行い、へu
薄膜5を第2図((イ)に示すよう51および52に分
割する。次に、斜め蒸着により、第2図(社)に示すよ
うAu薄膜51および52間が3nmに狭まるようAu
薄膜81および82を堆積させる。リフトオフ法により
、第2図(i)に示すようフォトレジスト61および6
2、Au薄膜81およびAu薄膜82の余分な部分を除
去する。Etching is performed again by Ar ion milling, and
The thin film 5 is divided into 51 and 52 as shown in FIG.
Thin films 81 and 82 are deposited. By the lift-off method, photoresists 61 and 6 are removed as shown in FIG. 2(i).
2. Remove excess portions of the Au thin film 81 and the Au thin film 82.
このように、加工した薄膜を高真空中で熱処理する。熱
処理条件を以下に示す。The thus processed thin film is heat-treated in a high vacuum. The heat treatment conditions are shown below.
圧力(真空度) I Xl0−’Torr基板温度
700℃
処理時間 3分間
熱処理後、Y薄膜72をArイオンミリングにより除去
し、第2図(j)に示すようAu薄膜53をAu薄膜5
2から離して形成する。上記の熱処理によりAu薄膜5
1および82の隙間の部分の酸化物超電導薄膜1の部分
は、結晶中の酸素が抜けて絶縁体3となり、Au薄膜5
1の下側の部分は第1の超電導体層11に、Au薄膜5
2の下側の部分は第2の超電導体層12になる。Pressure (degree of vacuum) I Xl0-'Torr substrate temperature
After heat treatment at 700°C for 3 minutes, the Y thin film 72 is removed by Ar ion milling, and the Au thin film 53 is replaced with the Au thin film 5 as shown in FIG. 2(j).
Form separately from 2. By the above heat treatment, the Au thin film 5
The part of the oxide superconducting thin film 1 in the gap between 1 and 82 becomes an insulator 3 as oxygen in the crystal escapes, and the Au thin film 5 becomes an insulator 3.
The lower part of 1 is the first superconductor layer 11 and the Au thin film 5
The lower portion of 2 becomes the second superconductor layer 12.
また、Y薄膜72の下の酸化物超電導薄膜1の部分には
、Yが拡散して半導体層2となる。Furthermore, Y is diffused into the portion of the oxide superconducting thin film 1 below the Y thin film 72 to become the semiconductor layer 2 .
最後に第2図(2)に示すよう絶縁体膜91.92.9
3および94と、配線用金属膜101.102および1
03とを形成し、本発明の超電導素子が完成する。Finally, as shown in Figure 2 (2), the insulator film 91,92,9
3 and 94, and the wiring metal film 101, 102 and 1
03 to complete the superconducting element of the present invention.
完成後、第1、第2の超電導体層11.12および半導
体層2の結晶性を調べたところ、いずれもほぼ単結晶の
良好な結晶であった。また、第1および第2の超電導体
層11および12の超電導臨界温度は、ともに88にで
あった。After completion, the crystallinity of the first and second superconductor layers 11 and 12 and the semiconductor layer 2 was examined, and it was found that they were all good, almost single crystals. Further, the superconducting critical temperatures of the first and second superconductor layers 11 and 12 were both 88.
本実施例では、酸化物超電導薄膜1上にY薄膜72を積
層して、熱処理することにより、半導体層2を形成した
が、第2図(d)の状態で酸化物超電導薄膜1の露出し
ている部分にYイオンを注入して半導体層を形成するこ
ともできる。In this example, the semiconductor layer 2 was formed by laminating the Y thin film 72 on the oxide superconducting thin film 1 and heat-treating it, but the oxide superconducting thin film 1 was exposed in the state shown in FIG. It is also possible to form a semiconductor layer by implanting Y ions into the portion.
また、上記本実施例の方法では、半導体層2および絶縁
体層3が同時に形成されるため、非常に効率よく超電導
ベーストランジスタが作製可能である。Further, in the method of the present embodiment, since the semiconductor layer 2 and the insulator layer 3 are formed at the same time, a superconducting base transistor can be manufactured very efficiently.
発明の詳細
な説明したように、本発明の超電導素子は、酸化物超電
導薄膜の一部を絶縁体層に変えた構成となっている。従
って、従来のように酸化物超電導薄膜上に絶縁体薄膜等
を積層することなく作製可能である。本発明の方法に従
って、本発明の超電導素子を作製すると、全体を一体に
形成するので、作製が容易であるだけでなく、各部の結
晶性もよく、特性も安定している。さらに、絶縁体層は
、酸化物超電導体と等しい構成元素からなる等しい結晶
構造の酸化物で構成されているので、絶縁体層を構成す
る絶縁体が、酸化物超電導薄膜の各種特性に悪影響を与
えることもない。As described in detail, the superconducting element of the present invention has a structure in which a part of the oxide superconducting thin film is replaced with an insulating layer. Therefore, it can be manufactured without stacking an insulator thin film or the like on an oxide superconducting thin film as in the conventional case. When the superconducting element of the present invention is produced according to the method of the present invention, the whole is formed in one piece, so it is not only easy to produce, but also has good crystallinity in each part and stable characteristics. Furthermore, since the insulator layer is composed of an oxide with the same crystal structure and the same constituent elements as the oxide superconductor, the insulator that makes up the insulator layer has an adverse effect on various properties of the oxide superconductor thin film. I have nothing to give.
さらに、本発明の超電導素子では、素子の動作に関わる
電流の流れる方向が、酸化物超電導体結晶のC軸に垂直
であるので、各種の特性が良好である。Furthermore, in the superconducting element of the present invention, the direction in which current related to the operation of the element flows is perpendicular to the C-axis of the oxide superconductor crystal, so that various characteristics are excellent.
本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。The present invention further promotes the application of superconducting technology to electronic devices.
第1図は、超電導ベーストランジスタの概念図であり、
第2図は、本発明の方法により本発明の超電導素子を作
製する場合の工程を示す概略図である。
〔主な参照番号〕
1・・・超電導体薄膜、
2・・・半導体層、
3・・・絶縁体層、
4・・・基板、
5・・・Au薄膜、
6・・・フォトレジスト
EB
BCFIG. 1 is a conceptual diagram of a superconducting base transistor, and FIG. 2 is a schematic diagram showing steps for manufacturing a superconducting element of the present invention by the method of the present invention. [Main reference numbers] 1... Superconductor thin film, 2... Semiconductor layer, 3... Insulator layer, 4... Substrate, 5... Au thin film, 6... Photoresist EB BC
Claims (4)
を有する超電導素子において、前記超電導体層および前
記半導体層が同一の基板上に配置され、前記超電導体層
が酸化物超電導体で構成され、前記半導体層が、不純物
を含む前記酸化物超電導体で構成され、前記いずれの酸
化物もc軸が、前記基板と平行な平面内にあり、且つ主
電流が流れる方向に垂直である配向性を有することを特
徴とする超電導素子。(1) In a superconducting element having a superconductor layer and a semiconductor layer adjacent to the superconductor layer, the superconductor layer and the semiconductor layer are arranged on the same substrate, and the superconductor layer is an oxide superconductor. wherein the semiconductor layer is composed of the oxide superconductor containing impurities, and the c-axis of each of the oxides is in a plane parallel to the substrate and perpendicular to the direction in which the main current flows. A superconducting element characterized by having orientation.
を有する超電導素子において、前記超電導体層および前
記半導体層が同一の基板上に配置され、前記超電導体層
が酸化物超電導体で構成され、前記半導体層が、前記酸
化物超電導体と実質的に等しい構成元素からなり、且つ
その組成比が前記酸化物超電導体と異なる酸化物で構成
され、前記いずれの酸化物もc軸が、前記基板と平行な
平面内にあり、且つ主電流が流れる方向に垂直である配
向性を有することを特徴とする超電導素子。(2) In a superconducting element having a superconductor layer and a semiconductor layer adjacent to the superconductor layer, the superconductor layer and the semiconductor layer are arranged on the same substrate, and the superconductor layer is an oxide superconductor. wherein the semiconductor layer is composed of an oxide having substantially the same constituent elements as the oxide superconductor and whose composition ratio is different from that of the oxide superconductor, and each of the oxides has a c-axis. A superconducting element, characterized in that the superconducting element has an orientation that is in a plane parallel to the substrate and perpendicular to the direction in which the main current flows.
導体層と、前記基板上で前記超電導体層に隣接し、不純
物を含む前記酸化物超電導体で構成された半導体層とを
有する超電導素子を作製する方法において、 基板上にc軸が前記基板と平行な平面内にある配向性を
有する酸化物超電導体結晶で構成された酸化物超電導薄
膜を成膜し、 前記酸化物超電導体結晶のc軸と垂直な方向に前記超電
導素子を構成する各層が隣接して並列するように、該酸
化物超電導薄膜の一部に不純物を拡散させることによっ
て前記半導体層を形成する工程を含むことを特徴とする
超電導素子の作製方法。(3) A superconductor layer on a substrate and made of an oxide superconductor, and a semiconductor layer on the substrate adjacent to the superconductor layer and made of the oxide superconductor containing impurities. In a method for producing a superconducting element, an oxide superconducting thin film composed of oxide superconducting crystals having an orientation in which the c-axis is in a plane parallel to the substrate is formed on a substrate, and the oxide superconducting thin film is forming the semiconductor layer by diffusing impurities into a portion of the oxide superconducting thin film so that the layers constituting the superconducting element are adjacent and parallel in a direction perpendicular to the c-axis of the crystal; A method for producing a superconducting element characterized by:
導体層と、前記基板上で前記超電導体層に隣接し、前記
酸化物超電導体と実質的に等しい構成元素からなり、且
つその組成比が前記酸化物超電導体と異なる酸化物で構
成された半導体層とを有する超電導素子を作製する方法
において、 基板上にc軸が前記基板と平行な平面内にある配向性を
有する酸化物超電導体結晶で構成された酸化物超電導薄
膜を成膜し、 前記酸化物超電導体結晶のc軸と垂直な方向に前記超電
導素子を構成する各層が隣接して並列するように、前記
酸化物超電導体を構成する元素の一部を過剰になるよう
拡散させることによって前記半導体層を形成する工程を
含むことを特徴とする超電導素子の作製方法。(4) a superconductor layer on a substrate made of an oxide superconductor; and a superconductor layer on the substrate adjacent to the superconductor layer made of substantially the same constituent elements as the oxide superconductor; In a method for producing a superconducting element having a semiconductor layer made of an oxide having a composition ratio different from that of the oxide superconductor, an oxide having an orientation such that the c-axis lies in a plane parallel to the substrate on the substrate. An oxide superconducting thin film composed of superconducting crystals is formed, and the oxide superconducting thin film is formed such that each layer constituting the superconducting element is adjacently arranged in parallel in a direction perpendicular to the c-axis of the oxide superconducting crystal. A method for manufacturing a superconducting element, comprising the step of forming the semiconductor layer by diffusing a part of the elements constituting the body in excess.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2230221A JPH04111482A (en) | 1990-08-31 | 1990-08-31 | Superconductive element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2230221A JPH04111482A (en) | 1990-08-31 | 1990-08-31 | Superconductive element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04111482A true JPH04111482A (en) | 1992-04-13 |
Family
ID=16904456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2230221A Pending JPH04111482A (en) | 1990-08-31 | 1990-08-31 | Superconductive element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04111482A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480861A (en) * | 1993-07-14 | 1996-01-02 | Sumitomo Electric Industries Ltd. | Layered structure comprising insulator thin film and oxide superconductor thin film |
-
1990
- 1990-08-31 JP JP2230221A patent/JPH04111482A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480861A (en) * | 1993-07-14 | 1996-01-02 | Sumitomo Electric Industries Ltd. | Layered structure comprising insulator thin film and oxide superconductor thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3064306B2 (en) | Method of forming weakly coupled Josephson junction and superconducting device using the same | |
EP0478465A1 (en) | Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby | |
EP0467777B1 (en) | Method for manufacturing superconducting device composed of oxide superconductor material and superconducting device manufactured thereby | |
JP3278638B2 (en) | High-temperature superconducting Josephson junction and method of manufacturing the same | |
EP0468868B1 (en) | Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same | |
US5354734A (en) | Method for manufacturing an artificial grain boundary type Josephson junction device | |
JP2871516B2 (en) | Oxide superconducting thin film device | |
JPH03259576A (en) | Josephson junction | |
JP3189403B2 (en) | Element having superconducting junction and method of manufacturing the same | |
JPH04111482A (en) | Superconductive element and manufacture thereof | |
US6719924B2 (en) | Superconducting device and method of manufacturing the same | |
JPH0479382A (en) | Superconductive element and manufacture thereof | |
KR930004024B1 (en) | Manufacturing method of super conductor ic | |
JP2909455B1 (en) | Superconducting element | |
JPH09232641A (en) | Superconductive device | |
JPH03166776A (en) | Tunnel junction element and manufacture thereof | |
JP2691065B2 (en) | Superconducting element and fabrication method | |
JP2831918B2 (en) | Superconducting element manufacturing method | |
JPH0563247A (en) | Superconducting joint structure and production thereof | |
JP2738144B2 (en) | Superconducting element and fabrication method | |
JPH0479383A (en) | Superconductive element and manufacture thereof | |
JP2667289B2 (en) | Superconducting element and fabrication method | |
JPH0473976A (en) | Manufacture of superconducting device | |
JP2994190B2 (en) | High-temperature superconducting thin film structure and method for producing the same | |
JP3323278B2 (en) | Method for manufacturing superconducting device |