JPH04111423U - Short fiber composite rubber molding - Google Patents

Short fiber composite rubber molding

Info

Publication number
JPH04111423U
JPH04111423U JP2435991U JP2435991U JPH04111423U JP H04111423 U JPH04111423 U JP H04111423U JP 2435991 U JP2435991 U JP 2435991U JP 2435991 U JP2435991 U JP 2435991U JP H04111423 U JPH04111423 U JP H04111423U
Authority
JP
Japan
Prior art keywords
rubber
fiber composite
short fiber
composite rubber
kevlar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2435991U
Other languages
Japanese (ja)
Other versions
JPH077142Y2 (en
Inventor
吉弥 谷野
輝之 谷垣
和磨 小林
Original Assignee
日本ピラー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピラー工業株式会社 filed Critical 日本ピラー工業株式会社
Priority to JP2435991U priority Critical patent/JPH077142Y2/en
Publication of JPH04111423U publication Critical patent/JPH04111423U/en
Application granted granted Critical
Publication of JPH077142Y2 publication Critical patent/JPH077142Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】軸方向の過大な変形を抑制し、熱間強度及び耐
久性を飛躍的に向上させた短繊維複合ゴム成形体を提供
する。 【構成】c−NBRを母材とするカーボン配合ゴムにケ
ブラー短繊維を複合して短繊維複合ゴムを形成した後、
移送成形法により短繊維複合ゴムを金属芯の外周面に被
覆成形してゴム被覆ローラを形成すると共に、同短繊維
複合ゴムに含まれるケブラー短繊維をゴム被覆ローラの
外周面に対して軸方向に配向することにより、軸方向の
引張り強度が高められ、軸方向の圧縮変化量を少なくし
て過大な変形を抑制し、且つ、ケブラー短繊維の結晶性
により急激な強度低下を回避して熱間強度を向上させ
る。
(57) [Summary] [Objective] To provide a short fiber composite rubber molded article that suppresses excessive deformation in the axial direction and dramatically improves hot strength and durability. [Constitution] After forming a short fiber composite rubber by combining Kevlar short fibers with carbon compounded rubber with c-NBR as a base material,
A rubber-covered roller is formed by coating the outer circumferential surface of a metal core with short fiber composite rubber using a transfer molding method, and the Kevlar short fibers contained in the short fiber composite rubber are coated in the axial direction with respect to the outer circumferential surface of the rubber-covered roller. By orienting Kevlar short fibers, the tensile strength in the axial direction is increased, the amount of compression change in the axial direction is reduced, and excessive deformation is suppressed, and the crystallinity of Kevlar short fibers prevents a sudden decrease in strength and is resistant to heat. Improve your strength.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、例えば、立体駐車場に於ける運搬機のローラ、合板製造機の送り ローラ等に用いられる短繊維複合ゴム成形体に関する。 This idea can be used, for example, in the rollers of transportation machines in multi-story parking lots, and in the feed of plywood manufacturing machines. This invention relates to short fiber composite rubber molded bodies used in rollers and the like.

【0002】0002

【従来の技術】[Conventional technology]

従来、上述例の送りローラとしては、例えば、金属単体、プラスチック単体、 ゴム被覆金属材等で形成した送りローラがある。 Conventionally, the feed roller of the above example has been made of, for example, a single metal, a single plastic, There is a feed roller made of rubber-coated metal material or the like.

【0003】0003

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかし、上述の送りローラは回転時の騒音、耐久性、転動抵抗等の問題点を有 しており、用途的に満足するものを製作することは技術的に困難である。これら 問題点を改善する一手段として、例えば、図5に示すように、c−NBRで形成 した合成ゴム17を金属芯18の外周面に被覆成形したゴム被覆ローラ16があ るが、このゴム被覆ローラ16は、c−NBRで形成した合成ゴム17の持つク ッション性(低弾性、緩衝性)を利用する構造であるため、耐熱性が低く、弾性 変形率が過大であることに起因して、摩擦や摩耗等の疲労による損耗が生じやす いという問題点を有している。また、図5に示すように、ゴム被覆ローラ16を 平面部19に圧接すると、金属芯18の外周面に被覆した合成ゴム17が軸方向 に弾性変形して、ゴム被覆ローラ16の両端部から合成ゴム17の一部が食み出 すため、その変形部分から合成ゴム17が剥離又は破壊するという問題点も有し ている。 However, the above-mentioned feed rollers have problems such as noise during rotation, durability, and rolling resistance. Therefore, it is technically difficult to manufacture something that is satisfactory for the purpose of use. these As a means to improve the problem, for example, as shown in FIG. A rubber-covered roller 16 is formed by coating the outer peripheral surface of a metal core 18 with synthetic rubber 17. However, this rubber-covered roller 16 is made of synthetic rubber 17 made of c-NBR. The structure utilizes cushioning properties (low elasticity, cushioning properties), so it has low heat resistance and low elasticity. Due to excessive deformation rate, wear and tear due to fatigue such as friction and abrasion is likely to occur. It has the problem of In addition, as shown in FIG. 5, the rubber coated roller 16 is When pressed against the flat part 19, the synthetic rubber 17 coated on the outer peripheral surface of the metal core 18 moves in the axial direction. The synthetic rubber 17 is elastically deformed, and a portion of the synthetic rubber 17 protrudes from both ends of the rubber-covered roller 16. Therefore, there is also the problem that the synthetic rubber 17 may peel off or break from the deformed portion. ing.

【0004】 この考案は上記問題に鑑み、短繊維複合ゴム成形体に含まれる高弾性率の短繊 維を軸方向に配向することにより、軸方向の過大な変形を抑制すると共に、熱間 強度及び耐久性を飛躍的に向上させることができる短繊維複合ゴム成形体の提供 を目的とする。0004 In view of the above-mentioned problems, this idea was developed by using short fibers with a high elastic modulus contained in a short fiber composite rubber molded article. By orienting the fibers in the axial direction, excessive deformation in the axial direction can be suppressed, and hot Providing a short fiber composite rubber molded product that can dramatically improve strength and durability With the goal.

【0005】[0005]

【課題を解決するための手段】[Means to solve the problem]

この考案は、ゴムより成る筒状の母材内に高弾性率の短繊維を配合すると共に 、該母材の外周面に対して軸方向に短繊維を配向した短繊維複合ゴム成形体であ ることを特徴とする。 This idea combines short fibers with a high modulus of elasticity within a cylindrical base material made of rubber. is a short fiber composite rubber molded article in which short fibers are oriented in the axial direction with respect to the outer peripheral surface of the base material. It is characterized by

【0006】[0006]

【考案の効果】[Effect of the idea]

この考案によれば、短繊維複合ゴム成形体に含まれる高弾性率の短繊維を軸方 向に配向しているので、軸方向の引張り強度が高められ、軸方向の圧縮変化量を 少なくして過大な変形を抑制し、変形による剥離や破壊等の発生を確実に防止す ると共に、摩擦や摩耗等による損耗を低減することができる。且つ、ゴムより成 る母材内にケブラー短繊維等を複合しているので、短繊維の結晶性により急激な 強度低下が回避され、熱間強度が向上して、耐久性を飛躍的に向上させることが できる。 According to this invention, the short fibers with high elastic modulus contained in the short fiber composite rubber molded body are oriented in the direction, the tensile strength in the axial direction is increased, and the amount of compression change in the axial direction is reduced. Reduce excessive deformation and reliably prevent peeling and destruction due to deformation. At the same time, it is possible to reduce wear and tear due to friction, wear, etc. In addition, it is made of rubber. Kevlar short fibers etc. are composited into the base material, so the crystallinity of the short fibers causes rapid Strength reduction is avoided, hot strength is improved, and durability is dramatically improved. can.

【0007】[0007]

【実施例】【Example】

この考案の一実施例を以下図面に基づいて詳述する。 図面は短繊維複合ゴムに含まれる高弾性率のケブラー短繊維を軸方向に配向し たゴム被覆ローラを示し、図1及び図2に於いて、このゴム被覆ローラ1は、カ ルボキシル化したc−NBRを母材とするカーボン配合ゴム2aに、フィブリル 化したケブラー短繊維2bを配合して短繊維複合ゴム2を形成した後、後述する 移送成形法により短繊維複合ゴム2を金属芯3の外周面に被覆成形してゴム被覆 ローラ1を形成する。 An embodiment of this invention will be described in detail below based on the drawings. The drawing shows Kevlar short fibers with high elasticity contained in short fiber composite rubber oriented in the axial direction. In FIGS. 1 and 2, this rubber-covered roller 1 is Fibrils are added to the carbon compound rubber 2a whose base material is ruboxylated c-NBR. After forming the short fiber composite rubber 2 by blending the converted Kevlar short fibers 2b, the following process will be described later. The short fiber composite rubber 2 is coated and molded onto the outer peripheral surface of the metal core 3 using a transfer molding method to form a rubber coating. Form roller 1.

【0008】 上述のゴム被覆ローラ1を成形する移送成形法は、例えば、カルボキシル化し たc−NBR(日本ゼオンNipol 1072)100部に、カーボンSRF (ゴム用カーボン粉末)30部及び充填剤等を配合して母材となるカーボン配合 ゴム2aを形成した後、同カーボン配合ゴム2aにフィブリル化したケブラー短 繊維2b(Kevlar#29、平均繊維長さ5mm)を5〜20wt%配合して 、バンバリーミキサー(図示省略)によりカーボン配合ゴム2aとケブラー短繊 維2bと加硫剤とを混合混練して短繊維複合ゴム2を一体形成する。[0008] The transfer molding method for molding the rubber-coated roller 1 described above is, for example, Carbon SRF was added to 100 parts of c-NBR (Zeon Nipol 1072). (Carbon powder for rubber) 30 parts and filler etc. are mixed to form a base material carbon compound. After forming the rubber 2a, fibrillated Kevlar shorts are added to the same carbon compounded rubber 2a. 5 to 20 wt% of fiber 2b (Kevlar #29, average fiber length 5 mm) is blended. , Carbon blended rubber 2a and Kevlar short fibers are mixed using a Banbury mixer (not shown). The short fiber composite rubber 2 is integrally formed by mixing and kneading the fibers 2b and a vulcanizing agent.

【0009】 次に、図3に示すように、成形機4を構成する上部金型5と下部金型6との対 向面間に円筒形状に形成した金属芯3をセットして、同金属芯3の外周面に短繊 維複合ゴム2を一体的に被覆成形する。すなわち、上部金型5と下部金型6とを 分離方向に相対移動して分離した後、フェノール樹脂系の接着剤を金属芯3の外 周面に予め塗布して、下部金型6の上面中央部に形成した凸部6aの外周面に金 属芯3の下端部を嵌合固定する。この後、下部金型6と上部金型5とを嵌合方向 に相対移動して、上部金型5の下面中央部に形成した凸部5aの外周面に金属芯 3の上端部を嵌合固定する。同時に、下部金型6の上面側外周部に形成した環状 段部6bと、上部金型5の下面側外周部に固定した外型7の下端部とを嵌合固定 して、同外型7の内周面と金属芯3の外周面との間に空間部Cを形成する。[0009] Next, as shown in FIG. 3, a pair of upper mold 5 and lower mold 6 that constitute the molding machine A metal core 3 formed in a cylindrical shape is set between facing surfaces, and short fibers are attached to the outer peripheral surface of the metal core 3. The fiber composite rubber 2 is integrally coated and molded. That is, the upper mold 5 and the lower mold 6 are After separating by relative movement in the separation direction, apply phenolic resin adhesive to the outside of the metal core 3. The outer circumferential surface of the convex portion 6a formed at the center of the upper surface of the lower mold 6 is coated with gold in advance. The lower end of the metal core 3 is fitted and fixed. After this, the lower mold 6 and the upper mold 5 are connected in the fitting direction. The metal core is moved relative to the outer peripheral surface of the convex portion 5a formed at the center of the lower surface of the upper mold 5. Fit and fix the upper end of 3. At the same time, an annular shape is formed on the outer periphery of the upper surface of the lower mold 6. The stepped portion 6b and the lower end of the outer mold 7 fixed to the outer peripheral portion of the lower surface of the upper mold 5 are fitted and fixed. Thus, a space C is formed between the inner peripheral surface of the outer mold 7 and the outer peripheral surface of the metal core 3.

【0010】 且つ、上部金型5の上面中央部に形成した凹部5bにプランジャ8を嵌合して 、同プランジャ8の上面中央部に形成した注入孔8aと、上部金型5の凹部5b に多数形成した小径の各孔部5c…とを連通接続した後、所定温度に加熱処理し た短繊維複合ゴム2をプランジャ8の注入孔8a及び上部金型5の各孔部5c… を介して空間部Cに強制注入することにより、上部金型5に形成した各孔部5c …を通過する時に短繊維複合ゴム2の流動速度が速くなり、同短繊維複合ゴム2 に混合したケブラー短繊維2bが金属芯3の外周面に沿って軸方向に配向され、 金属芯3の外周面全体に短繊維複合ゴム2を一体的に被覆形成することができる 。この後、成形機4を構成する上部金型5と下部金型6とを分離方向に相対移動 して分離した後、上部金型5と下部金型6との対向面間からゴム被覆ローラ1を 取り外すことで成形作業が完了する。0010 In addition, the plunger 8 is fitted into the recess 5b formed in the center of the upper surface of the upper mold 5. , an injection hole 8a formed in the center of the upper surface of the plunger 8, and a recess 5b of the upper mold 5. After connecting the small diameter holes 5c formed in large numbers to each other, heat treatment is performed to a predetermined temperature. The short fiber composite rubber 2 is poured into the injection hole 8a of the plunger 8 and each hole 5c of the upper mold 5... Each hole 5c formed in the upper mold 5 by forcibly injecting into the space C through the When passing through..., the flow speed of the short fiber composite rubber 2 increases, and the short fiber composite rubber 2 Kevlar short fibers 2b mixed with are oriented in the axial direction along the outer peripheral surface of the metal core 3, The entire outer peripheral surface of the metal core 3 can be integrally coated with the short fiber composite rubber 2. . After this, the upper mold 5 and lower mold 6 that constitute the molding machine 4 are moved relative to each other in the separation direction. After separating the upper mold 5 and the lower mold 6, the rubber coated roller 1 is inserted between the opposing surfaces of the upper mold 5 and the lower mold 6. The molding work is completed by removing it.

【0011】 上述の短繊維複合ゴム2の比較例として、例えば、c−NBRを母材とするカ ーボン配合ゴム2aにケブラー短繊維2bを複合して形成した本考案の試験片A と、c−NBRで形成した従来品の試験片Bとを同一形状寸法に形成して同一条 件で耐疲労性及び耐摩耗性の各試験を行なった。[0011] As a comparative example of the above-mentioned short fiber composite rubber 2, for example, a rubber whose base material is c-NBR is Test piece A of the present invention formed by combining Kevlar short fibers 2b with carbon compound rubber 2a and test piece B of the conventional product made of c-NBR were formed to have the same shape and dimensions and were tested under the same conditions. Fatigue resistance and wear resistance tests were conducted under the following conditions.

【0012】 先ず、耐疲労性を試験する場合、図4に示すように、実装時に於ける圧力変化 、摩擦力、軸振れ等を予め想定して、島津製作所製の万能疲れ試験機9(UF− 15)により一定の反復引張り応力を負荷して破断に至るまでの回数を測定し、 その測定結果をSN曲線により判定する。この万能疲れ試験機9は、機本体10 の上面側に固定した固定クランプ11と、上下動可能に取付けた可動クランプ1 2との間に試験片A又は試験片Bを挾持固定した後、可動クランプ12の上下両 端部に水平固定した薄板13,13で試験時の横揺れを抑制し、可動クランプ1 2の下端部に連結固定したコイルバネ14で牽引して固定荷重を負荷し、可動ク ランプ12の中央部に枢着した回転分銅15を上下方向に回転して変動荷重を負 荷する。すなわち、各試験片A,Bを同一形状寸法(標点間10mm、幅10mm、 厚さ3mm、チャック間隔45mm)に夫々形成し、繰返し反復速度を1800回/ 毎分に設定し、負荷荷重を30kg〜100kgの範囲で任意設定し、通常条件より も厳しい雰囲気(温風循環50℃±5℃)に設定して、繰返し反復引張り荷重を 所定時間負荷する。0012 First, when testing fatigue resistance, as shown in Figure 4, the pressure change during mounting is , frictional force, shaft runout, etc., using the Shimadzu Universal Fatigue Tester 9 (UF- 15) by applying a constant repeated tensile stress and measuring the number of times until it breaks, The measurement results are determined based on the SN curve. This universal fatigue tester 9 has a machine body 10 A fixed clamp 11 fixed on the top side and a movable clamp 1 attached so as to be able to move up and down. After clamping and fixing the test piece A or test piece B between the movable clamp 12 and the The thin plates 13, 13 fixed horizontally at the ends suppress horizontal vibration during testing, and the movable clamp 1 A fixed load is applied by pulling the coil spring 14 connected and fixed to the lower end of the movable crank. A rotating weight 15 pivotally attached to the center of the lamp 12 is rotated up and down to apply a variable load. load That is, each specimen A and B were made with the same shape and dimensions (gauge distance 10 mm, width 10 mm, The thickness was 3 mm, the chuck interval was 45 mm), and the repetition rate was 1800 times/ per minute, arbitrarily set the load in the range of 30 kg to 100 kg, and under normal conditions. The atmosphere was set to be harsh (warm air circulation 50℃±5℃), and repeated tensile loads were applied. Load for a predetermined time.

【0013】 下記の表1は、上記条件で各試験片A,Bを試験した結果を示す。[0013] Table 1 below shows the results of testing each test piece A and B under the above conditions.

【0014】[0014]

【表1】 [Table 1]

【0015】 上記の試験結果が示すように、同一条件で繰返し反復引張り荷重を負荷した場 合、c−NBRで形成した従来品の試験片Bに比べて、c−NBRを母材とする カーボン配合ゴム2aにケブラー短繊維2bを複合して形成した本考案の試験片 Aは約1万倍の寿命を有しているという試験結果が得られ、且つ、これら各試験 片A,Bを長期間使用した場合、従来品の試験片Bは20kg/cm2 以下の負荷に 於いて耐久性に不安があるが、本考案の試験片Aは40kg/cm2 の負荷に於いて 充分な耐久性が得られ、耐疲労性について優れていることが証明される。As the above test results show, when repeated tensile loads are applied under the same conditions, compared to the conventional specimen B made of c-NBR, the carbon compound with c-NBR as the base material A test result was obtained that test piece A of the present invention, which is formed by combining Kevlar short fibers 2b with rubber 2a, has a lifespan approximately 10,000 times longer. When used, the conventional test specimen B has poor durability under a load of 20 kg/cm 2 or less, but the test specimen A of the present invention has sufficient durability under a load of 40 kg/cm 2 . It is proved that the fatigue resistance is excellent.

【0016】 次に、耐摩耗性を試験する場合、相手側の摺動面粗さ及びスラリーによる摺動 抵抗を考慮してティバー摩耗試験機(図示省略)により摩耗損失重量を測定し、 その測定結果から優劣を判定する。すなわち、今回の摩耗試験に於いては、c− NBRで形成した従来品の試験片Bに比べて、ケブラー短繊維2bを複合して形 成した本考案の試験片Aは約2倍の耐摩耗性を有しているという試験結果が得ら れ、且つ、応力歪み履歴に於ける履歴面積の大きいものが耐摩耗性が劣るという 結果となる。[0016] Next, when testing wear resistance, check the roughness of the sliding surface of the other side and the sliding effect caused by slurry. Considering the resistance, the wear loss weight was measured using a Tibber abrasion tester (not shown). The superiority or inferiority is determined from the measurement results. That is, in this wear test, c- Compared to the conventional test piece B made of NBR, the one made of composite Kevlar short fibers 2b Test results showed that test piece A of the present invention had approximately twice the wear resistance. In addition, it is said that those with a large history area in the stress strain history have inferior wear resistance. result.

【0017】 次に、ケブラー短繊維2bを複合して形成した本考案の試験片Aと、c−NB Rで形成した従来品の試験片Bとを同一形状寸法に形成して同一条件で引張り弾 性率及び復元性の各試験を行なった。[0017] Next, test piece A of the present invention formed by combining Kevlar short fibers 2b and c-NB A test specimen B of the conventional product formed with Tests were conducted on recovery rate and resiliency.

【0018】 下記の表2は、同一条件で各試験片A,Bを引張り試験した結果を示す。[0018] Table 2 below shows the results of tensile testing each test piece A and B under the same conditions.

【0019】[0019]

【表2】 [Table 2]

【0020】 すなわち、表3に示した面直角に必要な圧縮応力を比較した場合、c−NBR で形成した従来品の試験片Bに比べて、ケブラー短繊維2bを複合して形成した 本考案の試験片Aは2倍程度であるが、繊維配向方向の引張り弾性率を比較した 場合、本願考案の試験片Aの破断点で比較すると、従来品の試験片Bは75kg/ cm2 あるのに対して本考案の試験片Aは320kg/cm2 であり、従来品の試験片 Bに比べて本考案の試験片Aの方が約42倍と極めて高い引張り弾性率を有して いることが証明される。且つ、圧接面に対する馴染み性が向上し、繊維配向方向 の過大な変形が抑制される。That is, when comparing the compressive stress required perpendicular to the plane shown in Table 3, compared to the conventional specimen B made of c-NBR, the present invention made of a composite of Kevlar short fibers 2b However, when comparing the tensile modulus in the fiber orientation direction, the breaking point of test piece A of the present invention is 75 kg/ cm2 compared to that of test piece B of the conventional product. On the other hand, the test piece A of the present invention has a tensile modulus of 320 kg/ cm2 , and compared to the conventional test piece B, the test piece A of the present invention has an extremely high tensile modulus of about 42 times. is proven. In addition, the conformability to the press contact surface is improved, and excessive deformation in the fiber orientation direction is suppressed.

【0021】 下記の表3は、同一条件で各試験片A,Bを圧縮試験した結果を示す。[0021] Table 3 below shows the results of a compression test for each test piece A and B under the same conditions.

【0022】[0022]

【表3】 [Table 3]

【0023】 すなわち、従来品の試験片Bに比べて本考案の試験片Aの方が復元性に優れて いることが証明される。[0023] In other words, the test piece A of the present invention has better resilience than the conventional test piece B. It is proven that there is.

【0024】 以上の試験結果が示すように、短繊維複合ゴム2に含まれるケブラー短繊維2 bを軸方向に配向しているので、図2に示すように、ゴム被覆ローラ1を平面部 19に圧接しても短繊維複合ゴム2は殆ど変形せず、軸方向の引張り強度が高め られ、軸方向の圧縮変化量を少なくして過大な変形を抑制し、変形による剥離や 破壊等の発生を確実に防止すると共に、摩擦や摩耗等による損耗を低減すること ができる。且つ、c−NBRを母材とするカーボン配合ゴム2aにケブラー短繊 維2bを複合しているので、ケブラー短繊維2bの結晶性により急激な強度低下 が回避され、熱間強度が向上して、耐久性を飛躍的に向上させることができる。[0024] As the above test results show, Kevlar short fibers 2 contained in short fiber composite rubber 2 b is oriented in the axial direction, so as shown in FIG. Short fiber composite rubber 2 hardly deforms even when pressed against 19, and has high tensile strength in the axial direction. This reduces the amount of compression change in the axial direction, suppresses excessive deformation, and prevents peeling due to deformation. To reliably prevent destruction, etc., and reduce wear and tear due to friction, wear, etc. I can do it. In addition, Kevlar short fibers are added to the carbon compounded rubber 2a whose base material is c-NBR. Since it is a composite of Kevlar fiber 2b, there is a sudden decrease in strength due to the crystallinity of Kevlar short fiber 2b. is avoided, hot strength is improved, and durability can be dramatically improved.

【0025】 この考案の構成と、上述の実施例との対応に於いて、 この考案の短繊維は、実施例のケブラー短繊維2bと対応し、 以下同様に、 短繊維複合ゴム成形体は、ゴム被覆ローラ1と対応する。[0025] In the correspondence between the structure of this invention and the above-mentioned embodiments, The short fiber of this invention corresponds to the Kevlar short fiber 2b of the example, Similarly below, The short fiber composite rubber molded body corresponds to the rubber covered roller 1.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】短繊維複合ゴムを被覆成形したゴム被覆ローラ
の斜視図。
FIG. 1 is a perspective view of a rubber-covered roller coated with short fiber composite rubber.

【図2】ゴム被覆ローラの縦断面図。FIG. 2 is a longitudinal cross-sectional view of a rubber-covered roller.

【図3】ゴム被覆ローラの成形方法を示す成形機の縦断
側面図。
FIG. 3 is a longitudinal side view of a molding machine showing a method of molding a rubber-covered roller.

【図4】短繊維複合ゴムの試験方法を示す万能疲れ試験
機の構成図。
FIG. 4 is a configuration diagram of a universal fatigue testing machine showing a testing method for short fiber composite rubber.

【図5】従来例のゴム被覆ローラを示す縦断面図。FIG. 5 is a longitudinal cross-sectional view showing a conventional rubber-covered roller.

【符号の説明】[Explanation of symbols]

1…ゴム被覆ローラ 2…短繊維複合ゴム 2a…カーボン配合ゴム 2b…ケブラー短繊維 3…金属芯 4…成形機 9…万能疲れ試験機 1...Rubber coated roller 2...Short fiber composite rubber 2a...Carbon compounded rubber 2b...Kevlar short fiber 3...Metal core 4...Molding machine 9... Universal fatigue tester

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:32 4F Continuing from the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B29L 31:32 4F

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ゴムより成る筒状の母材内に高弾性率の短
繊維を配合すると共に、該母材の外周面に対して軸方向
に短繊維を配向したことを特徴とする短繊維複合ゴム成
形体。
1. A short fiber characterized by blending short fibers with a high elastic modulus in a cylindrical base material made of rubber, and oriented the short fibers in the axial direction with respect to the outer peripheral surface of the base material. Composite rubber molded body.
JP2435991U 1991-03-18 1991-03-18 Short fiber composite rubber molding Expired - Fee Related JPH077142Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435991U JPH077142Y2 (en) 1991-03-18 1991-03-18 Short fiber composite rubber molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435991U JPH077142Y2 (en) 1991-03-18 1991-03-18 Short fiber composite rubber molding

Publications (2)

Publication Number Publication Date
JPH04111423U true JPH04111423U (en) 1992-09-28
JPH077142Y2 JPH077142Y2 (en) 1995-02-22

Family

ID=31909339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435991U Expired - Fee Related JPH077142Y2 (en) 1991-03-18 1991-03-18 Short fiber composite rubber molding

Country Status (1)

Country Link
JP (1) JPH077142Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056195A1 (en) * 2001-12-26 2003-07-10 Yamauchi Corporation Fiber-reinforced resin roll and method of manufacturing the roll

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056195A1 (en) * 2001-12-26 2003-07-10 Yamauchi Corporation Fiber-reinforced resin roll and method of manufacturing the roll
CN100351069C (en) * 2001-12-26 2007-11-28 山内株式会社 Fiber-reinforced resin roll and method of manufacturing the roll

Also Published As

Publication number Publication date
JPH077142Y2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
FI66936C (en) MEDIA ELASTOMERMATERIAL BEKLAEDDA VALSAR OCH FOERFARANDE FOER FRMSTAELLNING AV DESSA
CN101460673B (en) Reinforcing cord, method for producing the same, and product using the reinforcing cord
US5257967A (en) Inking rollers
CN108953371B (en) Bearing device
JP2002098193A (en) Cylindrical dynamic damper
JPH04111423U (en) Short fiber composite rubber molding
US2858150A (en) Push rod seal
US3901495A (en) Resilient cushion member
US2774620A (en) Resilient joint
JPH0972365A (en) Vibration-proof rubber bush and manufacture thereof
US2393501A (en) Pivotal joint
US3523857A (en) Diaphragm assembly
US20010050203A1 (en) Dynamic damper
JP2794568B2 (en) Screw shaft seal and manufacturing method thereof
CN218926931U (en) Spare part cutting bracket of automobile production line
JPH0634375Y2 (en) Top roller for high speed drawing machine
JP4690142B2 (en) Rubber roller manufacturing equipment
JP4293450B2 (en) Wire saw and manufacturing method thereof
JP7198637B2 (en) Rubber composition for magnetized pulser and magnetized pulser
JP3879586B2 (en) Manufacturing method of fiber reinforced plastic gears
JP4466899B2 (en) Disc loading roll
JPH0461730B2 (en)
JPH0528020Y2 (en)
JP3037017U (en) High strength fiber rope terminal fixing structure
JP2007057011A (en) Rolling bearing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees