JPH04111104A - Multi-point controller - Google Patents

Multi-point controller

Info

Publication number
JPH04111104A
JPH04111104A JP22828390A JP22828390A JPH04111104A JP H04111104 A JPH04111104 A JP H04111104A JP 22828390 A JP22828390 A JP 22828390A JP 22828390 A JP22828390 A JP 22828390A JP H04111104 A JPH04111104 A JP H04111104A
Authority
JP
Japan
Prior art keywords
measurement
channel order
measurement points
points
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22828390A
Other languages
Japanese (ja)
Other versions
JPH0816847B2 (en
Inventor
Ko Yoshino
吉野 孔
Hiroshi Miyazaki
浩 宮崎
Akio Usuda
臼田 明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
Rika Kogyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rika Kogyo Inc filed Critical Rika Kogyo Inc
Priority to JP2228283A priority Critical patent/JPH0816847B2/en
Publication of JPH04111104A publication Critical patent/JPH04111104A/en
Publication of JPH0816847B2 publication Critical patent/JPH0816847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To measure with sampling an optional measuring point in the higher frequency than other measuring points by setting an optional point to be measured and a high speed measuring point and inputting the measured values in the order of measuring channels for calculation of a manipulated variable. CONSTITUTION:When the prescribed value is set by a setting means 102 together with a point to be measured and a high speed measuring point, a measuring channel order production means 103 produces a measuring channel order including plural high speed measuring points. This channel order is stored in a storage means 104. A control means 105 switches the measuring channels with a switch means 100 in accordance with the measuring channel order given from the means 104. At the same time, a manipulated variable is operated from the measured value of a switched input measuring channel and the set value and outputted to an output means 101. Then the means 104 stores previously a reference measuring channel order, and a desirable measuring channel is produced according to the reference measuring channel order.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は多点調節計に係り、例えば、複数の温度測定点
を有する押出機等を温度制御する多点温度調節器に好適
する多点調節計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-point temperature controller, for example, a multi-point temperature controller suitable for controlling the temperature of an extruder or the like having a plurality of temperature measurement points. Concerning improvements to controllers.

[従来の技術] 従来、この種の多点調節計1は、例えば第9図に示すよ
うに、制御対象としての押出機3内に配置した複数のヒ
ータ(図示せず)に対応して配置された温度側走用のセ
ンサ5a〜5nからの測定値PVを順次切換え人力し、
各測定値PVと予め設定した設定値Svから例えばPT
D演算して操作量MVを押出機3内のヒータ操作器(図
示せず)に出力する構成を有し、その操作量MVに応じ
てヒータへのヒータ電流を0N10FF操作するように
なっていた。
[Prior Art] Conventionally, this type of multi-point controller 1 has been arranged in correspondence with a plurality of heaters (not shown) arranged in an extruder 3 as a controlled object, as shown in FIG. 9, for example. The measured values PV from the temperature side running sensors 5a to 5n are sequentially switched manually,
From each measurement value PV and preset setting value Sv, for example, PT
It has a configuration that calculates D and outputs the manipulated variable MV to a heater operating device (not shown) in the extruder 3, and the heater current to the heater is controlled by 0N10FF according to the manipulated variable MV. .

そして、この多点調節計1では、測定点であるn個のセ
ンサ5a〜5nについて第1番目のセンサ5aからn番
目のセンサ5nまで順に1点1点測定した後、室温その
他の基準データの測定を行なってから再び第1番目のセ
ンサ5aから測定を繰返すように構成されるのが一般的
であった。すなわち、各測定点におけるサンプリング周
期が等しくかつ固定されていた。
In this multi-point controller 1, after measuring the n sensors 5a to 5n, which are measurement points, one by one from the first sensor 5a to the nth sensor 5n, the room temperature and other reference data are measured. It has generally been configured to perform a measurement and then repeat the measurement again starting from the first sensor 5a. That is, the sampling period at each measurement point was equal and fixed.

[発明が解決しようとする課題] しかしながら、複数のセンサ5a〜5nを配置した押出
機3では、n個のセンサ5a〜5nのうち1〜3点の特
定測定点のみを高速で測定して押出機3の動作状況を把
握したいような場合や、特定測定点のみを高頻度で測定
する必要があるものの他の測定点はその必要がない場合
があるか、上述した多点調節計1は測定順序や周期が固
定していたために対応困難であった。後者の例としては
、高頻度でサンプリングか必要な圧力制御機能等を含む
装置がある。
[Problems to be Solved by the Invention] However, in the extruder 3 in which a plurality of sensors 5a to 5n are arranged, only 1 to 3 specific measurement points among the n sensors 5a to 5n are measured at high speed to extrude. The multi-point controller 1 described above may be used in cases where you want to understand the operating status of the controller 3, or when it is necessary to frequently measure only a specific measurement point but not other measurement points. It was difficult to respond because the order and period were fixed. Examples of the latter include devices that include pressure control functions that require frequent sampling or the like.

特に、特定測定点のみを測定する場合には、別途専用の
調節計を別途押出機3に接続して測定する必要が生じ、
設備投資が必要であるばかりか、測定が煩雑となり易い
難点があった。
In particular, when measuring only specific measurement points, it is necessary to connect a separate dedicated controller to the extruder 3 for measurement.
Not only does this require investment in equipment, but it also has the disadvantage that measurement tends to be complicated.

本発明はこのような従来の欠点を解決するためになされ
たもので、制御対象の複数箇所に配置された測定点のう
ち任意の測定点を他の測定点より高い頻度で高速測定す
ることが可能でコストアップを抑えた多点調節計の提供
を目的とする。
The present invention has been made to solve these conventional drawbacks, and it is possible to quickly measure any measurement point more frequently than other measurement points among measurement points placed at multiple locations on a controlled object. The objective is to provide a multi-point controller that is possible and reduces cost.

[課題を解決するための手段] このような課題を解決するために本発明は、・クレーム
対応図である第1図に示すように、切換手段100、出
力手段101、設定手段102、測定チャンネル順番作
成手段103、記憶手段1゜4および制御手段105を
有して構成されている。
[Means for Solving the Problems] In order to solve such problems, the present invention has the following features: As shown in FIG. It is comprised of a sequence creation means 103, a storage means 1.4, and a control means 105.

そして、切換手段100は制御対象106に配置された
複数の測定点からの測定チャンネルを切換えるもので、
出力手段101は操作量に基づいてその制御対象106
を制御するもので、設定手段102は所定の設定値、並
びに複数の測定点のうち測定を要する要測定点および測
定頻度を高める高速測定点を設定指示するものである。
The switching means 100 switches measurement channels from a plurality of measurement points arranged on the controlled object 106,
The output means 101 outputs the control target 106 based on the manipulated variable.
The setting means 102 instructs to set predetermined setting values, important measurement points that require measurement among a plurality of measurement points, and high-speed measurement points that increase the measurement frequency.

測定チャンネル順番作成手段103は、要測定点および
高速測定点に対応する配列からなり、この1回当りの配
列中にその高速測定点を複数回配置した測定チャンネル
順番を作成するものであり、記憶手段104はそれら設
定値および測定チャンネル順番を記憶したものである。
The measurement channel order creation means 103 is composed of an array corresponding to required measurement points and high-speed measurement points, and creates a measurement channel order in which the high-speed measurement points are arranged a plurality of times in this one-time arrangement. The means 104 stores the set values and the measurement channel order.

さらに、制御手段105はその記憶手段104の測定チ
ャンネル順番に対応して上記切換手段100を切換え制
御するとともに切換手段100から入力した測定チャン
ネルの測定値と設定値から操作量を演算して上記出力手
段101へ出力するものである。
Further, the control means 105 switches and controls the switching means 100 in accordance with the order of the measurement channels in the storage means 104, and calculates a manipulated variable from the measurement value and setting value of the measurement channel inputted from the switching means 100, and outputs the above-mentioned output. It is output to means 101.

しかも、本発明においては、予め要測定点および高速測
定点の数に対応してこれらを組合せた複数の基準測定チ
ャンネル順番を上記記憶手段104に記憶し、上記設定
手段102によって設定指示された要測定点および高速
測定点に応じて基準測定チャンネル順番を選択して測定
チャンネル順番を作成するように測定チャンネル順番作
成手段103を構成可能である。
Moreover, in the present invention, the order of a plurality of reference measurement channels, which are a combination of required measurement points and high-speed measurement points, is stored in advance in the storage means 104, and the order of the reference measurement channels set by the setting means 102 is stored in advance. The measurement channel order creation means 103 can be configured to select the reference measurement channel order according to the measurement point and the high speed measurement point and create the measurement channel order.

[作 用] このような手段を備えた本発明では、設定手段102に
て所定の設定値、要測定点および高速測定点が設定され
ると、測定チャンネル順番作成手段103にてその高速
測定点を複数回配置した測定チャンネル順番を作成され
て記憶手段104に記憶され、制御手段105にて記憶
手段104がらの測定チャンネル順番に対応して各測定
チャンネルを切換手段100で切換え制御するとともに
、切換入力した測定チャンネルの測定値と設定値とから
操作量を演算して出力手段101へ出力する。
[Function] In the present invention equipped with such a means, when a predetermined setting value, a required measurement point, and a high-speed measurement point are set by the setting means 102, the measurement channel order creation means 103 sets the high-speed measurement point. A measurement channel order in which the measurement channels are arranged a plurality of times is created and stored in the storage means 104, and the control means 105 controls switching of each measurement channel by the switching means 100 in accordance with the measurement channel order from the storage means 104. A manipulated variable is calculated from the input measurement value of the measurement channel and the set value, and is output to the output means 101.

そして、記憶手段104が予め基準測定チャンネル順番
を記゛憶し、測定チャンネル順番作成手段103がいず
れかの基準測定チャンネル順番を選択して測定チャンネ
ル順番を作成する構成では、基準測定チャンネル順番に
応じて好ましい測定チャンネル順番が作成される。
In a configuration in which the storage means 104 stores the reference measurement channel order in advance and the measurement channel order creation means 103 selects one of the reference measurement channel orders to create the measurement channel order, the reference measurement channel order is stored in accordance with the reference measurement channel order. A preferred measurement channel order is created.

[実 施 例] 以下本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明に係る多点調節計の一実施例を示すブロ
ック図である。
FIG. 2 is a block diagram showing an embodiment of a multipoint controller according to the present invention.

図において、例えば上述した第9図の押出機3のような
制御対象7に配置された測定回路9はマルチプレクサ(
MPX)11に接続されている。
In the figure, a measuring circuit 9 arranged in a controlled object 7 such as the extruder 3 in FIG. 9 described above is connected to a multiplexer (
MPX) 11.

測定回路9は、実際には制御対象7の複数箇所に分散配
置された測定点としての複数のセンサや、制御対象7の
ヒータへの電流供給回路の途中に配置されたヒータ電流
検出回路であり、マルチプレクサ11は後述するように
制御回路13からの切換信号によって各測定点からの測
定チャンネルを機械的又は電子的に切換える機械的リレ
ーや半導体スイッチ等の切換手段であり、A/D変換回
路15に接続されている。
The measurement circuit 9 is actually a plurality of sensors as measurement points distributed at a plurality of locations on the controlled object 7, or a heater current detection circuit placed in the middle of a current supply circuit to the heater of the controlled object 7. As will be described later, the multiplexer 11 is a switching means such as a mechanical relay or a semiconductor switch that mechanically or electronically switches the measurement channels from each measurement point in response to a switching signal from the control circuit 13, and the A/D conversion circuit 15 It is connected to the.

A/D変換回路15はマルチプレクサ11によって切換
えられた各測定点からの測定チャンネルのアナログ測定
値PVをデジタル測定値PVにA/D変換して制御回路
13に出力するものである。
The A/D conversion circuit 15 A/D converts the analog measurement value PV of the measurement channel from each measurement point switched by the multiplexer 11 into a digital measurement value PV, and outputs the digital measurement value PV to the control circuit 13.

制御回路13は、例えばPID演算機能その他の公知の
演算機能を有するCPU、このCPUの動作プログラム
を内蔵したROMおよび入出力信号のインタフェースI
10を有しており、キー入力回路17、出力回路19お
よび記憶回路21が接続されている。
The control circuit 13 includes, for example, a CPU having a PID calculation function and other known calculation functions, a ROM containing an operation program for the CPU, and an input/output signal interface I.
10, to which a key input circuit 17, an output circuit 19, and a memory circuit 21 are connected.

キー入力回路17は、制御回路13の管理下で、PID
演算用の設定値S■の入力や、制御対象7に配置された
測定点のうち測定を要する要測定点、この要測定点のう
ち測定頻度を高めて高速測定する高速測定点を例えばチ
ャンネル番号で指定入力する他、要測定点および高速測
定点の数に応じて予め基準となる順番にまとめた基準測
定チャンネル順番を作成するためにそれら要測定点およ
び高速測定点を入力するキーボード等の設定手段であり
、本体パネルに配置されている。
The key input circuit 17 is under the control of the control circuit 13.
Input the set value S for calculation, the required measurement points that require measurement among the measurement points placed on the controlled object 7, and the high-speed measurement points for high-speed measurement by increasing the measurement frequency among these measurement points, for example, by channel number. In addition to inputting the required measurement points and high-speed measurement points, you can also set the keyboard, etc. to input the required measurement points and high-speed measurement points in order to create a standard measurement channel order that is organized in advance according to the number of required measurement points and high-speed measurement points. means and is located on the main body panel.

基準測定チャンネル順番は、例えば第3図に示すように
、8個の測定点(測定チャンネル)について各測定チャ
ンネルの配列を高速測定点数0点〜7点までの各点数毎
に予めまとめたものであり、「他」とあるのは測定チャ
ンネル以外の室温等その他の基準データの測定期間であ
る。もっとも、その他の基準データの測定期間を含まな
い場合も可能である。
The standard measurement channel order is, for example, as shown in Figure 3, the arrangement of each measurement channel for 8 measurement points (measurement channels) is compiled in advance for each high-speed measurement point number from 0 to 7 points. ``Other'' indicates the measurement period for other reference data such as room temperature other than the measurement channel. However, it is also possible to not include the measurement period of other reference data.

第3図において例えば、高速測定点が第1および第2チ
ヤンネルの2点の場合には、同図A欄のように、第1、
第2、第3、第1、第2、第4チヤンネル・・・・の配
列となっている。
In Fig. 3, for example, if there are two high-speed measurement points on the first and second channels, as shown in column A of the figure, the first,
The arrangement includes second, third, first, second, fourth channels, and so on.

また、第4図は、4個の測定点(測定チャンネル)につ
いて各測定チャンネルの配列を高速測定点数0点〜3点
までの各点数毎にまとめたものである。
Further, FIG. 4 shows the arrangement of each measurement channel for four measurement points (measurement channels) for each high-speed measurement point number from 0 to 3 points.

これらの基準測定チャンネル順番は、キー入力回路17
から入力された要測定点および高速測定点に基づいて、
制御回路13にて作成され一覧表の形態で記憶回路21
に記憶されている。
The order of these reference measurement channels is determined by the key input circuit 17.
Based on the required measurement points and high-speed measurement points input from
It is created in the control circuit 13 and stored in the memory circuit 21 in the form of a list.
is stored in

出力回路19は、制御回路13の管理下で、制御対象7
に配置した例えば複数のヒータを制御回路13からの操
作量MVに応じて通電時間を制御する手段である。ただ
し、上記出力回路19によって操作されるものは加熱ヒ
ータに限定されない。
The output circuit 19 outputs the control target 7 under the control of the control circuit 13.
This is a means for controlling the energization time of, for example, a plurality of heaters arranged in accordance with the operation amount MV from the control circuit 13. However, what is operated by the output circuit 19 is not limited to the heater.

記憶回路21は、制御回路13の管理下で、上述した基
準測定チャンネル順番の他、設定値Sv、サンプリング
周期、測定チャンネル順番、制御回路13における演算
過程や演算出力のデータを記憶するものである。
Under the control of the control circuit 13, the storage circuit 21 stores, in addition to the above-mentioned reference measurement channel order, set value Sv, sampling period, measurement channel order, and data on the calculation process and calculation output in the control circuit 13. .

制御回路13は、上述したように基準測定チャンネル順
番を作成する機能を有する他、第5図のようにキー入力
回路17から入力された要測定点(高速又は通常)およ
び高速測定点(高速)の数に応じて第3図又は第4図の
基準測定チャンネル順番中から例えば第6図Aのような
基準測定チャンネル順番を記憶回路21から読み込み、
第5図のような各測定チャンネルに応じた指定「高速」
、「不測定」又は「通常」 (測定するが高速でない)
に基づき、第°6図Bのように実際に読み込み制御する
測定チャンネル順番を作成して記憶回路21に記憶する
機能を有している。
The control circuit 13 has the function of creating the reference measurement channel order as described above, and also inputs the required measurement point (high speed or normal) and high speed measurement point (high speed) input from the key input circuit 17 as shown in FIG. For example, a reference measurement channel order such as that shown in FIG. 6A is read from the memory circuit 21 from among the reference measurement channel orders shown in FIG.
"High speed" designation according to each measurement channel as shown in Figure 5
, “not measured” or “normal” (measures but not fast)
Based on this, it has a function of creating the measurement channel order to be actually read and controlled as shown in FIG. 6B and storing it in the storage circuit 21.

なお、必ずしも「不測定」チャンネルを指定する必要は
なく、本発明における要測定点についての設定には「不
測定」の指定を含まない。
Note that it is not always necessary to designate a "non-measurement" channel, and the setting of a required measurement point in the present invention does not include the designation of "non-measurement."

制御回路13は、その測定チャンネル順番を参照してマ
ルチプレクサ11を切換え制御してチャンネル測定値P
Vを入力するとともに、設定値S■との偏差から操作量
MVをPID演算して出力回路17に出力する機能を有
している。
The control circuit 13 refers to the measurement channel order and controls the multiplexer 11 to switch to obtain the channel measurement value P.
It has a function of inputting V, PID calculating the manipulated variable MV from the deviation from the set value S and outputting it to the output circuit 17.

制御回路13は、記憶回路21から基準測定チャンネル
順番を読み込んだとき、各測定チャンネルの出現頻度に
応じて各測定チャンネルのサンプリング周期を演算して
記憶回路21に記憶するとともに、PID演算時にはそ
のサンプリング周期データを記憶回路21から読み出し
てパラメータとしてPID演算する。
When the control circuit 13 reads the reference measurement channel order from the storage circuit 21, the control circuit 13 calculates the sampling period of each measurement channel according to the appearance frequency of each measurement channel and stores it in the storage circuit 21, and also calculates the sampling period during PID calculation. Periodic data is read out from the storage circuit 21 and used as a parameter for PID calculation.

すなわち、制御回路13はPID演算機能やマルチプレ
クサ11の切換え制御機能の他、測定チャンネル順番作
成機能やサンプリング周期演算機能を有している。
That is, the control circuit 13 has a PID calculation function and a switching control function of the multiplexer 11, as well as a measurement channel order creation function and a sampling period calculation function.

次に、上述した本発明の多点調節計の動作を第7図およ
び第8図のフローチャートに従って説明する。
Next, the operation of the multi-point controller of the present invention described above will be explained according to the flowcharts of FIGS. 7 and 8.

第7図は測定チャンネル順番を求めて記憶回路21へ記
憶する手順を示すものであるか、この手順は高速測定点
又はその点数を変更する場合、不測定チャンネル又はそ
の点数を変更する場合に実行される。
FIG. 7 shows the procedure for determining the measurement channel order and storing it in the memory circuit 21. This procedure is executed when changing the high-speed measurement point or its number, or when changing the unmeasured channel or its number. be done.

すなわち、プログラムかスタートすると、ステップ20
1で不測定チャンネル数をカウントして「x」に代入し
、ステップ202で要測定点の数nを演算する。これは
多点調節計の測定点数から不測定チャンネル数Xを減算
して得られる。
That is, when the program starts, step 20
In step 1, the number of unmeasured channels is counted and substituted for "x", and in step 202, the number n of required measurement points is calculated. This is obtained by subtracting the number of unmeasured channels X from the number of measurement points of the multipoint controller.

次のステップ203では高速測定点数をmに代入し、ス
テップ204で要測定点数nおよび高速測定点数mに該
当する基準測定チャンネル順番を記憶回路21から取込
み(第6図A参照)、続くステップ205では取込まれ
た基準測定チャンネル順番に実際°の測定チャンネルを
割当てて測定チャンネル順番を作成しく第6図B参照)
、記憶回路21に記憶する。
In the next step 203, the number of high-speed measurement points is substituted for m, and in step 204, the reference measurement channel order corresponding to the number of required measurement points n and the number of high-speed measurement points m is fetched from the storage circuit 21 (see FIG. 6A), and the following step 205 Now, create the measurement channel order by assigning the actual measurement channels to the imported reference measurement channel order (see Figure 6B).
, is stored in the memory circuit 21.

第8図は測定に関する手順を示すものであり、本発明の
多点調節計が動作している間に繰返し実行される。
FIG. 8 shows a procedure related to measurement, which is repeatedly executed while the multipoint controller of the present invention is in operation.

ステップ301では第7図中のステップ205にて作成
して記憶回路21に記憶された測定チャンネル順番を参
照し、前回測定した次の測定チャンネルを読み出し、ス
テップ302でその測定チャンネル順番の最初の測定チ
ャンネルについてマルチプレクサ11をONにして測定
値を入力するとともにA/D変換して制御回路13に取
込む。
In step 301, the measurement channel order created in step 205 in FIG. For each channel, the multiplexer 11 is turned on and the measured value is inputted, A/D converted, and taken into the control circuit 13.

続くステップ303では、演算に必要な測定チャンネル
の設定値Sv1測定チャンネルのサンプリング周期デー
タを記憶回路21から読み込み、ステップ304で各デ
ータと測定値PVからPID演算をするとともに、必要
に応じて警報演算処理して警報信号を出力する。
In the following step 303, the sampling period data of the measurement channel setting value Sv1 of the measurement channel necessary for calculation is read from the storage circuit 21, and in step 304, PID calculation is performed from each data and the measured value PV, and alarm calculation is performed as necessary. Process and output an alarm signal.

そして、所定の周期で次の測定チャンネルについてステ
ップ301〜304を繰返し実行する。
Then, steps 301 to 304 are repeatedly executed for the next measurement channel at a predetermined period.

このように本発明の多点調節計では、制御対象7の複数
箇所に配置された測定点のうち任意の要測定点および高
速測定点をキー入力回路17で設定することにより、予
め作成された基準測定チャンネル順番に基づき実際の測
定チャンネルを割当て、高速測定点を他の要測定点より
高い頻度で配列した測定チャンネル順番を作成し、この
測定チャンネル順番を参照してマルチプレクサ11を切
換え制御して各チャンネル測定値PVを入力して操作f
fiMVを演算出力する構成となっている。
As described above, in the multi-point controller of the present invention, by setting arbitrary required measurement points and high-speed measurement points among the measurement points arranged at a plurality of locations on the controlled object 7 using the key input circuit 17, the pre-created Actual measurement channels are allocated based on the reference measurement channel order, a measurement channel order is created in which high-speed measurement points are arranged more frequently than other important measurement points, and the multiplexer 11 is switched and controlled with reference to this measurement channel order. Input each channel measurement value PV and operate f
It is configured to calculate and output fiMV.

そのため、特定の測定点のみを要測定点および高速測定
点に設定すれば、特定の測定点のみについて高頻度でサ
ンプリング測定可能となるし、要測定点のうちの一部を
高速測定点とすれば、それ以外の要測定点は低い頻度で
サンプリング測定可能となる。すなわち、本発明ではサ
ンプリング周期を可変することができる。
Therefore, by setting only specific measurement points as required measurement points and high-speed measurement points, sampling measurements can be performed at high frequency only at specific measurement points, and some of the required measurement points can be set as high-speed measurement points. For example, other important measurement points can be sampled and measured at a low frequency. That is, in the present invention, the sampling period can be varied.

しかも、予め設定された基準測定チャンネル順番を参照
して測定チャンネル順番を作成するから、好ましい基準
測定チャンネル順番を用意すれば、好ましい測定チャン
ネル順番が簡単かつ高速で作成される。
Moreover, since the measurement channel order is created with reference to the preset reference measurement channel order, if the preferred reference measurement channel order is prepared, the preferred measurement channel order can be created easily and quickly.

また、本発明のキー入力回路17は本体パネルに配置し
たキーボードの他に、例えば通信回線を用いた外部通信
設定回路の場合であってもよい。
Further, the key input circuit 17 of the present invention may be an external communication setting circuit using a communication line, for example, in addition to a keyboard arranged on the main body panel.

ところで、本発明に係る多点調節計では、測定点のなか
から特定の測定点を高速測定点として指定し、その特定
測定点を他の測定点よりも高い頻度すなわち早いサンプ
リング周期で測定する例を説明したが、本発明では高速
測定点以外の要測定点に着目すれば、特定の測定点につ
いて長いサンプリング周期で低速測定可能である。
By the way, in the multi-point controller according to the present invention, there is an example in which a specific measurement point is designated as a high-speed measurement point from among the measurement points, and the specific measurement point is measured at a higher frequency, that is, at a faster sampling period than other measurement points. However, in the present invention, by focusing on important measurement points other than high-speed measurement points, it is possible to perform low-speed measurement with a long sampling period at a specific measurement point.

さらに、上述した実施例ではすべての測定チャンネルが
同一内容であったが、本発明はこれに限らない。例えば
、一部の測定チャンネルを温度の測定チャンネルとし、
別の測定チャンネルを圧力の測定チャンネルとすると言
ったように、異種の測定チャンネルを混在させることが
可能である。
Furthermore, in the embodiments described above, all measurement channels had the same content, but the present invention is not limited to this. For example, if some measurement channels are temperature measurement channels,
It is possible to mix different types of measurement channels, such as using another measurement channel as a pressure measurement channel.

[発明の効果コ 以上説明したように本発明は、制御対象の複数箇所に配
置された測定点のうち任意の要測定点および高速測定点
を設定し、高速測定点を高い頻度で複数回配列した測定
チャンネル順番を作成し、この測定チャンネル順番を参
照して各測定チャンネルを切換え制御して各チャンネル
測定値を入力して操作量を演算出力する構成としたから
、要測定点と高速測定点を適当に指定すれば、制御対象
の複数箇所に配置された測定点のうち任意の測定点を他
の測定点より高い頻度でサンプリング測定することが可
能であり、そのサンプリング周期も可変可能である。
[Effects of the Invention] As explained above, the present invention sets arbitrary measurement points and high-speed measurement points among the measurement points arranged at multiple locations on the controlled object, and arranges the high-speed measurement points multiple times at high frequency. The system creates a measurement channel order, references this measurement channel order, switches and controls each measurement channel, inputs the measured value of each channel, and calculates and outputs the manipulated variable. If specified appropriately, it is possible to sample and measure any measurement point among the measurement points placed at multiple locations on the control target at a higher frequency than other measurement points, and the sampling period can also be varied. .

そのため、特定の測定点を高い頻度でサンプリング測定
する必要がある場合、例えば1〜3点の測定点のみを高
速測定して動作状態を把握したり、また、制御対象が異
なり、高速サンプリングが必要な制御量を制御する場合
、別途専用の調節計を併用する必要がないから、高額の
設備投資を抑えることができる。
Therefore, when it is necessary to sample and measure specific measurement points at high frequency, for example, when measuring only 1 to 3 measurement points at high speed to understand the operating status, or when the control target is different and high-speed sampling is required. When controlling a controlled amount, there is no need to use a separate dedicated controller, so expensive equipment investment can be reduced.

また、要測定点および高速測定点を記憶手段に記憶した
基準測定チャンネル順番から測定チャンネル順番作成手
段によって測定チャンネル順番を作成する構成では、好
ましい測定チャンネル順番を簡単かつ高速で作成可能と
なる。
Furthermore, in the configuration in which the measurement channel order is created by the measurement channel order creation means from the reference measurement channel order in which the required measurement points and high-speed measurement points are stored in the storage means, it becomes possible to create a preferred measurement channel order easily and quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多点調節計のクレーム対応図、第
2図は本発明に係る多点調節計の一実施例を示すブロッ
ク図、第3図および第4図は第2図の記憶回路に記憶さ
れた基準測定チャンネル順番を説明する図、第5図およ
び第6図は本発明による測定チャンネル順番作成動作を
説明する図、第7図および第8図は本発明の詳細な説明
するフローチャート、第9図は多点調節計および制御対
象との構成を示す概略図である。 1・・・・・・・・・・・・・・・多点調節計3.7・
・・・・・・・・制御対象 5a〜5n・・・測定点(センサ)
FIG. 1 is a claim correspondence diagram of a multi-point controller according to the present invention, FIG. 2 is a block diagram showing an embodiment of a multi-point controller according to the present invention, and FIGS. 3 and 4 are the same as those in FIG. 5 and 6 are diagrams illustrating the measurement channel order creation operation according to the present invention. FIGS. 7 and 8 are detailed explanations of the present invention. FIG. 9 is a schematic diagram showing the configuration of a multipoint controller and a controlled object. 1・・・・・・・・・・・・Multi-point controller 3.7・
......Controlled objects 5a to 5n...Measurement points (sensors)

Claims (2)

【特許請求の範囲】[Claims] (1)制御対象に配置された複数の測定点からの測定チ
ャンネルを切換える切換手段と、 操作量に基づいて前記制御対象を制御する出力手段と、 所定の設定値、並びに複数の前記測定点のうち測定を要
する要測定点および測定頻度を高める高速測定点を設定
する設定手段と、 前記要測定点および高速測定点に対応する配列からなり
、この1回当りの配列中に前記高速測定点を複数回配置
した測定チャンネル順番を作成する測定チャンネル順番
作成手段と、 前記設定値および測定チャンネル順番を記憶した記憶手
段と、 この記憶手段の前記測定チャンネル順番に対応して前記
切換手段を切換え制御するとともに前記切換手段から入
力した測定チャンネルの測定値と前記設定値から操作量
を演算して前記出力手段へ出力する制御手段と、 を具備してなることを特徴とする多点調節計。
(1) A switching means for switching measurement channels from a plurality of measurement points arranged on a controlled object, an output means for controlling the control object based on a manipulated variable, and a predetermined setting value and a plurality of measurement points arranged at the plurality of measurement points. A setting means for setting important measurement points that require measurement and high-speed measurement points that increase the measurement frequency, and an array corresponding to the necessary measurement points and high-speed measurement points, and a setting means for setting the high-speed measurement points in the array for each time. Measurement channel order creation means for creating a measurement channel order arranged multiple times; Storage means for storing the set value and measurement channel order; Switching control of the switching means in accordance with the measurement channel order of the storage means. and control means for calculating a manipulated variable from the measurement value of the measurement channel inputted from the switching means and the setting value and outputting it to the output means.
(2)前記記憶手段は、予め前記要測定点および高速測
定点の数に対応してこれらを組合せた複数の基準測定チ
ャンネル順番を記憶しており、前記測定チャンネル順番
作成手段は、前記設定手段によって設定された前記要測
定点および高速測定点に応じて前記基準測定チャンネル
順番を選択して前記測定チャンネル順番を作成する請求
項1記載の多点調節計。
(2) The storage means stores in advance a plurality of reference measurement channel orders obtained by combining these in correspondence with the numbers of the required measurement points and high-speed measurement points, and the measurement channel order creation means is configured to store a plurality of reference measurement channel orders in accordance with the numbers of the required measurement points and high-speed measurement points, and the measurement channel order creation means 2. The multi-point controller according to claim 1, wherein the reference measurement channel order is selected in accordance with the required measurement point and the high-speed measurement point set by the reference measurement channel order to create the measurement channel order.
JP2228283A 1990-08-31 1990-08-31 Multi-point controller Expired - Fee Related JPH0816847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228283A JPH0816847B2 (en) 1990-08-31 1990-08-31 Multi-point controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228283A JPH0816847B2 (en) 1990-08-31 1990-08-31 Multi-point controller

Publications (2)

Publication Number Publication Date
JPH04111104A true JPH04111104A (en) 1992-04-13
JPH0816847B2 JPH0816847B2 (en) 1996-02-21

Family

ID=16874050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228283A Expired - Fee Related JPH0816847B2 (en) 1990-08-31 1990-08-31 Multi-point controller

Country Status (1)

Country Link
JP (1) JPH0816847B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147710A (en) * 1981-03-09 1982-09-11 Japan Electronic Control Syst Co Ltd Operating method for multiplexer of analog to digital converter in electronic controller for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147710A (en) * 1981-03-09 1982-09-11 Japan Electronic Control Syst Co Ltd Operating method for multiplexer of analog to digital converter in electronic controller for internal combustion engine

Also Published As

Publication number Publication date
JPH0816847B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US4141065A (en) Electric controller system with bumpless transfer
US4412591A (en) Method and apparatus for selecting operating modes or parameters in an electrical scale
US4298163A (en) Electronic multi-zone timed temperature control apparatus
JPH04111104A (en) Multi-point controller
JPH0793178B2 (en) Heater burnout detection device for multi-point temperature controller
US3644897A (en) Automatic control point adjustment system and method
JPH1049234A (en) Method and device for positioning equipment
US3585630A (en) Digital position measuring devices
JPS63135818A (en) Multipoint input recorder
SU1264151A1 (en) Device for controlling temperature
SU1001183A1 (en) Device for monitoring and measuring parameters of storage units
JPH072369B2 (en) Extrusion molding line trend display controller
JPS6118201B2 (en)
JPS5854708Y2 (en) range switch
SU744599A1 (en) Device for smooting digital information
SU1608629A1 (en) Multichannel controller
JPH041399B2 (en)
SU554025A1 (en) An apparatus for generating a signal for a deviation of the thickness of a rolled strip from a predetermined value
JPH03268105A (en) Program controller
JPS63259443A (en) Cell positioner
JPH0217455A (en) Method of displaying output of storage waveform
SU682906A1 (en) Multichannel apparatus for checking radioelectronic equipment
JPS63192576A (en) Monitoring device for resistance welding
JPS6319004A (en) Control device
JPS60151502A (en) Converter for strain gauge sensor data

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees