JPH04110718A - Photointerference angular velocity meter - Google Patents

Photointerference angular velocity meter

Info

Publication number
JPH04110718A
JPH04110718A JP23082290A JP23082290A JPH04110718A JP H04110718 A JPH04110718 A JP H04110718A JP 23082290 A JP23082290 A JP 23082290A JP 23082290 A JP23082290 A JP 23082290A JP H04110718 A JPH04110718 A JP H04110718A
Authority
JP
Japan
Prior art keywords
light
phase
phase modulator
modulator
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23082290A
Other languages
Japanese (ja)
Inventor
Eiichi Asami
栄一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP23082290A priority Critical patent/JPH04110718A/en
Priority to EP91915269A priority patent/EP0502196B1/en
Priority to DE69115877T priority patent/DE69115877T2/en
Priority to CA002071882A priority patent/CA2071882C/en
Priority to US07/848,967 priority patent/US5327214A/en
Priority to PCT/JP1991/001149 priority patent/WO1992004597A1/en
Publication of JPH04110718A publication Critical patent/JPH04110718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To improve S/N by inserting a second phase modulator in series with a first phase modulator, which is inserted between a photo branch unit and one end of a loop phototransmission passage, and driving both the modulators with the modulation signal having the same frequency. CONSTITUTION:Phase modulators 15, 26 are inserted between an optical branch unit 14 and both ends of an optical fiber coil 16, and the modulators 15, 26 are connected in series through the coil 16. The modulators 15, 26 have the same characteristic, and the modulator 26 is driven by the modulation signal, which has a periodic function and a frequency as same as the modulation signal against the modulator 15 and of which phase is delayed by 2pitaufm, so that the clockwise light receives a phase displacement from the modulator 26 in the same direction with the phase displacement received from the modulator 15. The clockwise light and the counterclockwise light receive the phase deflection to be added by the modulators 15, 26, and the clockwise light and the counterclockwise light composed by the branch unit 14 have a phase difference, which is changed with periodic function phi(2pifmt). Consequently, the interference light composed of both the light is converted into the electrical signal by a photo detecting unit 21, and is detected synchronously to detect an angular velocity input to the coil 16.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は光源よりの光を2分してループ状光伝送路の
両端に右回り光、左回り光としてそれぞれ、供給し、そ
のループ状光伝送路の一端で位相変調器により光伝送路
に入射する光及び、光伝送路から出射する光に位相偏移
を変調信号で与え、ループ状光伝送路から出射しだ両光
を合成して干渉させ、その干渉光を電気信号に変換し、
その電気信号を位相変調器の変調信号で同期検波するこ
とにより、ループ状光伝送路にその軸心まわりに印加さ
れた角速度を検出する光干渉角速度計に関する。
Detailed Description of the Invention "Industrial Application Field" This invention splits light from a light source into two and supplies them as clockwise light and counterclockwise light to both ends of a loop-shaped optical transmission line, respectively. At one end of the optical transmission line, a phase modulator applies a phase shift to the light entering the optical transmission line and the light exiting from the optical transmission line using a modulation signal, and the two lights output from the loop-shaped optical transmission line are combined. interfere with each other, convert the interference light into an electrical signal,
The present invention relates to an optical interference gyrometer that detects the angular velocity applied to a loop-shaped optical transmission line around its axis by synchronously detecting the electrical signal with a modulation signal of a phase modulator.

「従来功技術」 第6図に従来の光干渉角速度計を示す。光源11から出
た光は、光分岐器12において2分され、その一方は偏
光子13を通過した後、光分岐器14へと導かれ、他方
は、終端される。光分岐器14を通過した光は右回り光
と左回り光とに分岐され、右回り光は、光分岐器14か
ら出た後すぐに位相変調器15によって位相変調を受け
た後、ループ状光伝送路としての光フアイバコイル16
の一端ニ入射され、光フアイバコイル16を右回りに伝
搬した後、ふたたび光分岐器14に到達する。
``Conventional Technology'' Figure 6 shows a conventional optical interference gyrometer. The light emitted from the light source 11 is split into two by the optical splitter 12, one of which passes through a polarizer 13 and then guided to the optical splitter 14, and the other is terminated. The light that has passed through the optical splitter 14 is split into clockwise light and counterclockwise light, and the clockwise light is phase-modulated by the phase modulator 15 immediately after exiting the optical splitter 14, and then is loop-shaped. Optical fiber coil 16 as an optical transmission line
The light enters one end of the light beam, propagates clockwise through the optical fiber coil 16, and then reaches the optical splitter 14 again.

一方左回り光は光分岐器14を出て光フアイバコイル1
6の他端に入射され、光フアイバコイル16を左回りに
伝搬後位相変調器15によって位相変調を受けた後、す
ぐに再び光分岐器14に到達する。光分岐器14では、
これら光フアイバコイル16を伝搬した右回り光と左回
り光とが出会い干渉する。このときに右回り光と左回り
光とは位相変調器15によって周期的な位相偏移を受け
ているため右回り光と左回りとのあいだには周期的な位
相差が生じる0例えば位相変調器15を駆動する変調信
号の周波数f、が1/(2τ)(τは光フアイバコイル
16を光が伝搬する時間)の時、位相変調器15で右回
り光が位相偏移φ6、を受けて光フアイバコイル16を
通って光分岐器14に戻った時の右回り光の位相偏移が
第7図Aに示すように正弦波状である場合、左回り光が
位相変調器15で受ける位相偏移φccwは、第7図A
の変調信号に対し、時間がτだけ経過しているから第7
図Bに示すようになる。従って光分岐器14で合成され
る右回り光と左回り光との位相差φ。イーφccwは第
7図中の曲線17に示すように2τ周期で変化する。こ
のためこれら両光が合成された干渉光は互いに強め合っ
たり弱め合ったりすることが周期τで繰返され、つまり
周期τで強度が変化する光となる。両光の位相差φ。8
−φccwに応じて干渉光の強度が曲線18で示すよう
に変化し、従って強度変化が曲線19のように周期τで
繰返される。
On the other hand, the counterclockwise light exits the optical splitter 14 and passes through the optical fiber coil 1.
6, propagates counterclockwise through the optical fiber coil 16, undergoes phase modulation by the phase modulator 15, and immediately reaches the optical splitter 14 again. In the optical splitter 14,
The clockwise light and counterclockwise light propagating through the optical fiber coil 16 meet and interfere. At this time, the clockwise light and the counterclockwise light undergo a periodic phase shift by the phase modulator 15, so a periodic phase difference occurs between the clockwise light and the counterclockwise light. For example, phase modulation When the frequency f of the modulation signal that drives the modulator 15 is 1/(2τ) (τ is the time for light to propagate through the optical fiber coil 16), the clockwise light receives a phase shift φ6 in the phase modulator 15. If the phase shift of the clockwise light when it passes through the optical fiber coil 16 and returns to the optical splitter 14 is sinusoidal as shown in FIG. The deviation φccw is shown in Fig. 7A.
Since the time τ has elapsed for the modulated signal of the seventh
The result is as shown in Figure B. Therefore, the phase difference φ between the clockwise light and the counterclockwise light that are combined in the optical splitter 14. Eφccw changes at a period of 2τ as shown by curve 17 in FIG. Therefore, the interference light obtained by combining these two lights strengthens and weakens each other repeatedly at a period τ, that is, becomes light whose intensity changes at a period τ. Phase difference φ between both lights. 8
-φccw, the intensity of the interference light changes as shown by a curve 18, and therefore the intensity change is repeated at a period τ as shown by a curve 19.

第6図において光分岐器14よりの干渉光は偏光子13
を通し、光分岐器12に達し、2つの光に分岐され、そ
の一方は光検出器21で電気信号に変換される。この電
気信号は第7図中の曲線19で示すように、位相変調周
波数f、の2倍の周波数、第7図の例では1/τで変化
する信号となる。
In FIG. 6, the interference light from the optical splitter 14 is transmitted to the polarizer 13.
The light reaches the optical splitter 12 and is split into two lights, one of which is converted into an electrical signal by the photodetector 21. As shown by curve 19 in FIG. 7, this electrical signal becomes a signal whose frequency is twice the phase modulation frequency f, which in the example of FIG. 7 changes at 1/τ.

光フアイバコイル16に、その軸心を中心とする角速度
が印加されると、サニヤック効果により、右回り光と左
回り光との間に、その入力角速度に応じた位相差が生じ
る。このため第7図において曲線17に対し、入力角速
度にもとすく位相差が重畳される。このように位相差が
直流的に重畳されると、光検出器21の出力電気信号に
その直流的位相差に応じて、位相変調周波数f、の成分
が現れる。光検出器21の出力は同期検波回路22にお
いて位相変調周波数の参照信号で同期検波される。入力
角速度がゼロの場合は前述したように、光検出器21の
出力は位相変調周波数の偶数倍成分のみ、主として2倍
の成分のみであるから同期検波回路22の出力はゼロで
あるが、角速度が入力されると、光検出器21の出力に
位相変調周波数と同一周波数の成分が生じ、その入力角
速度の方向及び大きさに応じた極性及びレベルの出力が
同期検波回路22から得られ、これが出力端子23へ供
給され、入力角速度を検出することができる。位相変調
器15に供給する位相変調信号及び同期検波回路22へ
供給する参照信号は変調信号発生器24で作られる。
When an angular velocity centered on the optical fiber coil 16 is applied to its axis, a phase difference is generated between the clockwise light and the counterclockwise light according to the input angular velocity due to the Sagnac effect. Therefore, in FIG. 7, the phase difference is superimposed on the input angular velocity with respect to the curve 17. When the phase difference is superimposed in a DC manner in this way, a component of the phase modulation frequency f appears in the output electrical signal of the photodetector 21 in accordance with the DC phase difference. The output of the photodetector 21 is synchronously detected in a synchronous detection circuit 22 using a reference signal having a phase modulation frequency. When the input angular velocity is zero, as mentioned above, the output of the photodetector 21 is only the even multiple components of the phase modulation frequency, mainly only the double component, so the output of the synchronous detection circuit 22 is zero, but the angular velocity is input, a component with the same frequency as the phase modulation frequency is generated in the output of the photodetector 21, and an output with a polarity and level corresponding to the direction and magnitude of the input angular velocity is obtained from the synchronous detection circuit 22. It is supplied to the output terminal 23, and the input angular velocity can be detected. A phase modulation signal supplied to the phase modulator 15 and a reference signal supplied to the synchronous detection circuit 22 are generated by a modulation signal generator 24.

「発明が解決しようとする課題」 位相変調器15を光が通過すると、光が変調信号で位相
偏移を受けるのみならず、強度変調も受けてしまう。こ
れは位相変調は光が伝搬する媒質の屈折率を変化させる
ことにより行われるが、媒質の屈折率が変化するとその
媒質における光の閉じ込め状態が変化するため、位相変
調信号と同期して媒質の光閉じ込め状態が変化し、これ
と同期して通過する光の強度が変調される。
"Problem to be Solved by the Invention" When light passes through the phase modulator 15, the light not only undergoes a phase shift due to a modulation signal, but also undergoes intensity modulation. This is because phase modulation is performed by changing the refractive index of the medium through which light propagates, but when the refractive index of the medium changes, the confinement state of light in that medium changes. The optical confinement state changes, and in synchronization with this, the intensity of the passing light is modulated.

このため位相変調器15を通過した右回り光、左回り光
は何れも、周波数11の強度変調を受け、これら強度変
調を受けた右回り光と、左回り光とが光分岐器14で再
び合成された干渉光にも、変調周波数f、の成分の強度
変調が存在する。このため入力角速度がゼロの状態でも
同期検波回路22から周波数f、の成分が検出され、こ
れは光干渉角速度針のバイアス値のオフセットエラーと
なる。このオフセットエラーが大きいと、外乱などによ
り何らかの因子が変動すると零点も一定の比率で変動す
るため零点安定性が悪くなる。
Therefore, both the clockwise light and the counterclockwise light that have passed through the phase modulator 15 are subjected to intensity modulation at a frequency of 11, and the clockwise light and counterclockwise light that have undergone intensity modulation are recombined at the optical splitter 14. The combined interference light also has intensity modulation of the component of the modulation frequency f. Therefore, even when the input angular velocity is zero, a component of frequency f is detected by the synchronous detection circuit 22, and this causes an offset error in the bias value of the optical interference angular velocity needle. If this offset error is large, the zero point will also change at a constant rate if some factor changes due to disturbance, resulting in poor zero point stability.

上述したように入力角速度ゼロでは干渉光は変調信号周
波数f2の2倍の周波数の強度変調を受けており、この
干渉光は光分岐器12で分岐されて一方は光検出器21
へ供給されると共に他方は光源11に戻る。この戻り光
により光源11からの出射光に、変調信号周波数f、の
2倍の周波数の強度変調が加わる。あるいは前記戻った
干渉光が、光fi11の出射光の光量を制御するための
フォトダイオードで検知され、この検知出力を含めて自
動光量安定化回路が光′allの光量を一定にしようと
動作するため、光源11の出射光に周波数f、の2倍の
周波数で強度変調が加わる。
As mentioned above, when the input angular velocity is zero, the interference light is subjected to intensity modulation with a frequency twice the modulation signal frequency f2, and this interference light is split by the optical splitter 12, and one side is sent to the photodetector 21.
while the other one returns to the light source 11. This returned light adds intensity modulation to the light emitted from the light source 11 at a frequency twice the modulation signal frequency f. Alternatively, the returned interference light is detected by a photodiode for controlling the amount of light emitted from the light fi11, and an automatic light amount stabilization circuit including this detection output operates to keep the amount of light 'all constant. Therefore, intensity modulation is applied to the light emitted from the light source 11 at a frequency twice the frequency f.

このように光源11からの光が2f、で強度変調を受け
ていると、この光が位相変調器15を通過して、その位
相変調信号により強度変調も受けると、位相変調器15
を通過した光は、位相変調器15における変調波の周波
数混合効果により、2 f、+f、=3 f、 、及び
2 f、−f、=f。
When the light from the light source 11 is intensity-modulated at 2f in this way, when this light passes through the phase modulator 15 and is also intensity-modulated by the phase modulation signal, the phase modulator 15
Due to the frequency mixing effect of the modulated wave in the phase modulator 15, the light that has passed becomes 2 f, +f, = 3 f, and 2 f, -f, = f.

の各周波数の強度変調が生じる。)このためこの位相変
調器15を通過し、光分岐器14で合成された干渉光に
もf、成分の強度変調が存在し、前述と同様に入力角速
度がゼロでも同期検波回路22から出力が生じ、バイア
ス値のオフセットエラーとなる。
intensity modulation of each frequency occurs. ) Therefore, the interference light that passes through this phase modulator 15 and is combined by the optical splitter 14 also has intensity modulation of the f component, and as mentioned above, even if the input angular velocity is zero, the output from the synchronous detection circuit 22 is This results in an offset error in the bias value.

この発明の目的は位相変調器による強度変調が存在して
も、また光源からの光が強度変調を受けても、バイアス
値の誤りが生ぜず、バイアスの零点安定性を向上させる
ことができる光干渉角速度計を提供することにある。
An object of the present invention is to provide an optical system that can improve the zero point stability of the bias without causing bias value errors even if there is intensity modulation by a phase modulator or even if the light from the light source is intensity modulated. An object of the present invention is to provide an interferometric angular velocity meter.

「課題を解決するための手段」 この発明によれば、従来と同様に光分岐手段とループ状
光伝送路の一端との間に第1位相変調器を直列に挿入す
ると共に、この第1位相変調器と直列に第2位相変調器
を挿入する。第2位相変調器の特性は第1位相変調器と
同一とすることが好ましく、第1位相変調器に対する変
調信号と同一の周期関数で同一周波数の変調信号を第2
位相変調器へ供給するが、同一方向回りの光が第1位相
変調器で受ける位相偏移と、同一方向の位相偏移を第2
位相変調器で受けるように第2位相変調器へ供給する変
調信号の位相を選定する。つまり第1位相変調器へ供給
する変調信号をφ(2πf。
"Means for Solving the Problem" According to the present invention, the first phase modulator is inserted in series between the optical branching means and one end of the loop-shaped optical transmission line as in the conventional case, and the first phase modulator is A second phase modulator is inserted in series with the modulator. The characteristics of the second phase modulator are preferably the same as those of the first phase modulator, and the modulation signal of the same frequency and the same periodic function as the modulation signal for the first phase modulator is transmitted to the second phase modulator.
The phase shift that the light in the same direction receives in the first phase modulator is combined with the phase shift in the same direction in the second phase modulator.
The phase of the modulation signal supplied to the second phase modulator is selected to be received by the phase modulator. In other words, the modulation signal supplied to the first phase modulator is φ(2πf).

t)とする時、第2位相変調器の供給する変調信号はφ
(2πf 、t −2πτf、)とする。
t), the modulation signal supplied by the second phase modulator is φ
(2πf, t −2πτf,).

τはループ状光伝送路の光伝搬時間である。周期関数φ
(2πf、t)としては正弦波、矩形波などが使用され
る。
τ is the optical propagation time of the loop-shaped optical transmission line. periodic function φ
A sine wave, a rectangular wave, or the like is used as (2πf, t).

C作 用」 この構成によれば第1.第2位相変調器で右回り光、左
回り光はそれぞれ相加される位相偏移を受け、従来にお
ける位相変調と同様の作用効果が得られ、しかも第1.
第2位相変調器における各強度変調が、一方の強度変調
に対し、他方の強度変調が指軍となり、つまり周波数混
合として作用し、このためループ状光伝送路を通過した
光の強度変調中には位相変調周波数f、の成分が含まれ
ないようになる。
According to this configuration, 1. In the second phase modulator, the clockwise light and the counterclockwise light each receive an added phase shift, so that the same effect as conventional phase modulation can be obtained, and in addition, the first.
Each intensity modulation in the second phase modulator acts as a frequency mixer, with one intensity modulation serving as a command for the other intensity modulation. does not include the component of the phase modulation frequency f.

「実施例」 第1図にこの発明の実施例を示し、第6図と対応する部
分に同一符号を付けである。この発明においては光分岐
器14と光フアイバコイル16の一端との間に直列に、
位相変調器15が挿入されると共に、光分岐器14と光
フアイバコイル16の他端との間にも直列に、位相変調
器26が挿入される。このようにして位相変調器15に
対し位相変調器26が光フアイバコイル16を介して直
列に接続された場合である。位相変調器26は位相変調
器15と同一特性のものが用いられ、右回り光は位相変
調器1゛5で受けた位相偏移と同一方向の位相偏移を位
相変調器26で受けるように、位相変調器15に対する
変調信号と同一周期関数、同一周波数で、位相が2πτ
f1だけ遅らされた変調11号で位相変調器26が駆動
される。この変調信号も変調信号発生器24で作られる
。つまり位相変調器15に対する変調信号をφ(2πf
、t)とし、第7図について示したようにf、==1/
(2τ)とすると、位相変調器26に対する変調信号は
φ(2πf、を−π)となる。
Embodiment FIG. 1 shows an embodiment of the present invention, and parts corresponding to those in FIG. 6 are given the same reference numerals. In this invention, in series between the optical splitter 14 and one end of the optical fiber coil 16,
While the phase modulator 15 is inserted, a phase modulator 26 is also inserted in series between the optical splitter 14 and the other end of the optical fiber coil 16. In this way, the phase modulator 26 is connected in series to the phase modulator 15 via the optical fiber coil 16. The phase modulator 26 has the same characteristics as the phase modulator 15, so that the clockwise light receives a phase shift in the same direction as the phase shift received by the phase modulator 1-5. , the same periodic function and the same frequency as the modulation signal for the phase modulator 15, and the phase is 2πτ
The phase modulator 26 is driven by the modulation number 11 delayed by f1. This modulation signal is also generated by the modulation signal generator 24. In other words, the modulation signal for the phase modulator 15 is φ(2πf
, t), and as shown in FIG. 7, f, == 1/
(2τ), the modulation signal to the phase modulator 26 becomes φ(2πf, −π).

この構成によれば右回り光は位相変調器15゜26で相
加する位相偏移を受け、左回り光も位相変調器15.2
6で相加する位相偏移を受け、光分岐器147合成され
る右回り光と左回り光とは周期関数φ(2πf 、t)
で変化する位相差がある。
According to this configuration, the clockwise light is subjected to an additive phase shift in the phase modulator 15.26, and the counterclockwise light is also subjected to an additive phase shift in the phase modulator 15.2.
The clockwise light and the counterclockwise light that are subjected to an additive phase shift in step 6 and synthesized by the optical splitter 147 are periodic functions φ(2πf, t)
There is a phase difference that changes with

従って20両光を合成した干渉光を光検出器21で電気
信号に変換し、その電気信号を同期検波することにより
従来と同様に、光フアイバコイル16に入力した角速度
を検出することができる。
Therefore, by converting the interference light obtained by combining the 20 lights into an electrical signal by the photodetector 21 and synchronously detecting the electrical signal, the angular velocity input to the optical fiber coil 16 can be detected as in the conventional case.

右回り光が位相変調器15を通過する際に上述したよう
に周波数f1で強度変調も受けるが、この強度変調を受
けた右回り光が位相変調器26を通過する際に、更に周
波数f、で強度変調も受け、つまり、位相変調器15.
26で両強度変調が掛算され、その強度変調の周波数成
分はf、+f。
When the clockwise light passes through the phase modulator 15, it also receives intensity modulation at the frequency f1 as described above, but when the clockwise light that has undergone this intensity modulation passes through the phase modulator 26, it also receives the intensity modulation at the frequency f, is also subjected to intensity modulation, i.e. phase modulator 15.
26, both intensity modulations are multiplied, and the frequency components of the intensity modulation are f, +f.

=2f、と、f、 −f、=0とになる。従って光分岐
器14に戻った右回り光の強度変調にはf1構成が含ま
れない。同様に光分岐器14に戻った左回り光の強度変
調にもf2構成が含まれない。
=2f, and f, -f, =0. Therefore, the intensity modulation of the clockwise light returned to the optical splitter 14 does not include the f1 configuration. Similarly, the intensity modulation of the counterclockwise light returned to the optical splitter 14 does not include the f2 configuration.

従って入力角速度がゼロの状態では右回り光と左回り光
との干渉光の光強度の変化成分にf、成分が含まれず、
この時の同期検波回路22の出力はゼロであり、バイア
ス値にオフセット誤りが生じない。よって光干渉角速度
計のオフセット誤りがなくバイアスの零点の安定性が向
上する。
Therefore, when the input angular velocity is zero, the change component of the light intensity of the interference light between the clockwise light and the counterclockwise light does not include the f component.
At this time, the output of the synchronous detection circuit 22 is zero, and no offset error occurs in the bias value. Therefore, there is no offset error in the optical interference gyrometer, and the stability of the bias zero point is improved.

光源11からの光が上述したように2f、の強度変調が
なされた状態になると、その右回り光は位相変調器15
を通過する時にf、で強度変調を受け、その通過右回り
光の強度変調は、2f、%十f、=3 f、lと、2f
、〜f、=f、とになる。
When the light from the light source 11 is intensity-modulated by 2f as described above, the clockwise light is transmitted to the phase modulator 15.
When passing through, it receives intensity modulation at f, and the intensity modulation of the clockwise light passing through it is 2f, %f, = 3 f, l, and 2f.
, ~f,=f.

この右回り光が位相変調器26を通過する時に、再びf
、で強度変調を受け、位相変調器26を通過した右回り
光の強度変調は3 f、 十f、=4 f。
When this clockwise light passes through the phase modulator 26, f
, and the intensity modulation of the clockwise light that has passed through the phase modulator 26 is 3 f, 10 f, = 4 f.

と、3 f、−f、=2 f、と、r11+r、=2 
f。
, 3 f, -f, = 2 f, and, r11+r, = 2
f.

と、flI−f、−0とになり、f、の成分がなくなる
。同様にして位相変調器15を通過した左回り光の強度
変調にはfゆ成分が存在しなくなる。
Then, flI−f,−0, and the component of f disappears. Similarly, the fy component no longer exists in the intensity modulation of the counterclockwise light that has passed through the phase modulator 15.

従って、これら戻った両光を光分岐器14で合成した干
渉光の強度変調にも、入力角速度がゼロの場合はf、成
分が存在せず、同期検波回路22の出力はゼロになり、
光干渉角速度計のバイアスの零点の安定性が向上する。
Therefore, when the input angular velocity is zero, there is no f component in the intensity modulation of the interference light obtained by combining these two returned lights by the optical splitter 14, and the output of the synchronous detection circuit 22 becomes zero.
The stability of the bias zero point of the optical interference gyrometer is improved.

上述においてはこの発明をオーブンループ光干渉角速度
計に適用したが、クローズトループ光干渉角速度針にも
適用することができる。その例を第2図〜第1図と対応
する部分に同一符号を付けて示す、つまり同期検波回路
22の出力が鋸歯状波発生回路27へ供給され、鋸歯状
波発生回路27はその入力の極性に応じた傾斜方向で、
入力の大きさに応じた傾斜角度で鋸歯状波(階段状鋸歯
状波の場合もある)信号を発生し、その鋸歯状波信号で
、光ファイルコイル16の一端と光分岐器14との間に
直列に挿入された位相変調器28を位相変調し、同期検
波回路22の出力がゼロになるように負帰還制御する。
In the above description, the present invention was applied to an oven-loop optical interference angular velocity meter, but it can also be applied to a closed-loop optical interference angular velocity needle. An example of this is shown with the same reference numerals attached to parts corresponding to those in FIGS. In the direction of inclination depending on the polarity,
A sawtooth wave (sometimes a stepped sawtooth wave) signal is generated with an inclination angle depending on the magnitude of the input, and the sawtooth wave signal is used to connect one end of the optical file coil 16 and the optical splitter 14. The phase modulator 28 inserted in series with the synchronous detection circuit 22 is phase-modulated, and negative feedback control is performed so that the output of the synchronous detection circuit 22 becomes zero.

この結果、入力角速度の極性に応じた極性で、かつ入力
角速度の大きさに応じた周波数の鋸歯状波信号が鋸歯状
波発生回路27より得られ、これが出力端子29に出力
される。
As a result, a sawtooth wave signal having a polarity corresponding to the polarity of the input angular velocity and a frequency corresponding to the magnitude of the input angular velocity is obtained from the sawtooth wave generation circuit 27, and is outputted to the output terminal 29.

位相変調器28を省略して、第3図に示すように鋸歯状
波発生回路27からの帰還鋸歯状波信号を位相変調器2
6に加えてもよい。あるいはこの帰還鋸歯状波信号を位
相変調器15に加えてもよい。第4図に第2図と対応す
る部分に同一符号を付けて示すように、光分岐器14と
光フアイバコイル16の一端との間に、更に位相変調器
31を挿入し、位相変調器28を駆動する鋸歯状波信号
φえと逆極性の鋸歯状波信号φえて位相変調器31を駆
動してもよい。第2図及び第3図の構成では帰還鋸歯状
波信号の波高値は、光に2πラジアンの位相偏移を起さ
せるに必要な電圧値であるが、第4図に示す構成では帰
還鋸歯状波信号の波高値は、光にπラジアンの位相偏移
を起させるに必要な電圧でよく、低い電圧で済み、鋸歯
状波発生回路27の設計が容易になる。
The phase modulator 28 is omitted, and the feedback sawtooth wave signal from the sawtooth wave generation circuit 27 is transmitted to the phase modulator 2 as shown in FIG.
It may be added to 6. Alternatively, this feedback sawtooth signal may be applied to the phase modulator 15. As shown in FIG. 4 with the same reference numerals assigned to parts corresponding to those in FIG. 2, a phase modulator 31 is further inserted between the optical splitter 14 and one end of the optical fiber coil 16, The phase modulator 31 may be driven by a sawtooth wave signal φ having a polarity opposite to that of the sawtooth wave signal φ that drives the phase modulator 31 . In the configurations shown in FIGS. 2 and 3, the peak value of the feedback sawtooth signal is the voltage value necessary to cause a phase shift of 2π radians in the light, but in the configuration shown in FIG. The peak value of the wave signal may be the voltage necessary to cause a phase shift of π radians in the light, and a low voltage is sufficient, which facilitates the design of the sawtooth wave generation circuit 27.

第4図において4つの位相変調器15,2628.31
を1つの基板上に集積化することができる。すなわち、
第5図に示すようにニオブ酸リチウムのような電気光学
結晶基板32上に光導波路33をY字状に形成して光分
岐器14を構成し、その一方の分岐光導波路を挟んで電
極34.35を形成して位相変調器15を構成し、また
その分枝光導波路を挟んで電極36.37を形成して位
相変調器31を構成し、同様に他方の分岐光導波路を挟
んで2対の電極を形成して位相変調器2628を構成す
る。第4図の構成において位相変調器28.31を省略
して帰還鋸歯状波信号φ8−φ、をそれぞれ位相変調器
15.26へ供給してもよい。
In FIG. 4, four phase modulators 15, 2628.31
can be integrated on one substrate. That is,
As shown in FIG. 5, an optical branching device 14 is constructed by forming an optical waveguide 33 in a Y-shape on an electro-optic crystal substrate 32 such as lithium niobate. .35 is formed to constitute the phase modulator 15, electrodes 36 and 37 are formed across the branched optical waveguide to constitute the phase modulator 31, and similarly, the phase modulator 31 is constituted by forming the electrodes 36 and 37 across the other branched optical waveguide. A pair of electrodes is formed to constitute a phase modulator 2628. In the configuration of FIG. 4, the phase modulators 28 and 31 may be omitted and the feedback sawtooth wave signals φ8-φ may be supplied to the phase modulators 15 and 15, respectively.

上述では位相変調器26を光フアイバコイル16を介し
て位相変調器15と直列に接続したが、位相変調器26
を位相変調器15に直接直列に接続してもよい。その例
をオープンループ形に適用した場合について第8圀に第
1図を対応する部分に同一符号を付けて、説明は省略す
る。
In the above, the phase modulator 26 is connected in series with the phase modulator 15 via the optical fiber coil 16, but the phase modulator 26
may be directly connected in series to the phase modulator 15. Regarding the case where the example is applied to an open loop type, the same reference numerals are given to the parts corresponding to those in FIG.

「発明の効果」 以上述べたようにこの発明によれば、光分岐器とループ
状光伝送路の片端との間に挿入された位相変調器と直列
に更に位相変調器を挿入して、同一周波数の変調信号で
駆動することにより、位相変調器で発生する光強度変調
にもとすく、バイアス値のオフセント誤差をゼロにする
ことができ、同様に光源からの光が強度変調を受けてい
る場合も、これにもとすくバイアス値のオフセット誤差
が生じないようにすることができ、このため光源の発生
量を増加させることができ、S/Nを高くすることがで
きる。これらによりバイアスの値のオフセントが小さく
高安定の光干渉角速度計が得られる。
"Effects of the Invention" As described above, according to the present invention, a phase modulator is further inserted in series with the phase modulator inserted between the optical splitter and one end of the loop-shaped optical transmission line, and the same By driving with a frequency modulation signal, the offset error of the bias value can be reduced to zero due to the light intensity modulation generated by the phase modulator, and the light from the light source is also intensity modulated. In this case, it is also possible to prevent offset errors in the bias value from occurring, thereby increasing the amount of light generated by the light source and increasing the S/N ratio. As a result, a highly stable optical interference gyrometer with a small bias value offset can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明をオープンループ形に適用した実施例
を示すブロック図、第2図はこの発明をクローズトルー
プ形に適用した実施例を示すブロック図、第3図及び第
4図はそれぞれこの発明をクローズド・ループ形に適用
した他の実施例を示すブロック図、第5図は位相変調器
15,26,28.31を集積化した例を示す斜視図、
第6図は従来の光干渉角速度計を示すブロック図、第7
図は右回り光、左回り光が受けた位相偏移、これら両光
の位相差、両光の干渉光の光強度変化を示す図、第8図
はこの発明をオープンループ形に適用した更に他の実施
例を示すブロック図である。
Fig. 1 is a block diagram showing an embodiment in which the present invention is applied to an open loop type, Fig. 2 is a block diagram showing an embodiment in which the invention is applied to a closed loop type, and Figs. 3 and 4 respectively show this embodiment. A block diagram showing another embodiment in which the invention is applied to a closed loop type; FIG. 5 is a perspective view showing an example in which phase modulators 15, 26, 28, and 31 are integrated;
Figure 6 is a block diagram showing a conventional optical interference gyrometer, Figure 7
The figure shows the phase shift received by the clockwise light and the counterclockwise light, the phase difference between these two lights, and the light intensity change of the interference light of both lights. FIG. 3 is a block diagram showing another embodiment.

Claims (1)

【特許請求の範囲】[Claims] (1)光源からの光を光分岐手段により2つの光に分岐
し、その一方の光をループ状光伝送路の一端に右回り光
として入射し、他方の光を上記ループ状光伝送路の他端
に左回り光として入射し、そのループ状光伝送路の一端
と上記光分岐手段との間に第1位相変調器を直列に挿入
し、その第1位相変調器を周期関数の変調信号で駆動し
て第1位相変調器を通過する光を位相変調し、上記ルー
プ状光伝送路を通過した上記右回り光と上記左回り光と
を上記光分岐手段で合成して干渉させ、その干渉光を光
検出器で電気信号に変換し、その電気信号を同期検波回
路で上記変調信号により同期検波して、上記ループ状光
伝送路にその軸心まわりに印加された角速度を検出する
光干渉角速度計において、 上記第1位相変調器と直列に挿入され、上記変調信号と
同一周波数の同一の周期関数で、かつ、上記光伝送路を
通った光を、それが上記第1位相変調器で受けた位相偏
移と同一方向に位相偏移する位相で変調する変調信号で
駆動される第2位相変調器を、 具備することを特徴とする光干渉角速度計。
(1) The light from the light source is split into two lights by the optical branching means, one of the lights is input into one end of the loop-shaped optical transmission line as a clockwise light, and the other light is sent to the loop-shaped optical transmission line. A first phase modulator is inserted in series between one end of the loop-shaped optical transmission path and the optical branching means, and the first phase modulator is used to transmit a periodic function modulated signal. drive to phase modulate the light passing through the first phase modulator, combine the clockwise light and the counterclockwise light that have passed through the loop-shaped optical transmission path with the light branching means, and cause them to interfere. The interference light is converted into an electrical signal by a photodetector, and the electrical signal is synchronously detected by the modulation signal in a synchronous detection circuit, and the angular velocity applied to the loop-shaped optical transmission path around its axis is detected. In the interferometric gyrometer, the light is inserted in series with the first phase modulator, and has the same frequency and the same periodic function as the modulation signal, and passes through the optical transmission path. An optical interference gyrometer comprising: a second phase modulator driven by a modulation signal that modulates with a phase having a phase shift in the same direction as the phase shift received by the second phase modulator.
JP23082290A 1990-08-31 1990-08-31 Photointerference angular velocity meter Pending JPH04110718A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23082290A JPH04110718A (en) 1990-08-31 1990-08-31 Photointerference angular velocity meter
EP91915269A EP0502196B1 (en) 1990-08-31 1991-08-29 Optical interference angular velocity meter
DE69115877T DE69115877T2 (en) 1990-08-31 1991-08-29 DEVICE FOR MEASURING ANGLE SPEED THROUGH OPTICAL INTERFERENCE
CA002071882A CA2071882C (en) 1990-08-31 1991-08-29 Optical interferometric gyro having reduced light to the light source
US07/848,967 US5327214A (en) 1990-08-31 1991-08-29 Optical interferometric gyro having reduced return light to the light source
PCT/JP1991/001149 WO1992004597A1 (en) 1990-08-31 1991-08-29 Optical interference angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23082290A JPH04110718A (en) 1990-08-31 1990-08-31 Photointerference angular velocity meter

Publications (1)

Publication Number Publication Date
JPH04110718A true JPH04110718A (en) 1992-04-13

Family

ID=16913829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23082290A Pending JPH04110718A (en) 1990-08-31 1990-08-31 Photointerference angular velocity meter

Country Status (1)

Country Link
JP (1) JPH04110718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047684A (en) * 2007-07-06 2009-03-05 Honeywell Internatl Inc Rfog modulation error correction
JP2015524069A (en) * 2012-06-08 2015-08-20 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ Laser-driven optical gyroscope with push-pull modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694680A (en) * 1979-12-14 1981-07-31 Thomson Csf Method and device for modulating phase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694680A (en) * 1979-12-14 1981-07-31 Thomson Csf Method and device for modulating phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047684A (en) * 2007-07-06 2009-03-05 Honeywell Internatl Inc Rfog modulation error correction
JP2015524069A (en) * 2012-06-08 2015-08-20 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ Laser-driven optical gyroscope with push-pull modulation

Similar Documents

Publication Publication Date Title
US8184355B2 (en) Light modulation device
EP0357799B1 (en) Method and apparatus for modulating a semiconductor laser
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
JP2848942B2 (en) Optical transmitter
US5327214A (en) Optical interferometric gyro having reduced return light to the light source
JP2002532705A (en) Fiber optic gyroscope with modulated suppression of co-propagating and counter-propagating polarization errors
JP3231545B2 (en) Optical frequency stabilizer
US5009480A (en) Fiber optic gyro
JPH05142504A (en) Optical transmitter
JP2021110754A (en) Fiber optic gyroscope with optical gating for spike suppression
JP2509906B2 (en) Rotation rate measuring device
JPH04232418A (en) Phase-shift controlling loop for fixed frequency
JPH04110718A (en) Photointerference angular velocity meter
Bergh Simplified control theory in closed-loop fiber optic gyroscopes
JP3550823B2 (en) Phase modulator
RU2160885C1 (en) Method of stabilization of scale factor of fiber-optical gyroscope
JPH10132578A (en) Optical fiber gyroscope
JPH06294656A (en) Interference optical fiber gyro
JPS61212932A (en) Phase shift modulation light transmitter
JP2000206474A (en) Optical transmission circuit
JPH06103187B2 (en) Optical interference gyro
JPH06235641A (en) Optical fiber gyroscope
JP2002258227A (en) Light modulating apparatus
JP2552602B2 (en) Fiber optic gyro
JP2706439B2 (en) Optical integrated circuit type light intensity modulator