JPH0411027Y2 - - Google Patents

Info

Publication number
JPH0411027Y2
JPH0411027Y2 JP1984151720U JP15172084U JPH0411027Y2 JP H0411027 Y2 JPH0411027 Y2 JP H0411027Y2 JP 1984151720 U JP1984151720 U JP 1984151720U JP 15172084 U JP15172084 U JP 15172084U JP H0411027 Y2 JPH0411027 Y2 JP H0411027Y2
Authority
JP
Japan
Prior art keywords
shaft
wrist
rotation
gear
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984151720U
Other languages
Japanese (ja)
Other versions
JPS6168888U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984151720U priority Critical patent/JPH0411027Y2/ja
Publication of JPS6168888U publication Critical patent/JPS6168888U/ja
Application granted granted Critical
Publication of JPH0411027Y2 publication Critical patent/JPH0411027Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、旋回軸や揺動アーム等複数の手首構
成部材からなる多自由度のロボツト用手首におけ
る各手首構成部材の移動限界を規制する装置に関
する。
[Detailed description of the invention] <Industrial application field> The present invention regulates the movement limit of each wrist component in a multi-degree-of-freedom robot wrist consisting of multiple wrist components such as a pivot axis and a swinging arm. Regarding equipment.

〈従来の技術〉 各種作業機器が先端に搭載されるロボツト用ア
ームは、作業機器を任意の方向に向ける必要があ
るため、普通多くの自由度を有している。ロボツ
ト用アームの先端部の手首部においても、多自由
度を達成するため、ロボツト用手首を構成する複
数の手首構成部材をそれぞれ関節部を介して連結
し、各手首構成部材を歯車機構や歯車リンク機構
等の動力伝達機構を介してそれぞれ駆動するよう
にしている。ところで、動力伝達機構は、各手首
構成部材同士の組合せの関係及び構造の簡素化等
の要求から、各手首構成部材の動力伝達機構の構
成部材(歯車等)を共用する構造となつているも
のが多い。従つて、このような動力伝達機構を備
えたロボツト用アームの一つの手首構成部材を駆
動しようとすると、他の手首構成部材まで動いて
しまうことになる。そこで、従来より上述した不
必要な手首構成部材の動きを除去する目的で予め
ソフトウエアによる修正信号を組み込んでおくよ
うにしている。一方、各手首構成部材が許容動作
範囲を越えて動作すると、破損あるいは故障等を
引き起こしかねないので、これを防止するため、
手首部の各手首構成部材の移動を規制するリミツ
トスイツチ等を手首部に設けるようにしている。
<Prior Art> A robot arm on which various types of work equipment are mounted at its tip usually has many degrees of freedom because it is necessary to direct the work equipment in an arbitrary direction. In order to achieve multiple degrees of freedom in the wrist at the tip of the robot arm, the multiple wrist components that make up the robot wrist are connected via joints, and each wrist component is connected to a gear mechanism or a gear mechanism. Each is driven via a power transmission mechanism such as a link mechanism. By the way, the power transmission mechanism has a structure in which the constituent members (gears, etc.) of the power transmission mechanism of each wrist constituent member are shared, due to the relationship between the combinations of the wrist constituent members and the need for simplification of the structure. There are many. Therefore, if an attempt is made to drive one wrist component of a robot arm equipped with such a power transmission mechanism, the other wrist components will also move. Therefore, in order to eliminate the above-mentioned unnecessary movement of the wrist constituent members, correction signals by software have been previously incorporated in the wrist watch. On the other hand, if each wrist component moves beyond its permissible operating range, it may cause damage or malfunction, so to prevent this,
The wrist is provided with a limit switch or the like that restricts the movement of each wrist constituent member of the wrist.

〈考案が解決しようとする問題点〉 上記従来のロボツト用手首部においては、旋回
軸や揺動アーム等の手首構成部材の移動範囲を規
制するリミツトスイツチ、ドツグ等を手首部に組
み込んでいるため、手首部の構造が複雑大形化し
てしまう。又、リミツトスイツチのためのリード
線をロボツト基端の制御部までのばさなければな
らないが、その場合、リード線長に充分の余裕を
とつておかないと手首部の動作によりリード線が
断線することがあり、逆に充分に余裕をとつた場
合には保守の上でリード線がじやまになるという
別の不具合が生じてしまう。
<Problems to be solved by the invention> In the above-mentioned conventional robot wrist, a limit switch, a dog, etc. that restrict the movement range of the wrist constituent members such as a pivot axis and a swing arm are incorporated into the wrist. The structure of the wrist becomes complicated and large. Also, the lead wire for the limit switch must be extended to the control section at the base of the robot, but in this case, if you do not leave enough margin for the lead wire length, the lead wire may break due to wrist movement. On the other hand, if there is a sufficient margin, another problem will occur in that the lead wire will become loose during maintenance.

ロボツト手首部に各手首構成部材の移動範囲規
制用のリミツトスイツチ等を組み込む形式の従来
の規制装置には上述のような欠点があることにか
んがみ、本考案では、各手首構成部材の動きに対
応した動きを動力伝達機構を介してロボツトアー
ムの後方で取り出し、この動きを規制するように
し、もつてロボツト手首部の構造の簡素小型化並
びにリード線のひきのばしによる不具合の解決を
企図したのである。
In consideration of the above-mentioned drawbacks of the conventional regulating device that incorporates a limit switch or the like for regulating the movement range of each wrist component in the robot wrist, the present invention has developed a system that accommodates the movement of each wrist component. The idea was to extract the movement from the rear of the robot arm via a power transmission mechanism and to restrict this movement, thereby simplifying and downsizing the structure of the robot wrist and solving problems caused by elongating the lead wire.

〈問題点を解決するための手段〉 上記問題を解決するため本考案では、それぞれ
異なる軸回りに回動可能となつている複数の手首
構成部材と、各手首構成部材に動力を伝達する駆
動軸と、各駆動軸を駆動する駆動源と、各駆動軸
と各手首構成部材とを連結し且つ互いに係合して
いる動力伝達機構と、複数の手首構成部材を作動
させた場合の動力伝達機構における干渉を補償す
る制御系とからなるロボツト用アームにおいて、
当該ロボツト用アームの基端側において各駆動軸
と各手首構成部材と対応する対応軸とを機械的動
力伝達手段を介して連結すると共に、各対応軸に
各手首構成部材の動きと対応する動きが得られる
ように前記駆動軸の干渉補償動を補償する差動歯
車装置を前記機械的動力伝達手段に組み込み、前
記対応軸の動きをもとに各手首構成部材の許容移
動範囲を規制するようにしたのである。
<Means for solving the problem> In order to solve the above problem, the present invention includes a plurality of wrist component members each rotatable around different axes, and a drive shaft that transmits power to each wrist component. , a drive source that drives each drive shaft, a power transmission mechanism that connects each drive shaft and each wrist component and engages each other, and a power transmission mechanism when a plurality of wrist components are operated. In a robot arm consisting of a control system that compensates for interference in
At the base end side of the robot arm, each drive shaft, each wrist component, and a corresponding corresponding shaft are connected via a mechanical power transmission means, and each corresponding shaft is provided with a movement corresponding to the movement of each wrist component. A differential gear device that compensates for interference compensation movement of the drive shaft is incorporated into the mechanical power transmission means so that the movement of each wrist component is regulated based on the movement of the corresponding shaft. I made it.

〈実施例〉 第1図には一実施例に係る規制装置を備えたロ
ボツト用アームをスケルトン的に表わしてある。
1は筒状の回転用軸で、図示されていない他のア
ーム等に俯仰可能に支持されているケース等に中
心軸回りに回転自在に支持されている。回転用軸
の後端部にはかさ歯車2が固着されており、この
かさ歯車2には、減速機3を介して回転用モータ
4に連結するかさ歯車5がかみ合わせられてい
る。又、回転用軸1の先端部には手首部のケーシ
ングをなす枠体6が一体に取付けられている。回
転用モータ4の作動により、回転用軸1と共に枠
体6はその中心軸回りに回転(γ軸動)される。
筒状の回転用軸1内には筒状の揺動用軸7がその
中心軸回りに回転自在に支持されており、その後
部にはかさ歯車8が固着され、このかさ歯車8
に、減速機9を介して揺動用モータ10に連結す
るかさ歯車11がかみ合わせられている。前記枠
体6内に延びる揺動用軸7の先端部にはかさ歯車
12が取付けてあり、このかさ歯車12には、前
記揺動用軸7の軸方向に対し直角をなし前記枠体
6に回転自在に支持された歯車軸13上のかさ歯
車14がかみ合わせられている。歯車軸13上に
は歯車15が設けてあり、この歯車15とかみ合
う歯車16を備え前記歯車軸13と平行な歯車軸
(揺動軸)17が前記枠体6に回転自在に支持さ
れている。この揺動軸17上の前記歯車16には
筒状の揺動アーム18が一体的に取付けられてい
る。前記揺動用モータ10の作動によりかさ歯車
11,8を介して揺動用軸7が回転し、更にかさ
歯車12,14、歯車15,16を介して揺動ア
ーム18は前記揺動軸17を中心として揺動(β
軸動)するのである。揺動アーム18内には、先
端部に各種操作機器等が装着されるフランジ部1
9を有する旋回軸20が回転自在に支持され、そ
の後端部にはかさ歯車21が設けられている。一
方、筒状の揺動用軸7内には旋回用軸22が回転
自在に支持され、その後端部には減速機23を介
して旋回用モータ24が連結されている。又、枠
体6内において前記揺動用軸7先端のかさ歯車1
2より先方に延びる旋回用軸22の先端部にはか
さ歯車25が設けてあり、このかさ歯車25に
は、前記歯車軸13と同一軸上に位置し枠体6に
回転自在に支持された歯車軸26上のかさ歯車2
7がかみ合わせられている。歯車軸26上には歯
車28が設けてあり、この歯車28には、前記揺
動軸17と同一軸上に位置し前記枠体6と揺動ア
ーム18とに回転自在に支持された歯車軸29上
の歯車30がかみ合わせられている。そして、歯
車軸29の前記揺動アーム18内に延びる内端部
には、前記旋回軸20後端のかさ歯車21にかみ
合うかさ歯車31が設けられている。よつて、旋
回用モータ24を駆動すると、旋回用軸22が回
転し、その先端のかさ歯車25,27、歯車軸2
6、歯車28,30、歯車軸29、かさ歯車3
1,20と回転が伝わつて、旋回軸20がその中
心軸回りに回転(α軸動)されるのである。つま
り、このロボツト用アームにおける手首部は、枠
体6、揺動アーム18、旋回軸20及び歯車機構
からなり、回転動(γ軸動)、屈曲部(β軸動)、
旋回動(α軸動)の3自由度を有しているのであ
る。
<Embodiment> FIG. 1 shows a skeleton of a robot arm equipped with a regulating device according to an embodiment.
Reference numeral 1 denotes a cylindrical rotation shaft, which is rotatably supported around a central axis by a case or the like which is supported by another arm (not shown) so as to be able to rise or rise. A bevel gear 2 is fixed to the rear end of the rotating shaft, and a bevel gear 5 that is connected to a rotating motor 4 via a speed reducer 3 is meshed with the bevel gear 2 . Further, a frame body 6 forming a casing of the wrist portion is integrally attached to the tip end of the rotating shaft 1. By the operation of the rotation motor 4, the frame body 6 together with the rotation shaft 1 is rotated around its central axis (γ-axis movement).
A cylindrical swing shaft 7 is supported within the cylindrical rotation shaft 1 so as to be rotatable around its central axis, and a bevel gear 8 is fixed to the rear portion of the shaft.
A bevel gear 11 connected to a swing motor 10 via a speed reducer 9 is meshed with the gear. A bevel gear 12 is attached to the tip of the swinging shaft 7 extending inside the frame 6, and the bevel gear 12 is perpendicular to the axial direction of the swinging shaft 7 and rotates toward the frame 6. A bevel gear 14 on a freely supported gear shaft 13 is meshed. A gear 15 is provided on the gear shaft 13, and a gear shaft (swing shaft) 17, which includes a gear 16 that meshes with the gear shaft 15 and is parallel to the gear shaft 13, is rotatably supported by the frame 6. . A cylindrical swing arm 18 is integrally attached to the gear 16 on the swing shaft 17. The operation of the swing motor 10 causes the swing shaft 7 to rotate via the bevel gears 11 and 8, and the swing arm 18 rotates around the swing shaft 17 via the bevel gears 12 and 14 and the gears 15 and 16. oscillation as (β
axial movement). Inside the swinging arm 18, there is a flange portion 1 at the tip of which various operating devices are attached.
9 is rotatably supported, and a bevel gear 21 is provided at its rear end. On the other hand, a swing shaft 22 is rotatably supported within the cylindrical swing shaft 7, and a swing motor 24 is connected to its rear end via a speed reducer 23. Also, within the frame 6, the bevel gear 1 at the tip of the swinging shaft 7
A bevel gear 25 is provided at the tip of the turning shaft 22 extending forward from the rotating shaft 22, and the bevel gear 25 has a bevel gear 25 located on the same axis as the gear shaft 13 and rotatably supported by the frame 6. Bevel gear 2 on gear shaft 26
7 is interlocked. A gear 28 is provided on the gear shaft 26, and the gear 28 includes a gear shaft located on the same axis as the swing shaft 17 and rotatably supported by the frame 6 and the swing arm 18. Gears 30 on top of 29 are meshed. A bevel gear 31 that meshes with the bevel gear 21 at the rear end of the pivot shaft 20 is provided at the inner end of the gear shaft 29 that extends into the swing arm 18 . Therefore, when the turning motor 24 is driven, the turning shaft 22 rotates, and the bevel gears 25, 27 and the gear shaft 2 at the tips of the turning shaft 22 rotate.
6, gears 28, 30, gear shaft 29, bevel gear 3
1 and 20 are transmitted, and the pivot shaft 20 is rotated around its central axis (α-axis movement). In other words, the wrist portion of this robot arm consists of the frame 6, the swing arm 18, the pivot shaft 20, and the gear mechanism, and includes a rotating portion (γ-axis movement), a bending portion (β-axis movement),
It has three degrees of freedom for rotational movement (α-axis movement).

一方、回転用軸1の後部にはスプロケツト32
が取付けられ、別途支持された回転対応軸33に
もスプロケツト34が取付けられ、これらにチエ
ーン34aがかけ渡されている。そして、この回
転対応軸33の端部には、第2図a,bに示すよ
うなドツグ取付板35が一体的に取付けられ、ド
ツグ取付板35にはドツグ36が取付けられ、そ
の回りにおいて、回転用軸1(手首部で言えば枠
体6)の許容移動範囲(回転角)の両端に対応し
た位置それぞれには、前記ドツグ36との当接に
より前記回転用モータ4に停止を指令するリミツ
トスイツチ37が設けられている。
On the other hand, a sprocket 32 is installed at the rear of the rotating shaft 1.
A sprocket 34 is also attached to a separately supported rotatable shaft 33, and a chain 34a is spanned over these. A dog mounting plate 35 as shown in FIG. The rotation motor 4 is commanded to stop by contact with the dog 36 at each position corresponding to both ends of the allowable movement range (rotation angle) of the rotation shaft 1 (frame 6 in terms of the wrist). A limit switch 37 is provided.

又、揺動用軸7の後端にはスプロケツト38が
取付けられ、揺動用軸7と平行に設けられた軸3
9上にもスプロケツト40が取付けられ、これら
スプロケツト38,40間にチエーン41がかけ
渡されている。前記軸39及び前記回転対応軸3
3端に設けられた歯車42とかみ合う歯車43と
一体の軸44をそれぞれ入力軸とする第1差動歯
車装置45が構成されており、その出力軸(揺動
対応軸)46の端部に揺動用ドツグ取付板47が
一体的に取付けられている。揺動用軸7と共に回
転用軸1が回転すると、揺動アーム18の動きは
干渉してしまうので、予めプログラミングされて
いる修正信号により、所期の回転角が得られるよ
うに修正動されるが、揺動用ドツグ取付板47も
第1差動歯車装置45により干渉分が修正されて
実際の揺動アーム18の回転量に対応して回転さ
れる。このドツグ取付板47にも前記回転用ドツ
グ取付板35と同様にドツグ73が取付けられ、
その回りにはドツグ73との当接により揺動用モ
ータ10に停止指令を出すリミツトスイツチ74
が設けられる。
Further, a sprocket 38 is attached to the rear end of the swinging shaft 7, and the shaft 3 provided parallel to the swinging shaft 7
A sprocket 40 is also mounted on sprocket 9, and a chain 41 is spanned between these sprockets 38 and 40. The shaft 39 and the rotation compatible shaft 3
A first differential gear device 45 is configured, each having a shaft 44 integral with a gear 43 that meshes with a gear 42 provided at three ends as an input shaft, and an output shaft (oscillating shaft) 46 at an end thereof. A swinging dog mounting plate 47 is integrally attached. When the rotating shaft 1 rotates together with the swinging shaft 7, the movement of the swinging arm 18 will interfere with each other, so a correction signal programmed in advance is used to correct the swinging arm 18 so that the desired rotation angle is obtained. The swinging dog mounting plate 47 is also rotated in accordance with the actual amount of rotation of the swinging arm 18 with interference corrected by the first differential gear device 45. A dog 73 is also attached to this dog attachment plate 47 in the same way as the rotating dog attachment plate 35,
Around it is a limit switch 74 that issues a stop command to the swing motor 10 when it comes into contact with the dog 73.
is provided.

旋回用軸22上にはスプロケツト48が取付け
られ、旋回用軸22と平行な軸49上にもスプロ
ケツト50が一体的に取付けられ、これらのスプ
ロケツト48,50間にチエーン51がかけ渡さ
れ、旋回用軸22の回転が軸49にも伝達される
ようになつている。軸49には歯車52が取付け
られ、この歯車52とかみ合う歯車53を具えた
軸54及び前記第1差動歯車装置45の入力軸3
9端に設けられた歯車55とかみ合う歯車56と
一体の軸57を入力軸として第2の差動歯車装置
58が構成されており、その出力軸59の端部に
は歯車60が固着されている。この歯車60とか
み合う歯車61を具えた軸62を一の入力軸と
し、前記回転対応軸33とスプロケツト63,6
4、チエーン65で連結された軸66上の歯車6
7とかみ合う歯車68を具えた軸69をもう一方
の入力軸として第3の差動歯車装置70が構成さ
れ、その出力軸である旋回対応軸71の端部には
旋回用ドツグ取付板72が取付けられている。旋
回用軸22と共に回転用軸1、揺動用軸7が回転
すると、そのままでは旋回軸20は干渉して所期
の回転量回転しないが、予め組み込まれているソ
フトウエアにより干渉分を補償すべく制御され、
旋回軸20は所期の量回転されるが、旋回用ドツ
グ取付板72も二つの差動歯車装置58,70を
介して回転用軸1と揺動用軸7との干渉分が補修
されて、旋回軸20の回転量に対応した量回転さ
れる。この旋回用ドツグ取付板72にも他のドツ
グ取付板と同様にドツグ75が取付けられ、その
回りにおいて、許容移動範囲の両端相当位置には
前記ドツグ75との当接により旋回用モータ24
に停止を指令するリミツトスイツチ76が設けら
れる。
A sprocket 48 is mounted on the turning shaft 22, and a sprocket 50 is also integrally mounted on a shaft 49 parallel to the turning shaft 22. A chain 51 is spanned between these sprockets 48 and 50, and The rotation of the shaft 22 is also transmitted to the shaft 49. A gear 52 is attached to the shaft 49, and a shaft 54 includes a gear 53 that meshes with the gear 52, and the input shaft 3 of the first differential gear device 45.
A second differential gear device 58 is constructed with a shaft 57 integral with a gear 56 that meshes with a gear 55 provided at the 9th end as an input shaft, and a gear 60 is fixed to the end of the output shaft 59. There is. A shaft 62 equipped with a gear 61 that meshes with this gear 60 is used as one input shaft, and the rotation corresponding shaft 33 and sprockets 63, 6
4. Gear 6 on shaft 66 connected by chain 65
A third differential gear device 70 is constructed with a shaft 69 having a gear 68 that meshes with the gear 7 as the other input shaft, and a swing dog mounting plate 72 is attached to the end of the swing compatible shaft 71 which is the output shaft. installed. When the rotating shaft 1 and the swinging shaft 7 rotate together with the rotating shaft 22, the rotating shaft 20 will interfere with the rotating shaft 20 and will not rotate the desired amount of rotation, but pre-installed software will compensate for the interference. controlled,
The rotation shaft 20 is rotated by the desired amount, but the rotation dog mounting plate 72 is also repaired for interference between the rotation shaft 1 and the swing shaft 7 through the two differential gear devices 58 and 70. It is rotated by an amount corresponding to the amount of rotation of the pivot shaft 20. A dog 75 is attached to this turning dog mounting plate 72 in the same way as the other dog mounting plates, and around the dog 75, the turning motor 24 is brought into contact with the dog 75 at positions corresponding to both ends of the allowable movement range.
A limit switch 76 is provided to instruct the engine to stop.

以上のように、手首部を構成する手首構成部材
である、枠体6、揺動アーム18、旋回軸20の
回転量に対応した回転量をロボツトアーム後部に
組み込まれているドツグ取付部35,47,72
で取り出し、各ドツグ取付板35,47,72の
ドツグ36,73,75で固定のリミツットスイ
ツチ37,74,76をたたくことにより、枠体
6、揺動アーム8、旋回軸20の移動範囲を規制
するのである。
As described above, the dog mounting part 35 built into the rear part of the robot arm rotates the robot arm by an amount of rotation corresponding to the amount of rotation of the frame body 6, the swing arm 18, and the pivot shaft 20, which are the wrist components that make up the wrist part. 47,72
By tapping the fixed limit switches 37, 74, 76 with the dogs 36, 73, 75 of each dog mounting plate 35, 47, 72, the movement range of the frame 6, swing arm 8, and pivot shaft 20 can be changed. It regulates.

尚、上記装置における回転量伝達補償機構であ
る差動歯車装置45,58,70としてはどのよ
うなものでもよいが、本実施例では、最も単純な
構造のもの、つまり二つの入力軸側かさ歯車を同
一歯数とし、これらをつなぎ出力軸を駆動するか
さ歯車は共に同一歯数とする。従つて、(一方の
入力軸の角変位)+(もう一方の入力軸の角変位)
=1/2(出力軸の角変位)となるのである。
The differential gear devices 45, 58, and 70 serving as the rotational amount transmission compensation mechanism in the above device may be of any type, but in this embodiment, the one with the simplest structure, that is, the two input shaft side umbrellas, is used. The gears have the same number of teeth, and the bevel gears connecting these gears and driving the output shaft have the same number of teeth. Therefore, (angular displacement of one input shaft) + (angular displacement of the other input shaft)
= 1/2 (angular displacement of the output shaft).

次に実際に数値を挙げて上記補正装置の動きを
説明する。
Next, the operation of the above correction device will be explained using actual numerical values.

回転用軸1と回転対応軸33とを連結するスプ
ロケツト32と34との直径比を1:1、回転対
応軸33と旋回対応軸71とを連結するスプロケ
ツト63と64の直径比を4:1、回転対応軸3
3と第1差動歯車装置45の一方の入力軸44と
を連結する歯車42と43の歯数比を2:1、揺
動用軸7と第1差動歯車装置45のもう一方の入
力軸39とをつなぐスプロケツト38と40の直
径比を2:1、旋回用軸22と軸49とをつなぐ
スプロケツト48と50との直径比を2:1、更
に、歯車52と53の歯数比を1:1、歯車55
と56との歯数比を1:1、歯車60と61との
歯数比を2:1、歯車67と68との歯数比を
1:1とし、手首部における枠体6を+54°、揺
動アーム18を−79°、旋回軸20を−124°回転
させる場合を考えてみる。尚、枠体6、旋回軸2
0については、アーム基端側(第1図中A側)か
ら見て、時計回りを+、反時計回りを−とし、揺
動アーム18については右側面(第1図中B側)
から見て、時計回りを+、反時計回りを−とす
る。
The diameter ratio of the sprockets 32 and 34 that connect the rotation shaft 1 and the rotation compatible shaft 33 is 1:1, and the diameter ratio of the sprockets 63 and 64 that connect the rotation compatible shaft 33 and the rotation compatible shaft 71 is 4:1. , rotation compatible axis 3
3 and one input shaft 44 of the first differential gear device 45, the tooth ratio of the gears 42 and 43 is 2:1, and the swing shaft 7 and the other input shaft of the first differential gear device 45 are The diameter ratio of the sprockets 38 and 40 that connect the rotating shaft 22 and the shaft 49 is 2:1, the diameter ratio of the sprockets 48 and 50 that connect the turning shaft 22 and the shaft 49 is 2:1, and the ratio of the number of teeth of the gears 52 and 53 is set to 2:1. 1:1, gear 55
and 56 are 1:1, gears 60 and 61 are 2:1, and gears 67 and 68 are 1:1, and the frame 6 at the wrist is set at +54°. Let us consider a case where the swing arm 18 is rotated by -79 degrees and the pivot shaft 20 is rotated by -124 degrees. In addition, the frame body 6, the rotation axis 2
0, when viewed from the arm base end side (A side in Figure 1), clockwise rotation is + and counterclockwise rotation is -, and for swinging arm 18, right side (B side in Figure 1).
When viewed from the center, clockwise direction is + and counterclockwise direction is -.

旋回用軸22を+9°回転させると、旋回軸20
は+9°回転する。
When the rotation axis 22 is rotated +9°, the rotation axis 20
rotates +9°.

次に揺動用軸7を−25°回転させると、揺動ア
ーム18は−25°回転し、更に旋回軸20が−25°
回転するから旋回軸20は−16°回転したことに
なる。
Next, when the swing shaft 7 is rotated by -25 degrees, the swing arm 18 is rotated by -25 degrees, and the pivot shaft 20 is further rotated by -25 degrees.
Since it rotates, the pivot shaft 20 has rotated by -16 degrees.

更に、回転用軸1を+54°回転させると、枠体
6は+54°回転するが、この回転に伴つて、揺動
アーム18は−54°回転するから、結局揺動アー
ム18は−79°回転したことになり、又旋回軸2
0は枠体6の回転に伴つて−54°回転すると共に、
揺動アーム18が枠体6の回転により−54°回転
するために、旋回軸20も−54°回転し、旋回軸
20は結果的には、+9°−25°−54°−54°=−124°

転する。
Further, when the rotation shaft 1 is rotated by +54 degrees, the frame body 6 is rotated by +54 degrees, but along with this rotation, the swing arm 18 is rotated by -54 degrees, so the swing arm 18 is rotated by -79 degrees. It has rotated, and the rotation axis 2
0 rotates by -54° as the frame body 6 rotates, and
Since the swing arm 18 rotates by -54 degrees due to the rotation of the frame 6, the pivot shaft 20 also rotates by -54 degrees, and the pivot shaft 20 is finally +9 degrees - 25 degrees - 54 degrees - 54 degrees = −124°
Rotate.

一方、ドツグ取付板においては、旋回用軸22
を+9°回転させると、旋回用ドツグ取付板72は
+9°回転する。
On the other hand, in the dog mounting plate, the pivot shaft 22
When the rotation dog mounting plate 72 is rotated by +9°, the rotating dog mounting plate 72 is rotated by +9°.

揺動用軸7を−25°回転させると、揺動用ドツ
グ取付板47は−25°回転し、その回転に伴つて
旋回用ドツグ取付板72は−25°回転するから、
結局旋回用ドツグ取付板72は−16°回転したこ
とになる。
When the swing shaft 7 is rotated by -25 degrees, the swing dog mounting plate 47 is rotated by -25 degrees, and along with this rotation, the swing dog mounting plate 72 is rotated by -25 degrees.
As a result, the dog mounting plate 72 for rotation has been rotated by -16 degrees.

次に、回転用軸1を+54°回転させると、回転
用ドツグ取付板35は+54°回転するが、この回
転に伴つて揺動用ドツグ取付板47は−54°回転
し、結局揺動用ドツグ取付板47は−79°回転し
たことになる。又、旋回用ドツグ取付板72は回
転用軸1が+54°すると−108°回転するから、旋
回用ドツグ取付板72は、結局、+9°−25°−108°
=−124°回転したことになる。
Next, when the rotation shaft 1 is rotated by +54 degrees, the rotation dog mounting plate 35 is rotated by +54 degrees, but along with this rotation, the swing dog mounting plate 47 is rotated by -54 degrees, and the swing dog mounting plate 47 is rotated by -54 degrees. This means that the plate 47 has been rotated by -79°. Moreover, since the dog mounting plate 72 for rotation rotates by -108° when the rotation shaft 1 rotates by +54°, the dog mounting plate 72 for turning rotates by +9° -25° -108°.
= -124° rotation.

即ち、旋回用軸22を+9°、揺動用軸7を−
25°、回転用軸1を+54°回転させると、手首部に
おける旋回軸20は−124°、揺動アーム18は−
79°、枠体6は+54°回転するのに対して、これら
の構成部材の回転取出し側においては、旋回用ド
ツグ取付板72は−124°、揺動用ドツグ取付板4
7は−79°、回転用ドツグ取付板35は+54°回転
し、つまり、ドツグ取付板72,47,35の回
転量は手首部構成部材20,18,6の回転量即
ち角変位量と1:1で対応するのである。従つ
て、旋回軸20、揺動アーム18、枠体6の許容
移動量(角度)と対応させて、各ドツグ取付板7
2,47,35の回りにリミツトスイツチ76,
74,37を設けておけば、旋回軸20、揺動ア
ーム18、枠体6の移動量が規制できるのであ
る。
That is, the rotation axis 22 is set at +9°, and the swing axis 7 is set at -9°.
25 degrees, and when the rotation axis 1 is rotated +54 degrees, the pivot axis 20 at the wrist part is -124 degrees, and the swing arm 18 is -
79°, and the frame body 6 rotates +54°, whereas on the rotation extraction side of these components, the rotating dog mounting plate 72 rotates -124°, and the swinging dog mounting plate 4 rotates by -124°.
7 rotates -79°, and the rotating dog mounting plate 35 rotates +54°. In other words, the amount of rotation of the dog mounting plates 72, 47, and 35 is the same as the amount of rotation, that is, the amount of angular displacement of the wrist component members 20, 18, and 6. :1 corresponds to this. Therefore, each dog mounting plate 7 is adjusted in accordance with the allowable movement amount (angle) of the pivot shaft 20, the swing arm 18, and the frame body 6.
Limit switch 76 around 2, 47, 35,
By providing 74 and 37, the amount of movement of the pivot shaft 20, swing arm 18, and frame body 6 can be regulated.

尚、上記実施例のロボツト手首部において、旋
回軸20を±α変位させるには旋回用軸22を±
α駆動すればよい。揺動アーム18を±β変位さ
せるには、揺動用軸7を±β駆動すればよいので
あるが、揺動アーム18の変位につれて、旋回軸
20も変位するから、旋回用軸22を±β°駆動し
て補正する必要がある。枠体6を±γ変位させる
には、回転用軸1を±γ駆動すればよいが、枠体
6の変位につれて揺動アーム18、旋回軸20も
変位するから、揺動用軸7、旋回用軸22を共に
±γ駆動して補正する必要がある。これらの補正
は各軸の操作プログラムによりソフト的に行なわ
れる。
In the robot wrist portion of the above embodiment, in order to displace the pivot shaft 20 by ±α, the pivot shaft 22 must be moved by ±α.
It is sufficient to drive by α. In order to displace the swinging arm 18 by ±β, it is sufficient to drive the swinging shaft 7 by ±β.However, as the swinging arm 18 displaces, the swinging shaft 20 also displaces, so the swinging shaft 22 is moved by ±β. ° It is necessary to drive and correct. In order to displace the frame 6 by ±γ, it is sufficient to drive the rotating shaft 1 by ±γ, but since the swing arm 18 and the pivot shaft 20 are also displaced as the frame body 6 is displaced, the swing shaft 7 and the pivot It is necessary to correct this by driving both the axes 22 in ±γ. These corrections are performed by software using the operating program for each axis.

第1図に示した実施例において、スプロケツト
32と34の直径比を1:2、スプロケツト63
と64の直径比を4:1、歯車42と43との歯
数比を2:1、スプロケツト38と40の直径比
を1:1、スプロケツト48と50との直径比を
1:1とし、他の歯数比等を前と同様とすると、
旋回用軸22を+9°、揺動用軸7を−25°、回転
用軸1を+54°回転させると、旋回軸20は−
124°、揺動アーム18は−79°、枠体6は+54°回
転するのに対して、旋回用ドツグ取付板72は−
62°、揺動用ドツグ取付板47は−39.5°、回転用
ドツグ取付板35は+27°回転する。つまり、ド
ツグ取付板72,47,35の回転は手首部各構
成部材の実際の回転量の1/2となるのである。こ
のように、手首部構成部材の動きとドツグ取付板
との動きは1:1とする必要はなく、一定の対応
関係になつていればよい。
In the embodiment shown in FIG. 1, the diameter ratio of sprockets 32 and 34 is 1:2, and sprocket 63 is
and 64 are 4:1, the gears 42 and 43 have a tooth number ratio of 2:1, the sprockets 38 and 40 have a diameter ratio of 1:1, and the sprockets 48 and 50 have a diameter ratio of 1:1. Assuming that other tooth ratios are the same as before,
When the pivot shaft 22 is rotated +9 degrees, the swing shaft 7 is rotated -25 degrees, and the rotation shaft 1 is rotated +54 degrees, the pivot shaft 20 is -
124°, the swinging arm 18 rotates -79°, and the frame 6 rotates +54°, whereas the swing dog mounting plate 72 rotates -79°.
The swinging dog mounting plate 47 rotates -39.5°, and the rotating dog mounting plate 35 rotates +27°. In other words, the rotation of the dog mounting plates 72, 47, and 35 is 1/2 of the actual rotation amount of each component of the wrist portion. In this way, the movement of the wrist component and the movement of the dog mounting plate do not need to be 1:1, but only need to be in a certain correspondence relationship.

第3図には手首部の構造が第1図のものと異な
つているロボツト用アームに適用した実施例を示
す。これは、揺動アーム18の伝動機構、旋回軸
20の伝動機構における歯車を各一組(歯車1
5,16、歯車28,30)を省略したもので、
揺動用軸7と揺動アーム18の回転方向、旋回用
軸22と旋回軸20の回転方向が逆となるので、
回転量取出し側においても回転方向を合わせるた
めに、歯車を付加(揺動用軸7から第1差動歯車
装置45に至る間に設けられた歯車77)、ある
いは削除(歯車52,53)している。
FIG. 3 shows an embodiment in which the present invention is applied to a robot arm whose wrist portion has a structure different from that shown in FIG. 1. This includes one set of gears (gear 1
5, 16, gears 28, 30) are omitted,
Since the rotational directions of the swinging shaft 7 and the swinging arm 18 and the rotational directions of the swinging shaft 22 and the swinging shaft 20 are opposite,
In order to match the rotation direction on the rotation amount extraction side, a gear is added (gear 77 provided between the swing shaft 7 and the first differential gear device 45) or deleted (gears 52, 53). There is.

上記構成において、スプロケツト32と34と
の直径比を1:1、スプロケツト63と64との
直径比を4:1、歯車42と43の歯数比を2:
1、スプロケツト38と40との直径比を2:
1、スプロケツト48と50との直径比を2:1
とし、他の歯数比等を前述のものと同じとして、
例えば旋回用軸22を−9°、揺動用軸7を+25°、
回転用軸1を+54°回転させると、旋回軸20は
−124°、揺動アーム18は−79°、枠体6は+54°
回転し、又旋回用ドツグ取付板72は−124°、揺
動用ドツグ取付板47は−79°、回転用ドツグ取
付板35は+54°回転する。つまり、ドツグ取付
板72,47,35の回転は各手首構成部材2
0,18,6の回転即ち角変位量と1:1で対応
するのである。スプロケツトや歯車の刻み円直径
比を適当に選べば、先の実施例と同様に、ドツグ
取付板72,47,35の回転量を手首構成部材
20,18,6の回転の1/2あるいはその他の比
率とすることができる。
In the above configuration, the diameter ratio of sprockets 32 and 34 is 1:1, the diameter ratio of sprockets 63 and 64 is 4:1, and the ratio of the number of teeth of gears 42 and 43 is 2:1.
1. The diameter ratio of sprockets 38 and 40 is 2:
1. The diameter ratio of sprockets 48 and 50 is 2:1.
Assuming that the other tooth number ratio etc. are the same as above,
For example, the turning axis 22 is -9°, the swinging axis 7 is +25°,
When the rotation shaft 1 is rotated +54°, the rotation axis 20 is -124°, the swing arm 18 is -79°, and the frame 6 is +54°.
The rotating dog mounting plate 72 rotates by -124°, the swinging dog mounting plate 47 rotates by -79°, and the rotating dog mounting plate 35 rotates by +54°. In other words, the rotation of the dog mounting plates 72, 47, and 35 is
There is a 1:1 correspondence with the rotation or angular displacement of 0, 18, 6. If the ratio of the increments of the sprockets and gears is appropriately selected, the amount of rotation of the dog mounting plates 72, 47, 35 can be reduced to 1/2 of the rotation of the wrist components 20, 18, 6, or some other amount, as in the previous embodiment. It can be the ratio of

尚、本考案は、手首構成部材へ動力を伝達する
歯車機構が上記以外のどのようなものであつても
対応可能である。又、手首部の自由度も上記実施
例のような3自由度のものに限らず、2自由度以
上のものにいずれにも適用可能である。
Note that the present invention can be applied to any type of gear mechanism other than the above-mentioned gear mechanism for transmitting power to the wrist component. Further, the degree of freedom of the wrist portion is not limited to three degrees of freedom as in the above embodiment, but can be applied to any degree of freedom of two or more.

〈考案の効果〉 以上、実施例を挙げて詳細に説明したように、
本考案によれば、手首構成部材の動きと対応した
動きをロボツトアームの基端側で取り出し、その
動きをもとにドツグ、リミツトスイツチなどの規
制手段により手首構成部剤の許容移動範囲を規制
するようにしたので、手首部からドツグ、リミツ
トスイツチ等の規制手段がなくなり、手首部の構
造が簡素化され、又手首部までリード線等を伸ば
す必要もなくなり、従来リード線を配線していた
ことによる断線や保守上の不具合がなくなる。
<Effects of the invention> As explained above in detail with examples,
According to the present invention, the movement corresponding to the movement of the wrist component is detected at the proximal end of the robot arm, and based on that movement, the permissible movement range of the wrist component is regulated by regulating means such as a dog or a limit switch. As a result, there are no restrictive means such as dogs or limit switches from the wrist, the structure of the wrist is simplified, and there is no longer a need to extend lead wires to the wrist, which is much easier than conventional lead wire wiring. Eliminates wire breaks and maintenance problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例に係る規制装置のス
ケルトン図、第2図a,bは第1図中C部の詳細
拡大正面図と平面図、第3図は他の実施例のスケ
ルトン図である。 図面中、1は回転用軸、4は回転用モータ、6
は枠体、7は揺動用軸、10は揺動用モータ、1
7は揺動軸、18は揺動アーム、20は旋回軸、
22は旋回用軸、24は旋回用モータ、33は回
転対応軸、35は回転用ドツグ取付板、45,5
8,70は差動歯車装置、46は揺動対応軸、4
7は揺動用ドツグ取付板、71は旋回対応軸、7
2は旋回用ドツグ取付板である。
Figure 1 is a skeleton diagram of a regulating device according to an embodiment of the present invention, Figures 2a and b are a detailed enlarged front view and plan view of section C in Figure 1, and Figure 3 is a skeleton diagram of another embodiment. It is a diagram. In the drawing, 1 is a rotating shaft, 4 is a rotating motor, and 6 is a rotating shaft.
1 is a frame body, 7 is a swinging shaft, 10 is a swinging motor, 1
7 is a swing axis, 18 is a swing arm, 20 is a pivot axis,
22 is a rotating shaft, 24 is a rotating motor, 33 is a rotating shaft, 35 is a rotating dog mounting plate, 45, 5
8 and 70 are differential gear devices, 46 is a swinging shaft, 4
7 is a swinging dog mounting plate, 71 is a rotating shaft, 7
2 is a rotating dog mounting plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] それぞれ異なる軸回りに回動可能となつている
複数の手首構成部材と、各手首構成部材に動力を
伝達する駆動軸と、各駆動軸を駆動する駆動源
と、各駆動軸と各手首構成部材とを連結し且つ互
いに係合している動力伝達機構と、複数の手首構
成部材を作動させた場合の動力伝達機構における
干渉を補償する制御系とからなるロボツト用アー
ムにおいて、当該ロボツト用アームの基端側にお
いて各駆動軸と各手首構成部材と対応する対応軸
とを機械的動力伝達手段を介して連結すると共
に、各対応軸に各手首構成部材の動きと対応する
動きが得られるように前記駆動軸の干渉補償動を
補償する差動歯車装置を前記機械的動力伝達手段
に組み込み、前記対応軸の動きをもとに各手首構
成部材の許容移動範囲を規制するようにしたこと
を特徴とするロボツトの移動限界規制装置。
A plurality of wrist constituent members each rotatable around different axes, a drive shaft that transmits power to each wrist constituent member, a drive source that drives each drive shaft, and each drive shaft and each wrist constituent member. A robot arm comprising a power transmission mechanism that connects and engages with each other, and a control system that compensates for interference in the power transmission mechanism when a plurality of wrist component members are operated. At the proximal end, each drive shaft, each wrist component, and a corresponding corresponding shaft are connected via a mechanical power transmission means, and each corresponding shaft is made to move in correspondence with the movement of each wrist component. A differential gear device that compensates for interference compensation movement of the drive shaft is incorporated into the mechanical power transmission means, and the permissible movement range of each wrist component is regulated based on the movement of the corresponding shaft. A robot movement limit regulating device.
JP1984151720U 1984-10-09 1984-10-09 Expired JPH0411027Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984151720U JPH0411027Y2 (en) 1984-10-09 1984-10-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984151720U JPH0411027Y2 (en) 1984-10-09 1984-10-09

Publications (2)

Publication Number Publication Date
JPS6168888U JPS6168888U (en) 1986-05-12
JPH0411027Y2 true JPH0411027Y2 (en) 1992-03-18

Family

ID=30709819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984151720U Expired JPH0411027Y2 (en) 1984-10-09 1984-10-09

Country Status (1)

Country Link
JP (1) JPH0411027Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074144Y2 (en) * 1988-02-29 1995-02-01 トキコ株式会社 Stopper mechanism for industrial robot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121490A (en) * 1980-12-19 1982-07-28 Kuka Shiyubuaisuanraagen Unto Gearing for hinge head coupled with jib of manipulator
JPS59110590A (en) * 1982-12-15 1984-06-26 株式会社 富士電機総合研究所 Transmitter for driving force

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121490A (en) * 1980-12-19 1982-07-28 Kuka Shiyubuaisuanraagen Unto Gearing for hinge head coupled with jib of manipulator
JPS59110590A (en) * 1982-12-15 1984-06-26 株式会社 富士電機総合研究所 Transmitter for driving force

Also Published As

Publication number Publication date
JPS6168888U (en) 1986-05-12

Similar Documents

Publication Publication Date Title
US4990050A (en) Wrist mechanism
US4736645A (en) Gear unit for a manipulator
US5178032A (en) Robot wrist
US4586868A (en) Wrist mechanism of an industrial robot
US4626165A (en) Industrial robot wrist mechanism
JP2577410B2 (en) Manipulator joint mechanism
JP2572483B2 (en) Industrial robot equipment
JPS59227395A (en) Joint structure of robot
JPH0411027Y2 (en)
JPS6377677A (en) Joint type robot
EP0805004A1 (en) Wrist mechanism for articulated robot
JPH04300190A (en) Wrist device for industrial robot
JPS6254692A (en) Wrist mechanism of industrial robot
JPH064230B2 (en) Non-interfering biaxial joint in wire drive arm
JPS61100383A (en) Joint arm type robot
JPH01228790A (en) Biaxial wrist structure for industrial robot
JPS6263074A (en) Electric robot
JPS6039092A (en) Wrist device for robot
KR860000927Y1 (en) Joint structure of industrial robot
JPH028713Y2 (en)
JPS629893A (en) Power transmission mechanism for robot joint section
JPH0538697A (en) Industrial robot
JPH0276693A (en) Joint driving mechanism of driving force non-interferential type
JPH0349715B2 (en)
JPH02309016A (en) Joint for agricultural machine