JPH04110100A - Production of pure water from seawater - Google Patents

Production of pure water from seawater

Info

Publication number
JPH04110100A
JPH04110100A JP2229000A JP22900090A JPH04110100A JP H04110100 A JPH04110100 A JP H04110100A JP 2229000 A JP2229000 A JP 2229000A JP 22900090 A JP22900090 A JP 22900090A JP H04110100 A JPH04110100 A JP H04110100A
Authority
JP
Japan
Prior art keywords
seawater
pure water
acid
water
distilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2229000A
Other languages
Japanese (ja)
Inventor
Jun Nasu
那須 醇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2229000A priority Critical patent/JPH04110100A/en
Publication of JPH04110100A publication Critical patent/JPH04110100A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To obtain extremely high-quality water from seawater by treating seawater with an acid such as sulfuric acid, then controlling the pH to a high value, drawing off the deposit and desalting the residual seawater. CONSTITUTION:Seawater is adjusted to low pH with a strong acid contg. sulfate ion and then to high pH with a strong alkali, the deposit generated is removed, and the seawater is distilled until its amt. is reduced to a specified value to produce distilled water. A several % dil. sulfuric acid is used as the strong acid contg. sulfate ion and used to control the seawater to low pH. Sodium hydroxide, potassium hydroxide, calcium oxide or their mixture are used as the strong alkali. The residual seawater is conventionally distilled in a well- known desalting plant or distilled under reduced pressure. The seawater is concentrated to 10-20%, the seawater concentrated to <=20% is cooled to deposit salt, and the salt and solid residue are utilized for respective purposes.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は蒸留により海水から純水を製造する方法に係
り、特に海水から比較的純度の高い純水を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing pure water from seawater by distillation, and particularly relates to a method for producing relatively highly purified pure water from seawater.

[従来の技術及び発明か解決しようとする問題点]海水
等塩水から純水を製造する方法としては、蒸留による方
法、凝固法、半透膜を利用した逆浸透法、イオン交換膜
を利用した電気透析法なとかあるが、凝固法は蒸留法に
比ベプラントコストが高く、また電気透析法は5000
ppm以上の塩分が含まれる塩水には適当でなく、特に
約35000ppmの塩分か含まれる海水では、蒸留法
、・逆浸透法がその淡水化の主流となっている。特に蒸
留法は逆浸透法に比べ生産能力が大きく、しかも逆浸透
法のように高圧ポンプ、逆浸透モジュール等の高価な装
置を必要としないので一般的であり、蒸気の熱を有効活
用するために、多段蒸留、フラッシュ蒸留、蒸気圧縮法
等を採用した各種プラントが開発されている。
[Prior art and problems to be solved by the invention] Methods for producing pure water from salt water such as seawater include distillation, coagulation, reverse osmosis using a semipermeable membrane, and ion exchange membrane. There is an electrodialysis method, but the coagulation method has a higher plant cost than the distillation method, and the electrodialysis method costs 5,000 yen.
It is not suitable for salt water containing more than ppm of salt, and especially for seawater containing about 35,000 ppm of salt, distillation and reverse osmosis are the main methods of desalination. In particular, the distillation method has a larger production capacity than the reverse osmosis method, and is popular because it does not require expensive equipment such as high-pressure pumps and reverse osmosis modules, and it makes effective use of the heat of steam. Various plants have been developed that employ multi-stage distillation, flash distillation, vapor compression methods, etc.

海水を簡単な前処理をしただけで上記各種プラントに供
給して蒸留法によって淡水化する場合、ある程度以上塩
水が濃縮されると蒸気中に塩素ガスが混入し、得られる
淡水が用途によっては基準に適合しない場合がある。こ
のためある程度濃縮された塩水は廃棄され、効率良く純
水を得ることができなし、海水全体として利用すること
ができない。
When seawater is supplied to the various plants mentioned above after simple pretreatment and desalinated by distillation, if the saltwater is concentrated beyond a certain point, chlorine gas will be mixed into the steam, and the resulting freshwater may meet the standards for some uses. may not be suitable. For this reason, the salt water that has been concentrated to some extent is discarded, making it impossible to efficiently obtain pure water and making it impossible to utilize seawater as a whole.

また、塩水か濃縮されていく過程で海水表面にスケール
と呼ばれる塩の沈殿物か形成され、熱輸送や生産力に対
して妨害効果を及はすという難点かある。
Another drawback is that salt precipitates called scales form on the seawater surface during the process of concentrating saltwater, which has an interfering effect on heat transport and productivity.

スケールを防止する方法として、海水に硫酸を加えた後
、スケールの原因となるco、”−等を脱ガス装置で除
去する方法、脱ガス後更にアルカリ金属塩を加えカルシ
ウム化合物を沈殿除去する方法が提案されている(特開
昭59−102492号公報)。
Methods for preventing scale include adding sulfuric acid to seawater and then using a degassing device to remove CO, ``-, etc., which cause scale, and adding alkali metal salts after degassing to precipitate and remove calcium compounds. has been proposed (Japanese Unexamined Patent Publication No. 102492/1983).

しかし、これらの方法はいずれもスケール防止を目的と
したものであり、脱ガス装置を必要とし、装置の複雑化
、大型化を招くほか、塩水の濃縮には限界かある。
However, all of these methods are aimed at preventing scale, and require a degassing device, making the device complicated and large, and there are limits to the concentration of salt water.

この発明は極めて簡単な装置でスケールの発生か少なく
、しかも純度の高い純水を海水から製造する方法を提供
することを目的とする。更にこの発明は海水に含まれる
塩と水の両方の有効活用を可能とする海水からの純水製
造方法を提供することを目的とする。
It is an object of the present invention to provide a method for producing highly pure water from seawater using an extremely simple device with less scale generation. A further object of the present invention is to provide a method for producing pure water from seawater that enables effective use of both salt and water contained in seawater.

[問題点を解決するための手段] このような目的を達成するため、本発明者は海水の利用
について鋭意研究した結果、海水から塩を分離する工程
において得られる塩水か蒸留法による純水の製造に用い
た場合極めて良質であることを見出し本発明に至ったも
のである。即ち、本発明の海水からの純水製造方法は、
海水を硫酸イオンを含有する強酸により低pHに調整し
た後、強アルカリ剤を加え高pHにし、その際生成する
沈澱物を除去し、残余の海水か所定量になるまで蒸留し
純水を製造するものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventor has conducted intensive research on the use of seawater, and has found that either saltwater obtained in the process of separating salt from seawater or pure water obtained by distillation. It was discovered that the quality is extremely good when used in manufacturing, leading to the present invention. That is, the method for producing pure water from seawater of the present invention is as follows:
After adjusting seawater to a low pH with a strong acid containing sulfate ions, a strong alkaline agent is added to increase the pH, the precipitate that is generated at this time is removed, and the remaining seawater is distilled to a predetermined amount to produce pure water. It is something to do.

ここで海水を低pHにするために用いられる硫酸イオン
を含有する強酸としては、数%の希硫酸を用いることか
できるか、活性化した燐酸カルシウムを溶解せしめた水
溶液に3〜5%の濃硫酸を加えて沈澱物を除去した水溶
液(以下P−8酸と略す)を用いることかできる。この
P−8酸は、pH0,2程度の強酸性を示すか硫酸のよ
うな劇物とは異なり肌に触れても異常がなく扱いやすい
安全性の高い酸として利用できる。希硫酸あるいはP−
8酸を海水に対し数%加え、2〜3時間放置することに
より海水をpH2以下の低pHに調整することができる
。この時、沈澱物は殆と生しないが若干の沈澱物はもと
の海水中の懸濁物質と共に濾過等の手段により除去する
As the strong acid containing sulfate ions used to lower the pH of seawater, several percent dilute sulfuric acid can be used, or a 3 to 5 percent concentrated acid in an aqueous solution containing activated calcium phosphate can be used. An aqueous solution (hereinafter abbreviated as P-8 acid) obtained by adding sulfuric acid to remove the precipitate can also be used. This P-8 acid exhibits strong acidity with a pH of about 0.2, and unlike deleterious substances such as sulfuric acid, it does not cause any abnormality when it comes in contact with the skin, and can be used as a highly safe acid that is easy to handle. Dilute sulfuric acid or P-
The seawater can be adjusted to a low pH of 2 or less by adding several percent of the 8-acid to seawater and leaving it for 2 to 3 hours. At this time, almost no precipitates are formed, but some precipitates are removed together with the original suspended matter in the seawater by means such as filtration.

強アルカリ剤は、高pI(下で溶解度の低下するカルシ
ウム、マグネシウム等のアルカリ土類金属類、その他金
属の硫酸塩等の塩類を沈澱せしめる。
Strong alkaline agents precipitate alkaline earth metals such as calcium and magnesium, whose solubility decreases at high pI (lower pI), and salts such as sulfates of other metals.

このような強アルカリ剤としては、水酸化ナトリウム、
水酸化カリウム、酸化カルシウム、あるいはそれらの混
合物などが用いられる。強アルカリ剤の量は上記目的を
達成することのできる量以上であればよく、通常水酸化
ナトリウム(固体)の場合海水に対し3%、酸化カルシ
ウムの水溶液に水酸化ナトリウムを加えた水溶液の場合
約5%加え、10時間以上放置する。これによって海水
はpH13以上の塩基性を呈し、沈澱物か生成する。
Such strong alkaline agents include sodium hydroxide,
Potassium hydroxide, calcium oxide, or a mixture thereof is used. The amount of strong alkaline agent is sufficient as long as it is at least the amount that can achieve the above purpose, and usually sodium hydroxide (solid) is 3% based on seawater, and an aqueous solution of calcium oxide plus sodium hydroxide is used. Add about 5% and leave for 10 hours or more. As a result, the seawater becomes basic with a pH of 13 or more, and a precipitate is formed.

この沈澱物は多種の金属元素を含むものでありそれ自体
有用性を有しており、固液分離後、別途用途に供される
。残余の海水は、表1に示すように塩素、カルシウム、
マグネシウム等か原海水に比へ有意に減少しており、p
H13以上の塩水で、蒸留した場合、1割程度まで濃縮
した場合にも塩素の蒸発がなく良質の純水を得ることか
できる。
This precipitate contains various metal elements and is useful in itself, and is used for other purposes after solid-liquid separation. The remaining seawater contains chlorine, calcium,
Magnesium etc. have significantly decreased compared to raw seawater, and p
When distilling salt water with H13 or higher, high-quality pure water can be obtained without evaporation of chlorine even when concentrated to about 10%.

表  1 (単位 mg/U) この残余の海水の蒸留は公知の淡水化プラントにおいて
常法により蒸留してもよいか、本出願人が開示している
海水の塩分離工程(特開昭64−47492号、特願平
1−40092号)の−工程として行なわれるのが好ま
しく、これにより海水資源全体の回収利用を図ることが
できる。蒸留は減圧下で行なってもよい。また、海水は
1〜2割まで濃縮する二とかできる。尚、2割以下まで
濃縮した後の海水は、冷却する二とにより塩か析出する
か、二の塩および残漬物である固体はそれぞれの用途に
利用することかでき、その用途等については既に本出願
人か開示している(特開昭64−47492号、特願平
1−40092号)。
Table 1 (Unit: mg/U) Is it possible to distill this remaining seawater by a conventional method in a known desalination plant? 47492, Japanese Patent Application No. 1-40092), it is preferable to carry out this step, thereby making it possible to recover and utilize the entire seawater resource. Distillation may be performed under reduced pressure. Additionally, seawater can be concentrated by 10 to 20%. In addition, the seawater after concentrating to less than 20% can be cooled to precipitate salts, or the salts and solids left behind can be used for their respective purposes, and their uses have already been described. The present applicant has disclosed this method (Japanese Patent Application Laid-open No. 47492/1982, Japanese Patent Application No. 40092/1999).

[実施例] 1、P−3酸の調製 真水19に動物骨の焼成物からなるリン酸カルシウムを
主成分とする粉末50gを溶解し、pH13以上の水溶
液(1)を得た。水溶液(1)に対し5%の濃硫酸を加
え、pH0,2のP−8酸を製造した。
[Example] 1. Preparation of P-3 acid 50 g of powder mainly composed of calcium phosphate made from calcined animal bones was dissolved in fresh water 19 to obtain an aqueous solution (1) with a pH of 13 or higher. 5% concentrated sulfuric acid was added to the aqueous solution (1) to produce P-8 acid with a pH of 0.2.

2、海水の処理 海水5009に対し、上記のp−s酸1ONを加え、3
時間放置した後、不純物を濾過により除去した。これに
より海水はpH1,6となった。次いで、低pH化した
海水5009にNaOHを3%加え10時間放置した。
2. Treatment of seawater Add the above p-s acid 1ON to seawater 5009,
After standing for a period of time, impurities were removed by filtration. As a result, the pH of the seawater became 1.6. Next, 3% NaOH was added to the seawater 5009 whose pH had been lowered, and the mixture was left for 10 hours.

この時、生成した沈殿物除去後の海水はpH13であっ
た。
At this time, the seawater after removing the generated precipitate had a pH of 13.

残った海水10Uを19になるまで蒸留し8.7Uの水
を得た。この水の水質検査の結果を表2に示す。なお、
海水をそのままで4割になるまで蒸留した場合の結果を
比較例として併せて表2に示す。
The remaining 10 U of seawater was distilled to a concentration of 19 to obtain 8.7 U of water. The results of the water quality test are shown in Table 2. In addition,
Table 2 also shows, as a comparative example, the results obtained when seawater was distilled to 40% of its original volume.

表  2 表2からも明らかなように、本願方法によって得られた
水は、含有塩素イオン量、蒸発残留物ともに水道法に基
つく水質基準値(それぞれ200■、l、500mg/
 D )に比へはるかに低く良質な水であった。特に海
水をそのまま蒸留した場合に比へて蒸発残留物の少ない
純水か得られた。
Table 2 As is clear from Table 2, the water obtained by the method of the present invention has a content of chlorine ions and evaporation residue that meet the water quality standard values based on the Water Supply Law (200 μg/l, 500 mg/l, and 500 mg/l, respectively).
D) The water was of good quality and was much lower than that in D). In particular, pure water with less evaporation residue was obtained compared to when seawater was directly distilled.

このようにして得られる水は、飲料水、洗浄水、ボイラ
ー水等として利用でき、特に骨の高温焼成物である活性
化燐酸カルシウムを溶解させることによりカルシウムイ
オン水(特許第1507714号)として利用すること
かできる。
The water obtained in this way can be used as drinking water, washing water, boiler water, etc. In particular, it can be used as calcium ion water (Patent No. 1507714) by dissolving activated calcium phosphate, which is a product of high-temperature calcined bones. I can do something.

[発明の効果][Effect of the invention]

Claims (1)

【特許請求の範囲】 1、海水を硫酸イオンを含有する強酸により低pHに調
整した後、強アルカリ剤を加え高pHにし、その際生成
する沈澱物を除去し、残余の海水を蒸留して純水を製造
することを特徴とする海水からの純水製造方法。 2、前記強酸として活性化した燐酸カルシウムを溶解せ
しめた水溶液に硫酸を加え、沈澱物を除去して成る強酸
を用いたことを特徴とする第1項記載の海水からの純水
製造方法。
[Claims] 1. After adjusting seawater to a low pH with a strong acid containing sulfate ions, adding a strong alkaline agent to increase the pH, removing the precipitate generated at that time, and distilling the remaining seawater. A method for producing pure water from seawater, characterized by producing pure water. 2. The method for producing pure water from seawater according to item 1, characterized in that the strong acid used is a strong acid obtained by adding sulfuric acid to an aqueous solution in which activated calcium phosphate is dissolved and removing a precipitate.
JP2229000A 1990-08-30 1990-08-30 Production of pure water from seawater Pending JPH04110100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229000A JPH04110100A (en) 1990-08-30 1990-08-30 Production of pure water from seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229000A JPH04110100A (en) 1990-08-30 1990-08-30 Production of pure water from seawater

Publications (1)

Publication Number Publication Date
JPH04110100A true JPH04110100A (en) 1992-04-10

Family

ID=16885191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229000A Pending JPH04110100A (en) 1990-08-30 1990-08-30 Production of pure water from seawater

Country Status (1)

Country Link
JP (1) JPH04110100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486614B2 (en) 2015-08-28 2019-11-26 Pioneer Corporation Speaker system for mobile object

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447492A (en) * 1987-08-12 1989-02-21 Jun Nasu Separation of salt in seawater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447492A (en) * 1987-08-12 1989-02-21 Jun Nasu Separation of salt in seawater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486614B2 (en) 2015-08-28 2019-11-26 Pioneer Corporation Speaker system for mobile object

Similar Documents

Publication Publication Date Title
RU2713360C2 (en) Method of producing lithium hydroxide monohydrate from brines
US7198722B2 (en) Process for pre-treating and desalinating sea water
CN108975586B (en) Method for recovering and treating fluorine-containing and ammonia nitrogen-containing wastewater in tantalum-niobium hydrometallurgy
CN102438957B (en) Method for treatment and purification of seawater to recover high purity sodium chloride for industrial usage
CN110734166B (en) Method for efficient desalination and comprehensive utilization of seawater
JP2009095821A (en) Method of treating salt water
JP2008223115A (en) Method for treating salt water
US20040094480A1 (en) Method of boron removal in presence of magnesium ions
JPH02221107A (en) Separation of salt in seawater
CN104140174A (en) Combined treatment method for ammonia chloride waste water through rare earth extraction separation
CN104071808A (en) Method for preparing industrial salt through separation, evaporation and crystallization of coal chemical strong brine
JP2003507183A (en) Water desalination process using ion-selective membrane
CN109970232A (en) A kind of processing method and processing device of effluent brine
KR20150080194A (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
CN110526439A (en) A kind of reuse method and device of RO strong brine
KR20140145309A (en) The manufacturing process development of Processed deep seawater using NF/RO/ED membrane connection system
CN110272061B (en) Salt production method
KR20150070895A (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
JP2007262443A (en) Sodium chloride electrolisis method
CN112358103A (en) Nanofiltration device, and nanofiltration pre-mode mine water treatment system and process
WO2015107500A1 (en) Method of purifying phosphoric acid
JPH09141260A (en) Method for desalination of seawater
JPH04110100A (en) Production of pure water from seawater
DK146200B (en) PROCEDURES FOR ENERGY-SAVING WASTEWORKING DERIVED FROM THE REGENERATION OF THE ION EXCHANGE AND ADSORPTION RESINTS used in the treatment of sugarcane
JPH0489316A (en) Method for recovering copper sulfate from aqueous copper chloride solution containing hydrochloric acid