JPH04109682A - Organic solar battery - Google Patents

Organic solar battery

Info

Publication number
JPH04109682A
JPH04109682A JP2228765A JP22876590A JPH04109682A JP H04109682 A JPH04109682 A JP H04109682A JP 2228765 A JP2228765 A JP 2228765A JP 22876590 A JP22876590 A JP 22876590A JP H04109682 A JPH04109682 A JP H04109682A
Authority
JP
Japan
Prior art keywords
layer
organic solar
solar cell
layer consisting
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2228765A
Other languages
Japanese (ja)
Other versions
JPH0831615B2 (en
Inventor
Norishige Shichiri
徳重 七里
Takeshi Inoue
健 井上
Minoru Suezaki
穣 末崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2228765A priority Critical patent/JPH0831615B2/en
Publication of JPH04109682A publication Critical patent/JPH04109682A/en
Publication of JPH0831615B2 publication Critical patent/JPH0831615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To realize high energy conversion efficiency and stabilize performance by providing, between a transparent electrode and an opposed electrode, a first layer consisting of perylene pigment, a second layer consisting of phthalocyanine pigment and a third layer consisting of quinacridone pigment from the transparent electrode side. CONSTITUTION:A multilayered film in which a first layer is formed of perylene pigment, a second layer consisting of phthalocyanine pigment and a third layer consisting of quinacridone pigment are build up on the first layer is provided between electrodes. Thereby, a uniform film having no pinhole can be formed, electrodes are not short-cirucitted and total performance can be stabilized. Since the second layer consisting of phthalocyanine pigment is provided to generate a high electromotive force, high energy conversion efficiency can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機太陽電池に関し、詳しくは透明電極と対向
電極との間に有機化合物を主体とする層が設けられてい
る有機太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an organic solar cell, and more particularly to an organic solar cell in which a layer mainly composed of an organic compound is provided between a transparent electrode and a counter electrode.

(従来の技術) 太陽電池材料として有機化合物を使用した有機太陽電池
は、無機半導体を使用した太陽電池に比べ、コスト、大
面積化、製造工程の容易さ等の点で優れており、従来よ
り、有機化合物が太陽電池材料として使用された種々の
構成の有機太陽電池が提案されている。
(Conventional technology) Organic solar cells that use organic compounds as solar cell materials are superior to solar cells that use inorganic semiconductors in terms of cost, large area, and ease of manufacturing process, and are more cost effective than conventional solar cells. Organic solar cells of various configurations using organic compounds as solar cell materials have been proposed.

例えば、フタロシアニン銅とペリレン系色素の積層膜を
使用した有機太陽電池が提案されており、この有機太陽
電池のエネルギー変換効率は1%程度であると報告され
ている(C,W、Tang、Applied Phys
ics Letters、Vol、48.p、183)
 +1 しかし、上記太陽電池においては、その高いエ
ネルギー変換効率を得るためには、半導体層である色素
層の膜厚を薄<シなければならない。そのため膜にピン
ホールが生じ易く、電極が短絡する欠点があった。
For example, an organic solar cell using a laminated film of copper phthalocyanine and perylene dye has been proposed, and the energy conversion efficiency of this organic solar cell is reported to be about 1% (C, W, Tang, Applied Phys.
ics Letters, Vol. 48. p. 183)
+1 However, in the solar cell described above, in order to obtain high energy conversion efficiency, the thickness of the dye layer, which is a semiconductor layer, must be thin. As a result, pinholes are likely to form in the film, resulting in short circuits between the electrodes.

一方、キナクリドン系色素を用いた太陽電池としてショ
ットキー型のものが、CHEMISTRY  LETT
ER5(1984)P、1305、高分子学会予稿集第
34巻(1985)2001頁、特開昭61−5978
4号公報に記載されている。これらの太陽電池において
は、色素層上にインジウム、アルミニウム等の仕事関数
の小さい金属を積層することによってショットキー接合
を形成する手法がとられており、これらの金属膜は蒸着
やスパッタリング等の方法により形成されるが、空気中
の酸素により接合界面に酸化膜を形成しやすく、接合が
劣化して性能が低下するという欠点があった。また、イ
ンジウム、アルミニウム等の金属電極側から光を入射さ
せなければならないため、金属の光透過性の低さがエネ
ルギー変換効率の低下を招くという欠点があった。
On the other hand, a Schottky type solar cell using a quinacridone dye is called CHEMISTRY LETT.
ER5 (1984) P, 1305, Proceedings of the Society of Polymer Science, Vol. 34 (1985), p. 2001, JP-A-61-5978
It is described in Publication No. 4. In these solar cells, a method is used to form a Schottky junction by laminating a metal with a low work function such as indium or aluminum on the dye layer, and these metal films are formed using methods such as vapor deposition or sputtering. However, it has the drawback that oxygen in the air tends to form an oxide film on the bonding interface, deteriorating the bond and reducing performance. Furthermore, since light must be incident from the side of a metal electrode such as indium or aluminum, there is a drawback that the low light transmittance of the metal leads to a decrease in energy conversion efficiency.

(発明が解決しようとする課題) 本発明は、上記欠点を解決するためになされたものであ
り、その目的は、エネルギー変換効率が高く、しかも電
極の短絡等の少ない、性能の安定した有機太陽電池を提
供することにある。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned drawbacks, and its purpose is to provide an organic solar cell with high energy conversion efficiency and stable performance with few electrode short circuits. The goal is to provide batteries.

(課題を解決するための手段) 本発明で使用される透明電極は、可視光が透過可能な公
知の電極材料を用いて形成され、通常は透明基板の表面
に真空蒸着、スパフタリング、イオンブレーティング等
によって設けられる。
(Means for Solving the Problem) The transparent electrode used in the present invention is formed using a known electrode material that can transmit visible light, and is usually formed by vacuum evaporation, sputtering, ionization, etc. on the surface of a transparent substrate. Provided by brating or the like.

上記電極材料は、有機太陽電池の特性に与える影響が小
さい材料であれば特に限定されるものでなく、例えば、
スズがドープされた酸化インジウム(以下、ITOとい
う)、酸化スズ、酸化インジウム等の半導体および金属
があげられる。特に効率よく光を入射させるためには、
可視光吸収の少ないITOが好適に使用される。
The above electrode material is not particularly limited as long as it has a small effect on the characteristics of the organic solar cell, for example,
Examples include semiconductors and metals such as tin-doped indium oxide (hereinafter referred to as ITO), tin oxide, and indium oxide. In order to inject light particularly efficiently,
ITO, which has low absorption of visible light, is preferably used.

上記透明基板としては、例えば、ガラスおよびアクリル
系、ビニル系、ポリオレフィン系、ポリエステル系、ポ
リアミド系、ポリカーボネート系等の高分子があげられ
る。
Examples of the transparent substrate include glass and polymers such as acrylic, vinyl, polyolefin, polyester, polyamide, and polycarbonate.

本発明で使用される対向電極は、公知の電極材料を用い
て、真空蒸着、スパフタリング、イオンブレーティング
等により形成される。
The counter electrode used in the present invention is formed by vacuum evaporation, sputtering, ion blating, etc. using a known electrode material.

上記電極材料としては、例えば、金、銀、白金等の仕事
関数の大きな金属があげられる。
Examples of the electrode material include metals with a large work function such as gold, silver, and platinum.

本発明の第1層で使用されるペリレン系色素としては、
例えば、ペリレンテトラカルボン酸ビスベンゾイミダヅ
ール、N、N’ −ジメチルペリレンテトラカルボン酸
ジイミド、N、N’ −ジフェニルペリレンテトラカル
ボン酸ジイミド等があげられ、これらは、単独もしくは
2種以上併用される。
The perylene dye used in the first layer of the present invention includes:
Examples include bisbenzimidazur perylenetetracarboxylate, N,N'-dimethylperylenetetracarboxylic acid diimide, N,N'-diphenylperylenetetracarboxylic acid diimide, etc. These may be used alone or in combination of two or more. be done.

第1層の形成方法としては、例えば、真空容器内でペリ
レン系色素を抵抗加熱により昇華させて形成する真空蒸
着法があげられる。
An example of a method for forming the first layer is a vacuum evaporation method in which perylene dye is sublimated by resistance heating in a vacuum container.

上記第1層の膜厚は特に限定されるものではないが、薄
くなるとピンホールが発生しやすくなり、厚くなると光
透過率の低下および膜の電気抵抗の増加のためにエネル
ギー変換効率が低下するので、500〜3000人が好
ましい。
The film thickness of the first layer is not particularly limited, but as it becomes thinner, pinholes are more likely to occur, and as it becomes thicker, energy conversion efficiency decreases due to a decrease in light transmittance and an increase in the electrical resistance of the film. Therefore, 500 to 3000 people is preferable.

本発明の第21で使用されるフタロシアニン系色素とし
ては、例えば、無金属フタロシアニン、金属フタロシア
ニンおよびそれらの誘導体等があげられる。
Examples of the phthalocyanine dye used in the twenty-first aspect of the present invention include metal-free phthalocyanine, metal phthalocyanine, and derivatives thereof.

上記金属フタロシアニンとしては、例えば、中心原子が
、銅、マグネシウム、亜鉛、アルミニウム、スズ、クロ
ム、マンガン、鉄、コバルト、ロジウム、パラジウム、
白金等の金属、3価以上の原子価を有する金属のハロゲ
ン化物などで形成されている金属フタロシアニン化合物
があげられる。
Examples of the metal phthalocyanine include copper, magnesium, zinc, aluminum, tin, chromium, manganese, iron, cobalt, rhodium, palladium,
Examples include metal phthalocyanine compounds formed from metals such as platinum, halides of metals having a valence of 3 or more.

上記誘導体としては、例えば、フタロシアニン分子中の
水素原子が、スルホン基、ニトロ基、シアノ基、カルボ
キシル基、ハロゲン原子等で置換された誘導体があげら
れる。
Examples of the above derivatives include derivatives in which a hydrogen atom in a phthalocyanine molecule is substituted with a sulfone group, a nitro group, a cyano group, a carboxyl group, a halogen atom, or the like.

第2層の形成方法としては、例えば、上記第1眉と同様
、真空蒸着法があげられる。
As a method for forming the second layer, for example, as in the case of the first eyebrow, a vacuum evaporation method can be mentioned.

上記第2rIは、ごく薄い膜であっても十分な起電力を
生じさせることができ、膜中にピンホールを有していた
り、膜が不連続な状態になっていても同様の効果を発揮
する。その膜厚は特に限定されるものではないが、薄く
なると十分な起電力を生しさせることができなくなり、
厚くなると光の吸収が大きくなるためにエネルギー変換
効率が低下するので、20〜100人が好ましい。
The second rI can generate a sufficient electromotive force even in a very thin film, and the same effect can be achieved even if the film has pinholes or is discontinuous. do. The thickness of the film is not particularly limited, but if it becomes thin, it will not be able to generate sufficient electromotive force.
The number of people is preferably 20 to 100, since the thicker the layer, the greater the absorption of light and the lower the energy conversion efficiency.

本発明の第3層で使用されるキナクリドン系色素として
は、例えば、無置換キナクリドン、2゜9−ジメチルキ
ナクリドン、2.9−ジクロロキナクリドン、3.IO
−ジメチルキナクリドン、3、lO−ジクロロキナクリ
ドン、4,11−ジメチルキナクリドン等があげられ、
これらは、単独もしくは2種以上併用される。
Examples of the quinacridone dye used in the third layer of the present invention include unsubstituted quinacridone, 2.9-dimethylquinacridone, 2.9-dichloroquinacridone, 3. IO
-dimethylquinacridone, 3,1O-dichloroquinacridone, 4,11-dimethylquinacridone, etc.
These may be used alone or in combination of two or more.

第3層の形成方法としては、例えば、上記第−層と同様
、真空蒸着法があげられる。
As a method for forming the third layer, for example, a vacuum evaporation method may be used as in the case of the above-described third layer.

上記第3層の膜厚は特に限定されるものではないが、薄
くなるとピンホールが発生しやすくなり、厚くなると膜
の電気抵抗が高くなるために工フルギー変換効率が低下
するので、500〜3000人が好ましい。
The thickness of the third layer is not particularly limited, but as it becomes thinner, pinholes are more likely to occur, and as it becomes thicker, the electrical resistance of the film increases and the energy conversion efficiency decreases. People are preferred.

(実施例) 以下、本発明を実施例により説明する。(Example) Hereinafter, the present invention will be explained by examples.

支胤胴ユ ITOを蒸着した透明導電ガラス基板を真空蒸着装置の
真空容器内に設置して1×1〇−奮orrに減圧し、N
、N’ −ジメチルペリレンテトラカルボン酸ジイミド
を抵抗加熱して、ITO膜上に、1500人の厚さで蒸
着した。
The transparent conductive glass substrate on which ITO was deposited was placed in a vacuum container of a vacuum evaporation device, and the pressure was reduced to 1 × 10-horr.
, N'-dimethylperylenetetracarboxylic acid diimide was resistively heated and deposited to a thickness of 1500 nm on the ITO film.

次いで、この膜の上に、N、N’−ジメチルペリレンテ
トラカルボン酸ジイミドと同様にして、無金属フタロシ
アニン及び2,9−ジメチルキナクリドンを順次、30
人、1500人の厚さに真空1着した。
Next, on this film, metal-free phthalocyanine and 2,9-dimethylquinacridone were sequentially added for 30 minutes in the same manner as N,N'-dimethylperylenetetracarboxylic acid diimide.
A vacuum jacket with a thickness of 1,500 people was worn.

最後に、上記キナクリドン膜上に、lXl0−’Tor
rの減圧下で金を真空蒸着し、lX5noの太きさで3
00人の厚さの対向電極を形成して有機太陽電池を得た
Finally, lXl0-'Tor
Gold was vacuum deposited under a reduced pressure of r, and the thickness of 3
An organic solar cell was obtained by forming a counter electrode with a thickness of 0.00 mm.

得られた有機太陽電池の光電変換特性は、IT○透明電
極側からのAM2光(75mW/c+11 )の照射下
で、エネルギー変換効率0.15%、開放端電圧0.3
8V、電流密度0 、 56 mA/c+1、フィルフ
ァクター0.51であった。
The photoelectric conversion characteristics of the obtained organic solar cell were as follows: under irradiation with AM2 light (75 mW/c+11) from the IT○ transparent electrode side, the energy conversion efficiency was 0.15%, and the open circuit voltage was 0.3.
The voltage was 8V, the current density was 0, 56 mA/c+1, and the fill factor was 0.51.

実l目汁又 実施例1において、無金属フタロシアニンのかわりにク
ロロ(フタロシアニン)アルミニウムを用いた以外は、
実施例1と同様にして、有機太陽電池を得た。
In addition, in Example 1, except that chloro(phthalocyanine) aluminum was used instead of metal-free phthalocyanine,
An organic solar cell was obtained in the same manner as in Example 1.

得られた有機太陽電池の光電変換特性は、ITO透明電
極側からのAM2光(75mW/ c4 )の照射下で
、エネルギー変換効率0.18%、開放端電圧0.40
V、電流密度0 、 91 mA/cffl、フィルフ
ァクター0.37であった。
The photoelectric conversion characteristics of the obtained organic solar cell were as follows: under irradiation with AM2 light (75 mW/c4) from the ITO transparent electrode side, the energy conversion efficiency was 0.18%, and the open circuit voltage was 0.40.
V, current density was 0, 91 mA/cffl, and fill factor was 0.37.

支施■ユ 実施例1において、2.9−ジメチルキナクリドンのか
わりに無置換キナクリドンを用いた以外は、実施例1と
同様にして、有機太陽電池を得た。
An organic solar cell was obtained in the same manner as in Example 1, except that unsubstituted quinacridone was used instead of 2,9-dimethylquinacridone.

得られた有機太陽電池の光電変換特性は、ITO透明透
明側極側のAM2光(75mW/cJ)の照射下で、エ
ネルギー変換効率0.19%、開放端電圧0.42V、
電流密度0.80a+A/cm、フィルファクター0.
40であった。
The photoelectric conversion characteristics of the obtained organic solar cell were as follows: under the irradiation of AM2 light (75 mW/cJ) on the ITO transparent side electrode side, the energy conversion efficiency was 0.19%, the open circuit voltage was 0.42 V,
Current density 0.80a+A/cm, fill factor 0.
It was 40.

を校撚ユ 実施例1において、無金属フタロシアニン層を取り去っ
た以外は、実施例1と同様にして、有機太陽電池を得た
An organic solar cell was obtained in the same manner as in Example 1 except that the metal-free phthalocyanine layer was removed.

得られた有機太陽電池の光電変換特性は、ITOi!!
明電極側からのAM2光(75mlj/d)の照射下で
、エネルギー変換効率0.06%、開放端電圧0.35
V、電流密度0 、 21 mA/cd、フィルファク
ター0.56であった。
The photoelectric conversion characteristics of the obtained organic solar cell were ITOi! !
Under irradiation with AM2 light (75 mlj/d) from the bright electrode side, energy conversion efficiency was 0.06% and open circuit voltage was 0.35.
V, current density was 0, 21 mA/cd, and fill factor was 0.56.

比較±1 実施例3において、無金属フタロシアニン層を取り去っ
た以外は、実施例1と同様にして、有機太陽電池を得た
Comparison ±1 In Example 3, an organic solar cell was obtained in the same manner as in Example 1, except that the metal-free phthalocyanine layer was removed.

得られた有機太陽電池の光電変換特性は、IT0透明電
極側からのAM2光(75a+W/cm)の照射下で、
エネルギー変換効率0.08%、開放端電圧0,48V
、を流密度0 、 30 mA/c(、フィルファクタ
ー0.41であった。
The photoelectric conversion characteristics of the obtained organic solar cell were determined under the irradiation of AM2 light (75a+W/cm) from the IT0 transparent electrode side.
Energy conversion efficiency 0.08%, open end voltage 0.48V
, the flow density was 0, 30 mA/c (and the fill factor was 0.41).

(発明の効果) 本発明の有機太陽電池においては、第1層はペリレン系
色素にて形成され、その第1JIO上にフタロシアニン
系色素からなる第2層およびキナクリドン系色素からな
る第3層が順次積層されたものが電極間に設けられてい
るので、従来のように色素のみを電極間に設けた有機太
陽電池に比べて、ピンホールの少ない均一な膜を形成す
ることができ、電極間の短絡がない性能の安定した有機
太陽電池が作製可能となる。しかも、第1層のペリレン
系色素層と第3Nのキナクリドン系色素層との間に、高
い起電力を発生させることのできるフタロシアニン系色
素からなる第2層を設けることにより、従来の2層構造
の太陽電池に比べて、より高いエネルギー変換効率を得
ることができる。
(Effects of the Invention) In the organic solar cell of the present invention, the first layer is formed of a perylene dye, and the second layer made of a phthalocyanine dye and the third layer made of a quinacridone dye are sequentially formed on the first JIO. Since the laminated material is provided between the electrodes, it is possible to form a uniform film with fewer pinholes compared to conventional organic solar cells in which only dye is provided between the electrodes. It becomes possible to produce organic solar cells with stable performance and no short circuits. Furthermore, by providing a second layer made of a phthalocyanine dye that can generate a high electromotive force between the first perylene dye layer and the 3N quinacridone dye layer, the conventional two-layer structure is improved. Compared to solar cells, higher energy conversion efficiency can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、透明電極と対向電極間の透明電極側から順次ペリレ
ン系色素からなる第1層、フタロシアニン系色素からな
る第2層およびキナクリドン系色素からなる第3層が設
けられていることを特徴とする有機太陽電池
1. A first layer made of a perylene dye, a second layer made of a phthalocyanine dye, and a third layer made of a quinacridone dye are sequentially provided from the transparent electrode side between the transparent electrode and the counter electrode. organic solar cells
JP2228765A 1990-08-29 1990-08-29 Organic solar cells Expired - Fee Related JPH0831615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228765A JPH0831615B2 (en) 1990-08-29 1990-08-29 Organic solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228765A JPH0831615B2 (en) 1990-08-29 1990-08-29 Organic solar cells

Publications (2)

Publication Number Publication Date
JPH04109682A true JPH04109682A (en) 1992-04-10
JPH0831615B2 JPH0831615B2 (en) 1996-03-27

Family

ID=16881488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228765A Expired - Fee Related JPH0831615B2 (en) 1990-08-29 1990-08-29 Organic solar cells

Country Status (1)

Country Link
JP (1) JPH0831615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515339A (en) * 2005-11-02 2009-04-09 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic cells using sensitized ultrathin layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515339A (en) * 2005-11-02 2009-04-09 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic cells using sensitized ultrathin layers
JP2013153208A (en) * 2005-11-02 2013-08-08 Trustees Of Princeton Univ Organic photovoltaic cells utilizing ultrathin sensitizing layer

Also Published As

Publication number Publication date
JPH0831615B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US5380371A (en) Photoelectric conversion element and fabrication method thereof
JPH04192376A (en) Tandem organic solar battery
TW201042776A (en) Photoelectrochromics device and method of manufacturing the same
JPH05335614A (en) Photoelectric conversion element
TW201030995A (en) Photosensitive electrochromic device
JP4848666B2 (en) Oxide semiconductor electrode transfer material, dye-sensitized solar cell substrate, dye-sensitized solar cell, and methods for producing the same
JP4951853B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP2012043835A (en) Transparent conductive film, manufacturing method of the same, organic electronic device and organic thin-film solar cell
JP3199430B2 (en) Semiconductor element
JPH04109682A (en) Organic solar battery
JP2003123858A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JPS5928388A (en) Photoelectric conversion element
JP2947588B2 (en) Organic solar cells
JPH05121770A (en) Organic photovoltaic element
JPH04192374A (en) Tandem organic solar battery
JPH0774377A (en) Photoelectric transducer
JP2002075479A (en) Pigment sensitized solar cell
JPH04216681A (en) Manufacture of organic solar cell
JPH0766436A (en) Organic photovoltaic element
JP2872803B2 (en) Tandem organic solar cells
JP2947593B2 (en) Stacked organic solar cells
JPH04337674A (en) Organic solar cell
JPH0629556A (en) Tunnel diode
JPH03241778A (en) Organic solar cell
JPS61139077A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees