JPH04109180A - Nondestructive test method for power cable - Google Patents

Nondestructive test method for power cable

Info

Publication number
JPH04109180A
JPH04109180A JP22758690A JP22758690A JPH04109180A JP H04109180 A JPH04109180 A JP H04109180A JP 22758690 A JP22758690 A JP 22758690A JP 22758690 A JP22758690 A JP 22758690A JP H04109180 A JPH04109180 A JP H04109180A
Authority
JP
Japan
Prior art keywords
partial discharge
cable
heating
high voltage
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22758690A
Other languages
Japanese (ja)
Inventor
Hideo Tanaka
秀郎 田中
Yasuhiro Yamashita
山下 泰浩
Yoshio Maruyama
義雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22758690A priority Critical patent/JPH04109180A/en
Publication of JPH04109180A publication Critical patent/JPH04109180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To measure a partial discharge while suppressing the infiltration of noises by connecting partial discharge detecting resistors at both-side shield layer portions of a cut slit section provided on a sample cable, heating the cable, and applying AC high voltage. CONSTITUTION:A sample cable A is inserted into an excitation heating AC unit 12, a conductor is excited and heated, and a partial discharge is measured while the AC high voltage of the secondary output of a test transformer 2 is applied to the cable A. When a partial discharge occurs on the cable A, the partial discharge is correctly detected and measured 10 with good sensitivity without being affected by noises by partial discharge detecting resistors 9a, 9b on both sides of a capacitor formed by a cut slit section 8. A partial discharge logical judgment device 11 judges the magnitude of the partial discharge based on the output signal and turns off GTO thyristors 5a, 5b of a primary side power source cutoff section 5 before an electrical tree is progressed and the breakdown of a defect section occurs, the applied voltage is cut off at a high speed, and the defect section can be disassembled, investigated and analyzed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電力ケーブルを非破壊にて試験する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for non-destructively testing power cables.

[従来の技術〕 プラスチック絶縁電力ケーブルの非破壊試験方法として
は従来常温における試験が一般的であるが、常温におけ
る試験では高温の場合よりも破壊電圧(部分放電開始電
圧)が高くなる傾向にあり、破壊電圧が高いと高圧部分
からの気中放電の発生によって部分放電測定を効率よく
行なうことができなくなり、あるいは端末部分の破壊に
より試験そのものを成功させることができなかった。
[Conventional technology] Conventionally, testing at room temperature has been a common method for non-destructive testing of plastic insulated power cables, but when testing at room temperature, the breakdown voltage (partial discharge inception voltage) tends to be higher than when testing at high temperature. If the breakdown voltage was high, partial discharge measurements could not be carried out efficiently due to the occurrence of atmospheric discharge from the high voltage section, or the test itself could not be completed successfully due to destruction of the terminal section.

そこでケーブルを90℃程度の高温に加熱することによ
って絶縁破壊値を下げて実験することが考えられるが、
この場合の加熱方法としては、ヒーター等外部加熱によ
る方法、高圧側にリードを設けて導体通電を行ないジュ
ール熱により加熱を行なう方法等がある。
Therefore, it is possible to experiment by heating the cable to a high temperature of about 90 degrees Celsius to lower the dielectric breakdown value.
In this case, heating methods include a method using external heating such as a heater, a method of providing a lead on the high voltage side and energizing a conductor, and heating with Joule heat.

前記の外部からヒーターでケーブルを加熱して部分放電
測定を行なう方法は第2図示のように、結合コンデンサ
21、部分放電検出抵抗22を接続した試験用変圧器2
0にケーブル23の導体を接続し、ケーブルの遮蔽層に
部分放電検出抵抗23を接続し、加熱制御電源24に接
続したヒーター巻線25をケーブルの外周に巻回し、辷
−ター巻線25に通電しケーブルを高温に加熱して部分
放電を測定する。
The method of measuring partial discharge by heating the cable from the outside with a heater is as shown in the second diagram.
0, the partial discharge detection resistor 23 is connected to the shielding layer of the cable, the heater winding 25 connected to the heating control power source 24 is wound around the outer circumference of the cable, and the Electricity is applied to heat the cable to a high temperature and partial discharge is measured.

また前記の導体通電によりケーブルを加熱して部分放電
測定をする方法は第3図示のように、結合コンデンサ2
1、部分放電検出抵抗22を接続した試験用変圧器20
にケーブル23の導体を接続し、ケーブルの遮蔽層に部
分放電検出抵抗23を接続し、ケーブル両端の各導体端
に通電用バー26を接続し、通電制御電源27に接続し
た通電用変流器28によりケーブル導体を通電加熱して
部分放電を測定する。
The method of measuring partial discharge by heating the cable by energizing the conductor is as shown in Figure 3.
1. Test transformer 20 connected to partial discharge detection resistor 22
, a partial discharge detection resistor 23 is connected to the shielding layer of the cable, a current-carrying bar 26 is connected to each conductor end at both ends of the cable, and a current-carrying current transformer is connected to a current-carrying control power source 27 . 28, the cable conductor is energized and heated to measure partial discharge.

[発明が解決しようとする課fJ!] 非破壊試験において部分放電測定を行なうには外部雑音
の侵入は極力防止しなければならないが、外部加熱によ
る方法ではケーブル外周に巻付けたヒーター線が外部ノ
イズ電波を受けるアンテナとして作用してノイズの侵入
を許すことになり、また導体通電による方法では試験用
変圧器20の高圧出力側の回路の通電リードと外部結合
コンデンサからなる閉ループにノイズが侵入しやすくな
るため、前記のようにケーブルを加熱して部分放電を測
定しながら高電圧の印加を行なう場合、ノイズ侵入が部
分放電測定に悪影響を及ぼすという問題点がある。
[The problem that the invention aims to solve fJ! ] To perform partial discharge measurements in non-destructive tests, it is necessary to prevent external noise from entering as much as possible, but in methods that use external heating, the heater wire wrapped around the cable acts as an antenna to receive external noise radio waves, causing noise. Also, with the method of energizing the conductor, it is easy for noise to enter the closed loop consisting of the energizing lead of the circuit on the high voltage output side of the test transformer 20 and the external coupling capacitor. When applying a high voltage while heating and measuring partial discharge, there is a problem that noise intrusion has a negative effect on the partial discharge measurement.

そこで本発明は、ケーブルを高温状態にしながら、しか
もノイズの侵入を極力抑えた部分放電測定を可能にした
非破壊試験方法を提供することを目自勺とするものであ
る。
Therefore, the present invention aims to provide a non-destructive testing method that makes it possible to measure partial discharge while keeping the cable in a high-temperature state while minimizing the intrusion of noise.

[課題を解決するための手段] 前記の目的を達成するために本発明の電力ケーブルの非
破壊試験方法は、プラスチック絶縁型カケープルの試料
ケーブルAの遮蔽層A2、A3を切離してコンデンサを
形成するスリット部8を設け、前記切離しスリット部の
両側の遮蔽層部分に部分放電検出用インピーダンス9a
、9bを接続し、前記ケーブルを導体通電により加熱し
て交流高電圧を印加しながら部分放電を測定し、部分放
電検出信号により前記ケーブルの印加交流高電圧電源を
遮断するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, a non-destructive testing method for power cables according to the present invention involves cutting off the shielding layers A2 and A3 of the sample cable A, which is a plastic insulated capeple, to form a capacitor. A slit portion 8 is provided, and an impedance 9a for partial discharge detection is provided in the shielding layer portion on both sides of the separation slit portion.
. .

[作用コ ケーブル遮蔽層に切離しスリット部を設はコンデンサを
形成したことにより、部分放電の測定に外部の結合コン
デンサを用いる必要がなく、このため試験用変圧器の高
圧出力側にはノイズの侵入を許すような通電リードと外
部結合コンデンサからなる閉ループが形成されない。
[By creating a capacitor with a cut-off slit in the cable shielding layer, there is no need to use an external coupling capacitor to measure partial discharge, and this prevents noise from entering the high-voltage output side of the test transformer.] A closed loop consisting of the current-carrying lead and external coupling capacitor is not formed to allow for

ケーブルの加熱方法として導体通電してジュール熱によ
り加熱することにより、外部ノイズ電波を拾うアンテナ
として作用するようなケーブル外周の巻付はヒーター線
がなくなる。
By heating the cable by energizing the conductor and heating it with Joule heat, there is no longer a heater wire wrapped around the cable that acts as an antenna to pick up external noise radio waves.

したがってノイズ侵入の影響がなく部分放電を測定でき
、部分放電の発生を良好な感度で検出できる。
Therefore, partial discharge can be measured without the influence of noise intrusion, and the occurrence of partial discharge can be detected with good sensitivity.

試料ケーブルを導体通電した状態で交流高電圧を印加し
ながら部分放電の測定を行ない、ケーブルの欠陥部に部
分放電が生ずると、切離しスリット部により形成される
コンデンサの両側の部分放電検出インピーダンスにより
検出され、その部分放電検出信号により、ケーブル欠陥
部の破壊が生ずる前に直ちに印加交流高電圧を高速遮断
する。
Partial discharge is measured while applying AC high voltage with the conductor of the sample cable energized. If partial discharge occurs in the defective part of the cable, it is detected by the partial discharge detection impedance on both sides of the capacitor formed by the cut-off slit part. Based on the partial discharge detection signal, the applied AC high voltage is immediately cut off at high speed before the defective part of the cable is destroyed.

これにより欠陥部が破壊しない状態で解体調査、分析等
を行なうことが可能となる。
This makes it possible to conduct disassembly and analysis without destroying the defective part.

[実施例コ 以下本発明の実施例を第1図により説明する。[Example code] Embodiments of the present invention will be described below with reference to FIG.

図において1は商用周波電源、2は試験用変圧器、3は
その1次巻線、4は2次巻線である0点線内の回路5は
1次巻線3に直列に接続された1次側電源遮断部であり
、5a、5bはGTOサイリスタである。
In the figure, 1 is a commercial frequency power supply, 2 is a test transformer, 3 is its primary winding, and 4 is its secondary winding. This is a next-side power cutoff section, and 5a and 5b are GTO thyristors.

Aはプラスチック絶縁型カケープルの試料ケーブルであ
り、A1はその導体、A2、A3はその遮蔽層で、6.
6は試料ケーブルAの試験用端末である。
A is a sample cable of plastic insulated cable, A1 is its conductor, A2 and A3 are its shielding layers, 6.
6 is a test terminal of sample cable A.

この試験用端末6.6は高圧側通電リード7を接続する
とともに、試験用変圧器2の2次巻線4に接続する。
This test terminal 6.6 is connected to the high voltage side energizing lead 7 and is also connected to the secondary winding 4 of the test transformer 2.

前記の遮蔽層は適宜の箇所で切断し遮蔽層A2部分と遮
蔽層A3部分に切離してこの切離し部分に切離しスリ・
yト部8を設ける。この切離しスリット部8は遮蔽層部
分A2と遮蔽層部分A3の各端縁がスリットを挾んで対
向するコンデンサを形成する。
The above-mentioned shielding layer is cut at an appropriate location, separated into a shielding layer A2 portion and a shielding layer A3 portion, and then separated into these separated portions.
A y-to-portion 8 is provided. This separation slit portion 8 forms a capacitor in which the edges of the shielding layer portion A2 and the shielding layer portion A3 face each other with the slit interposed therebetween.

前記の切離しスリット部8の両側の遮蔽層部分^2と遮
蔽層部分^3には部分放電検出インピーダンスとして部
分放電検出抵抗9a、9bを接続し、画部分放電検出抵
抗9a、9bを部分放電測定器10に接続する。
Partial discharge detection resistors 9a and 9b are connected as partial discharge detection impedance to the shield layer portions ^2 and shield layer portions ^3 on both sides of the separation slit portion 8, and the partial discharge detection resistors 9a and 9b are used for partial discharge measurement. Connect to the device 10.

前記の部分放電測定器10の出力側には部分放電論理判
断装置11を!続し、この部分放電論理判断装置11の
出力端子は1次r#J′@源遮断部5のGTOサイリス
タ5a、5bに接続する。
A partial discharge logic determining device 11 is installed on the output side of the partial discharge measuring device 10! Subsequently, the output terminal of this partial discharge logic determining device 11 is connected to the GTO thyristors 5a and 5b of the primary r#J'@ source cutoff section 5.

12は通電加熱用変流器、13はその通電電流制御装置
である。
12 is a current transformer for energization heating, and 13 is its energization current control device.

前記の試料ケーブルAを通電加熱用変流器12に挿通し
導体に通電してジュール熱により加熱し、試験用変圧器
2の2次側出力の交流高電圧を試料ケーブルAに印加し
ながら発生する部分放電を測定する。
The above sample cable A is inserted into the current transformer 12 for energization and heating, and the conductor is heated by Joule heat, which is generated while applying the AC high voltage of the secondary output of the test transformer 2 to the sample cable A. Measure partial discharge.

この試料ケーブルの加熱は従来のように外部ノイズ電波
を拾うアンテナとして作用するケーブル外周の巻付はヒ
ーター線がなく、また試験用変圧器2の高圧出力側には
従来のようにノイズの侵入を許す通電リードと外部結合
コンデンサからなる閉ループが形成されないから、交流
電圧を印加してもノイズ侵入の影響が少なく部分放電の
測定を効率よく行なうことができるので、部分放電の発
生を良好な感度で検出することができる。
The heating of this sample cable differs from the conventional method in that there is no heating wire wrapped around the outer periphery of the cable, which acts as an antenna to pick up external noise radio waves, and the high voltage output side of the test transformer 2 does not allow noise to enter, as in the conventional case. Since a closed loop consisting of the current-carrying lead and the external coupling capacitor is not formed, partial discharges can be measured efficiently with less noise intrusion even when AC voltage is applied, so partial discharges can be detected with good sensitivity. can be detected.

前記のように試料ケーブルAを加熱しながら部分放電の
発生を調べ、試料ケーブルAに部分放電が生ずると、切
離しスリット部8により形成されるコンデンサの両側の
部分放電検出抵抗9a、9bによりノイズの影響を受け
ることなく正確に検出されて部分放電測定器10で測定
され、その出力信号を受けた部分放電論理判断装置11
は部分放電の大きさを判断し電気トリーが大きく進展し
て欠陥部の破壊が生ずる以前に電源遮断信号を出力し1
次側電源遮断部5のGTOサイリスタ5a、5bをター
ンオフさせる。これにより試料ケーブルAの欠陥部に部
分放電が発生するとその欠陥部の破壊前に直ちに印加電
圧の高速遮断が行なわれるので欠陥部の解体調査、分析
等を行なうことが可能となる。
As mentioned above, the occurrence of partial discharge is investigated while heating the sample cable A. If a partial discharge occurs in the sample cable A, the noise is suppressed by the partial discharge detection resistors 9a and 9b on both sides of the capacitor formed by the separation slit part 8. A partial discharge logic determining device 11 that is accurately detected without being influenced and measured by a partial discharge measuring device 10 and receives its output signal.
determines the size of the partial discharge and outputs a power cutoff signal before the electrical tree develops significantly and causes damage to the defective part.
The GTO thyristors 5a and 5b of the next power cutoff section 5 are turned off. As a result, when a partial discharge occurs in a defective part of the sample cable A, the applied voltage is immediately cut off at high speed before the defective part is destroyed, making it possible to disassemble, investigate, and analyze the defective part.

実験によれば、前記のようにして試料ケーブルAとして
絶ii1厚さ31iの1x1501n”のCVケーブル
を用い、これに導体通電を行なうことにより導体直上の
温度を90℃に保ち、この状態で課電電圧70KVを1
0分間印加し、その後10にV、10分間のステップ上
昇により、ケーブルの課電を行ないながら、部分放電の
測定を同時に行ない、この状態で課電電圧150にVを
印加した後5分経過後に部分放電の発生が認められ、課
電電圧が直ちに遮断された。遮断直前の最大部分放電電
荷量は29pCであった。その後欠陥部の解体調査を行
なったところ、試料ケーブル絶縁体中に存在した約35
μmの大きさの金属異物から電界方向両側に約2.71
の長さの電気トリーが発生し、あとわずかで試料ケーブ
ル絶縁体が橋絡する直前に印加電圧の高速遮断が行なわ
れた。
According to the experiment, a 1 x 1501n" CV cable with a thickness of 31m was used as the sample cable A as described above, and the temperature directly above the conductor was maintained at 90°C by energizing the conductor. Electric voltage 70KV 1
0 minutes, then 10 V, step increase for 10 minutes, while energizing the cable, measure the partial discharge at the same time. In this state, 5 minutes after applying the applied voltage 150 V, Occurrence of partial discharge was observed, and the applied voltage was immediately cut off. The maximum partial discharge charge amount immediately before shutoff was 29 pC. When the defective part was subsequently dismantled and investigated, approximately 35
Approximately 2.71 mm on both sides of the electric field from a μm-sized metal foreign object
An electrical tree of length occurred, and the applied voltage was quickly cut off just before the sample cable insulation was bridged.

なお、前記の1次ll@電源遮断部5にはGTOサイリ
スタのほかに適宜の大電流遮断装置を用いてもよく、部
分放電検出インピーダンスとして抵抗9a、9bのかわ
りにインダクタンス等を用いることもできる。
It should be noted that in addition to the GTO thyristor, an appropriate large current interrupting device may be used for the above-mentioned primary ll@power interrupter 5, and inductance or the like may be used instead of the resistors 9a and 9b as the partial discharge detection impedance. .

[発明の効果コ 前記のように本発明の電力ケーブルの非破壊試験方法は
、部分放電を検出するに際し、ケーブルの加熱を導体通
電により加熱し、外部の結合コンデンサを用いることな
くケーブル遮蔽層に切離しスリット部を設けてコンデン
サを形成したので、ノイズの侵入がなくケーブル欠陥部
に発生する部分放電が比較的小さいうちにこれを検出す
ることが可能となり、したがって部分放電により電気ト
リーが大きく進展し欠陥部が破壊する前にケーブルの印
加交流高電圧を高速遮断することができ、ケーブル非破
壊試験の失敗を防ぐことができる。
[Effects of the Invention] As described above, the non-destructive testing method for power cables of the present invention heats the cable by energizing the conductor when detecting partial discharge, and heats the cable by energizing the cable without using an external coupling capacitor. Since a capacitor is formed by providing a separation slit, it is possible to detect partial discharges that occur at cable defective parts while they are relatively small without noise intrusion, and therefore the electrical tree can significantly advance due to partial discharges. The AC high voltage applied to the cable can be quickly cut off before the defective part is destroyed, and failure of the cable non-destructive test can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図および第3図
は従来例を示す図である。 A:試料電力ケーブル A2、A3:遮蔽層   8:切離しスリット部9a 
 9b:部分放電検出インピーダンス特詐出顧人  古
河電気工業株式会社 代理人  弁理士 岡1)喜久治
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing a conventional example. A: Sample power cable A2, A3: Shielding layer 8: Separation slit part 9a
9b: Partial discharge detection impedance special fraud consultant Furukawa Electric Co., Ltd. agent Patent attorney Oka 1) Kikuji

Claims (1)

【特許請求の範囲】[Claims] 試料電力ケーブルの遮蔽層に切離しスリット部を設けて
コンデンサを形成し、前記切離しスリット部の両側の遮
蔽層部分に部分放電検出インピーダンスを接続し、前記
ケーブルを導体通電により加熱し、前記ケーブルに交流
高電圧を印加しながら部分放電を測定し、部分放電検出
信号により前記ケーブルの印加交流高電圧を遮断するこ
とを特徴とする電力ケーブルの非破壊試験方法。
A capacitor is formed by providing a separation slit in the shielding layer of the sample power cable, a partial discharge detection impedance is connected to the shielding layer on both sides of the separation slit, the cable is heated by conductor current, and an alternating current is applied to the cable. A method for non-destructive testing of power cables, characterized in that partial discharge is measured while applying a high voltage, and the AC high voltage applied to the cable is cut off based on a partial discharge detection signal.
JP22758690A 1990-08-29 1990-08-29 Nondestructive test method for power cable Pending JPH04109180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22758690A JPH04109180A (en) 1990-08-29 1990-08-29 Nondestructive test method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22758690A JPH04109180A (en) 1990-08-29 1990-08-29 Nondestructive test method for power cable

Publications (1)

Publication Number Publication Date
JPH04109180A true JPH04109180A (en) 1992-04-10

Family

ID=16863241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22758690A Pending JPH04109180A (en) 1990-08-29 1990-08-29 Nondestructive test method for power cable

Country Status (1)

Country Link
JP (1) JPH04109180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120096A (en) * 2011-12-06 2013-06-17 Nippon Soken Inc Insulation inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120096A (en) * 2011-12-06 2013-06-17 Nippon Soken Inc Insulation inspection apparatus

Similar Documents

Publication Publication Date Title
Hudon et al. Partial discharge signal interpretation for generator diagnostics
JPS5914194B2 (en) Arc accident detection method for stator winding of rotating electrical machine
Heider et al. Study of frequency variant tan delta diagnosis for MV cables insulation status assessment
JPH0830728B2 (en) Withstand voltage inspection method and device
JPH0943301A (en) Non-destruction insulation test method of small electric machine and its device
JPH04109180A (en) Nondestructive test method for power cable
WO2002039128A1 (en) Method and apparatus of nondestructive insulation test for small electric machine
JPH11148960A (en) Space charge measurement method
JP2510328Y2 (en) Insulation deterioration monitoring device
JP2000221229A (en) Apparatus and method for detecting partial discharge
JP2608925B2 (en) Partial discharge detection method for power cables
JP3808914B2 (en) Non-destructive insulation test method and equipment for small electrical machines
JPH0526950A (en) Method for detecting defective portion of cable insulator
Zhong et al. A novel calibration method for PD measurements in power cables and joints using capacitive couplers
JPH0618604A (en) Diagnostic method for insulation deterioration and defect detecting method for power cable
JP2941961B2 (en) Method and apparatus for detecting partial discharge of load break elbow
JPS63131079A (en) Inspection for connection of power cable
JPH0640459Y2 (en) Insulation deterioration monitoring device
Mungkung et al. Problem solving of partial discharge on the distribution line
JPH06308189A (en) Method for detecting partial discharge of cable
JPH06313786A (en) Inspection device of film
JPH06201759A (en) Partial discharge sensor
JP2004361415A (en) Method and system for non-destructive insulation testing of small electrical machine
JP2887487B2 (en) Ground fault detector
JP3231557B2 (en) Partial discharge measurement adapter and partial discharge measurement method