JPH04109141A - Particle counting method and device - Google Patents

Particle counting method and device

Info

Publication number
JPH04109141A
JPH04109141A JP2225331A JP22533190A JPH04109141A JP H04109141 A JPH04109141 A JP H04109141A JP 2225331 A JP2225331 A JP 2225331A JP 22533190 A JP22533190 A JP 22533190A JP H04109141 A JPH04109141 A JP H04109141A
Authority
JP
Japan
Prior art keywords
pulse
breakdown
particle size
particle
pulsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225331A
Other languages
Japanese (ja)
Inventor
Haruo Fujimori
治男 藤森
Tetsuya Matsui
哲也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2225331A priority Critical patent/JPH04109141A/en
Publication of JPH04109141A publication Critical patent/JPH04109141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the grain size measurement precision by irradiating multiple pulse rays with different intensity, and guiding the grain size distribution from the count values corresponding to each pulse. CONSTITUTION:The pulse light from a pulse laser 1 is divided into multiple pulse rays with different intensity by multiple beam splitters 11, and they are guided to optical fibers 9 through lenses 10. The pulse rays are integrated by beam splitters 11 and collected into a sample cell 2 in a black box 5. The plasma emission due to laser breakdown is detected by a light detector 3 through a filter 4. Particles with the grain size range (a) inducing laser breakdown via the first pulse are detected if they exist in the region A. Particles with the grain size range (b) or (c) inducing laser breakdown via the second or third pulse are detected if they exist in the region B or C. The counting corresponding to each pulse is performed by a signal processor 7 by utilizing the synchronization signal by a power monitor 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造工程等で使用される超純水等の液
体に含まれる粒子状物質の粒径弁別計数に最適な方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method optimal for particle size discrimination counting of particulate matter contained in liquids such as ultrapure water used in semiconductor manufacturing processes and the like.

【従来の技術〕[Conventional technology]

特開昭60−38345号公報では、パルスレーザ光を
集光し、光のエネルギ密度を粒子のレーザブレイクダウ
ンしきい値より高く、かつ、媒質のしきい値より低く設
定して粒子が有感部に存在するときのみレーザブレイク
ダウンを発生させて、これに伴って発生する音響波を検
出して粒子を計数する。また1発生する音響波の強度が
粒径に比例する傾向があるため、粒径計測への適用の可
能性が示唆されている。
In Japanese Patent Application Laid-Open No. 60-38345, pulsed laser light is focused and the energy density of the light is set higher than the laser breakdown threshold of the particles and lower than the threshold of the medium to make the particles sensitive. Laser breakdown is generated only when particles are present in the particle, and the accompanying acoustic waves are detected and counted. Furthermore, since the intensity of the generated acoustic waves tends to be proportional to the particle size, the possibility of application to particle size measurement has been suggested.

しかし、この方法では、光の集光領域で光のエネルギ密
度が非均−であるため、粒子の位置によってブレイクダ
ウンプラズマによる光の吸収量が異なり、同一粒径の粒
子に対しても音響波強度は同一ではなかった。このため
、音響波強度を利用した粒径測定精度は必ずしも高くは
なかった。
However, with this method, the energy density of light is non-uniform in the light condensing region, so the amount of light absorbed by the breakdown plasma differs depending on the position of the particle, and even particles of the same size can receive acoustic waves. The strength was not the same. For this reason, the accuracy of particle size measurement using acoustic wave intensity has not always been high.

また、特願昭62−277110号明細書によれば、プ
ラズマ発光中の原子スペクトル強度から粒径測定できる
が、白色プラズマ光中の原子スペクトル強度は非常に弱
く、必ずしも微小粒径の計測には適していなかった。
Furthermore, according to the specification of Japanese Patent Application No. 62-277110, particle size can be measured from the atomic spectrum intensity during plasma emission, but the atomic spectrum intensity in white plasma light is very weak and is not necessarily suitable for measuring minute particle sizes. It wasn't suitable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、レーザブレイクダウンが発生する位
置(粒子の位置)によってプラズマが吸収する光の量が
異なるため、これに伴って発生する音響波強度にもばら
つきが生じる点が考慮されておらず1粒径測定精度は必
ずしも高くないという問題があった。
The above conventional technology does not take into account the fact that the amount of light absorbed by the plasma differs depending on the position where laser breakdown occurs (position of particles), and the resulting acoustic wave intensity also varies accordingly. There was a problem in that the accuracy of particle size measurement was not necessarily high.

本発明の目的は、粒径測定精度を向上させた液中の粒子
計数方法を提供することにある。
An object of the present invention is to provide a method for counting particles in a liquid with improved particle size measurement accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は複数の強度の異な
るパルス光を照射し、各パルスに対応した計数値から粒
径分布を導出できるようにした。
In order to achieve the above object, the present invention irradiates a plurality of pulsed lights with different intensities, and makes it possible to derive the particle size distribution from the count value corresponding to each pulse.

〔作用〕[Effect]

パルスレーザ光は、その集光領域でのパワー密度よりレ
ーザブレイクダウンしきい値の小さい粒子のレーザブレ
イクダウンを生じさせる。パルスレーザ光の集光領域に
ある粒子のしきい値がi番目のパルスレーザ光より高く
i+1番目のパルスレーザ光より低ければ、i+1番目
のパルスでブレイクダウンが生じる。従って、何番目の
パルスでブレイクダウンが生じるかを判別することによ
り、粒径弁別しての計数が可能になる。もし1粒径の異
なる複数の粒子が集光領域内に同時(複数のパルス列の
照射時間中)に存在しても、粒径の大きい順に計数され
、ブレイクダウンにより消滅していくので1粒径弁別へ
の影響はない。
The pulsed laser beam causes laser breakdown of particles whose laser breakdown threshold is smaller than the power density in the pulsed laser beam. If the threshold value of particles in the condensing region of the pulsed laser beam is higher than the i-th pulsed laser beam and lower than the i+1th pulsed laser beam, breakdown occurs at the i+1th pulse. Therefore, by determining at which pulse the breakdown occurs, it becomes possible to perform counting with particle size discrimination. Even if multiple particles with different diameters exist simultaneously within the light focusing area (during the irradiation time of multiple pulse trains), they are counted in descending order of particle size and disappear due to breakdown, so one particle size There is no effect on discrimination.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

本実施例は、パルスレーザl、試料セル2.光検出器3
.フィルタ4.暗箱5.ビームストッパ6、信号処理装
置7.パルス光モニタ8.光ファイバ9.レンズ10.
ビームスプリッタ11から成る。
In this example, a pulse laser 1, a sample cell 2. Photodetector 3
.. Filter 4. Dark box 5. Beam stopper 6, signal processing device 7. Pulsed light monitor8. Optical fiber9. Lens 10.
It consists of a beam splitter 11.

パルスレーザ1からのパルス光は複数のビームスプリッ
タにより強度の異なる複数のパルス光に分割され、レン
ズ10を通って光ファイバ9に導びかれる。光ファイバ
の長さは、強度の低いパルスはど短く、光ファイバの出
口で強度の低い順にパルス光が到達するように設定する
。光ファイバ9より出たパルス光は、ビームスプリッタ
11により統合され、レンズ10で暗箱8内の試料セル
2中に集光される。レーザブレイクダウンによるプラズ
マ発光は、励起パルス光をカットするフィルタ4を通し
て光検出器3で検出される。このとき、パルス光の時間
及び空間プロファイルは第2図のようになる。一番目の
パルスでレーザブレイクダウンを誘起できる粒径範囲a
の粒子は領域A内に存在すれば検出される。同様に二(
又は三)番目のパルスで初めてレーザブレイクダウンを
誘起できる粒径範囲b(又はC)の粒子は領域B(又は
C)に存在すれば検出される。試料セル2中の液体の流
れによる粒子の移動がパルス列の照射時間内で無視でき
れば、この手順で瞬時に粒径弁別できることになる。す
なわち、粒径範囲aの粒子が第一パルスの領域A内に存
在すれば、第一パルスでレーザブレイクダウンするので
、検出されると同時に消滅し、第二パルス以後への影響
は生じない、もし、粒径範囲aの粒子が第二パルスの領
域A内に存在すると、第一パルスではレーザブレイクダ
ウンが起らず、第二パルスでレーザブ 。
The pulsed light from the pulsed laser 1 is split into a plurality of pulsed lights with different intensities by a plurality of beam splitters, and guided to the optical fiber 9 through the lens 10. The length of the optical fiber is set so that the pulses with lower intensity are shorter and the pulsed light reaches the exit of the optical fiber in descending order of intensity. Pulsed light emitted from the optical fiber 9 is integrated by a beam splitter 11 and focused by a lens 10 into a sample cell 2 in a dark box 8 . Plasma emission due to laser breakdown is detected by a photodetector 3 through a filter 4 that cuts off the excitation pulsed light. At this time, the temporal and spatial profiles of the pulsed light are as shown in FIG. Particle size range a that can induce laser breakdown with the first pulse
If the particles exist in area A, they will be detected. Similarly, two (
or 3) Particles in the particle size range b (or C) that can induce laser breakdown for the first time in the third pulse are detected if they exist in region B (or C). If the movement of particles due to the flow of liquid in the sample cell 2 can be ignored within the irradiation time of the pulse train, particle size discrimination can be performed instantaneously with this procedure. That is, if a particle with a particle size range a exists within the region A of the first pulse, it will undergo laser breakdown in the first pulse, so it will disappear as soon as it is detected, and there will be no effect on the second pulse or later. If particles in the particle size range a exist within the region A of the second pulse, laser breakdown will not occur in the first pulse, but will occur in the second pulse.

レイクダウンが発生することになる。この場合、粒径範
囲すの粒子が領域Bに存在した場合の弁別は、プラズマ
発光強度から可能である。プラズマ発光強度はブレイク
ダウンしきい値に到達した後にプラズマに吸収されるエ
ネルギに依存するので、第3図のように、パルス光のパ
ワー密度が相対的に低い第二パルスの領域Aで粒径範囲
aの粒子により誘起されるプラズマ発光強度は、第二パ
ルスの領域Bで粒径範囲すの粒子によるものより小さく
なるので1両者を判別できる。各パルスに対応しての計
数は、パワーモニタ8による同期信号を利用して信号処
理装置7で行う。
A lakedown will occur. In this case, if particles within the particle size range are present in region B, discrimination can be made from the plasma emission intensity. Since the plasma emission intensity depends on the energy absorbed by the plasma after reaching the breakdown threshold, as shown in Figure 3, the particle size increases in the second pulse region A where the power density of the pulsed light is relatively low. Since the plasma emission intensity induced by the particles in the range a is smaller than that caused by the particles in the particle size range A in the region B of the second pulse, it is possible to distinguish between the two. Counting corresponding to each pulse is performed by the signal processing device 7 using a synchronization signal from the power monitor 8.

本実施例によれば、粒径の大きい順に粒子を強度の異な
る複数のパルス光で、順次、計数・消滅させ、同時に粒
径の異なる粒子が同一パルス中に存在するときは発光強
度で弁別できるので、粒径測定精度を向上できる利点が
ある。
According to this embodiment, particles can be sequentially counted and annihilated in descending order of particle size using a plurality of pulsed lights of different intensities, and at the same time, when particles with different particle sizes are present in the same pulse, they can be discriminated based on the emission intensity. Therefore, there is an advantage that particle size measurement accuracy can be improved.

本実施例では、レーザブレイクダウンの検出手段として
光検出器を用いたが、音響波検出器も同様に利用できる
In this embodiment, a photodetector is used as a means for detecting laser breakdown, but an acoustic wave detector can be used as well.

本実施例の装置構成を超純水製造装置に組み込み1粒径
分布及び数密度の測定により、超純水の異常の有無を判
定する手段として用いることもできる。この場合、超純
水からのサンプリング配管を試料セルに接続し、セル出
口をドレン排水管に接続するか、あるいは、超純水製造
装置に戻せばよい、信号処理装置からの出力信号を使っ
て異常の有無を表示装置及び/又は制御装置に伝送する
The device configuration of this embodiment can also be incorporated into an ultrapure water production device and used as a means for determining the presence or absence of an abnormality in ultrapure water by measuring particle size distribution and number density. In this case, the sampling pipe from the ultrapure water can be connected to the sample cell, the cell outlet can be connected to the drain pipe, or the output signal from the signal processing device can be used to return the ultrapure water to the ultrapure water production equipment. The presence or absence of an abnormality is transmitted to a display device and/or a control device.

これらのシステムは、超純水以外の薬液の製造装置、及
び、これらの液体を使用する半導体等の工業製品の製造
プロセスに適用することができる。
These systems can be applied to manufacturing devices for chemical liquids other than ultrapure water, and manufacturing processes for industrial products such as semiconductors that use these liquids.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、強度の異なるパルス光を強度の低い順
に照射して集光領域内の粒子を粒径の大きい順にレーザ
ブレイクダウンにより計数・消滅させることにより、高
い粒径測定精度で、微粒子の計数ができる。
According to the present invention, by irradiating pulsed light of different intensities in descending order of intensity and counting and extinguishing particles in the condensed region in descending order of particle size by laser breakdown, fine particles can be measured with high particle size measurement accuracy. can be counted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の系統図、第2図は、複数
のパルス光の時間及び空間プロファイル図、第3図は、
レーザブレイクダウンによるエネルギ吸収量を示した説
明図である。 1・・・パルスレーザ、2・・・試料セル、3・・・光
検出器、7・・・信号処理装置、9・・・光ファイバ。 第3図 時間→
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a temporal and spatial profile diagram of a plurality of pulsed lights, and FIG.
FIG. 3 is an explanatory diagram showing the amount of energy absorbed by laser breakdown. DESCRIPTION OF SYMBOLS 1... Pulse laser, 2... Sample cell, 3... Photodetector, 7... Signal processing device, 9... Optical fiber. Figure 3 Time →

Claims (1)

【特許請求の範囲】 1、試料にパルス光を照射するパルスレーザ、前記試料
中で発生したレーザブレイクダウンを検出するブレイク
ダウン信号検出器、前記ブレイクダウン信号検出器から
の信号を処理する信号処理装置からなるブレイクダウン
分析装置において、 複数の強度の異なる前記パルス光を、強度の低い順に照
射するためのパルス制御手段と、複数の前記パルス光に
対応した前記ブレイクダウン信号を検出して粒径弁別す
る手段を含むことを特徴とする粒子計数装置。 2、請求項1において、測定小象となる粒径範囲をN個
の粒径範囲に分割し、i番目のパルス光強度をi番目以
下の粒径範囲の粒子のみがレーザブレイクダウンを誘起
するように設定し、パルス光を1〜N番の順に照射し、
かつ、i+1番目のパルスはi番目のパルスによるブレ
イクダウンプラズマが充分減衰した後に照射する粒子計
数方法。 3、請求項2において、N個のパルス光の光軸が一致し
ている粒子計数方法。 4、請求項2において、i番目のパルスによるブレイク
ダウン信号の測定時にしきい値を設定し、i−1番目の
粒径範囲に相当する粒子計数を除外し、又は、i番目の
粒径範囲に相当する信号が複数の粒子計数に基づくこと
を弁別する粒子計数方法。 5、請求項2において、1〜N番のパルス列を作るのに
、光ファイバによる伝送時間差を利用する粒子計数方法
及び装置。 6、超純水、又は、薬液の製造装置あるいはこれらを使
用する工業製品の製造プロセスに組込み、超純水、又は
、薬液に含まれる粒子状不純物を粒径弁別計数して前記
製造装置又は前記製造プロセスの異常の有無を判定・表
示する粒子計数方法。
[Claims] 1. A pulsed laser that irradiates a sample with pulsed light, a breakdown signal detector that detects laser breakdown occurring in the sample, and signal processing that processes the signal from the breakdown signal detector. A breakdown analyzer comprising a pulse control means for irradiating a plurality of pulsed lights having different intensities in descending order of intensity, and a particle size detection device that detects the breakdown signals corresponding to the plurality of pulsed lights. A particle counting device characterized in that it includes means for discriminating. 2. In claim 1, the particle size range serving as the measurement sub-elephant is divided into N particle size ranges, and the i-th pulse light intensity causes only particles in the i-th or smaller particle size range to induce laser breakdown. Set it as follows, and irradiate the pulsed light in the order of numbers 1 to N.
In addition, the i+1th pulse is applied after the breakdown plasma caused by the i-th pulse has sufficiently attenuated. 3. The particle counting method according to claim 2, wherein the optical axes of the N pulsed lights coincide. 4. In claim 2, a threshold value is set when measuring the breakdown signal due to the i-th pulse, and particle counts corresponding to the i-1th particle size range are excluded, or A particle counting method that discriminates that a signal corresponding to is based on multiple particle counts. 5. A particle counting method and apparatus according to claim 2, which utilizes transmission time differences through optical fibers to create pulse trains numbered 1 to N. 6. Incorporate into an ultrapure water or chemical solution manufacturing device or the manufacturing process of an industrial product using these, and perform particle size discrimination counting of particulate impurities contained in the ultrapure water or chemical solution. A particle counting method that determines and displays the presence or absence of abnormalities in the manufacturing process.
JP2225331A 1990-08-29 1990-08-29 Particle counting method and device Pending JPH04109141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225331A JPH04109141A (en) 1990-08-29 1990-08-29 Particle counting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225331A JPH04109141A (en) 1990-08-29 1990-08-29 Particle counting method and device

Publications (1)

Publication Number Publication Date
JPH04109141A true JPH04109141A (en) 1992-04-10

Family

ID=16827680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225331A Pending JPH04109141A (en) 1990-08-29 1990-08-29 Particle counting method and device

Country Status (1)

Country Link
JP (1) JPH04109141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109218A (en) * 2007-10-26 2009-05-21 Sony Corp Optical measuring method and optical measuring device of fine particle
CN108844870A (en) * 2018-08-08 2018-11-20 重庆交通大学 PM based on optical fiber structure10And PM2.5Detection instrument device and system
WO2019181205A1 (en) * 2018-03-19 2019-09-26 ソニー株式会社 Information processing device, information processing system, and information processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109218A (en) * 2007-10-26 2009-05-21 Sony Corp Optical measuring method and optical measuring device of fine particle
WO2019181205A1 (en) * 2018-03-19 2019-09-26 ソニー株式会社 Information processing device, information processing system, and information processing method
US11561162B2 (en) 2018-03-19 2023-01-24 Sony Corporation Information processing device, information processing system, and information processing method
CN108844870A (en) * 2018-08-08 2018-11-20 重庆交通大学 PM based on optical fiber structure10And PM2.5Detection instrument device and system
CN108844870B (en) * 2018-08-08 2021-09-21 重庆交通大学 PM based on optical fiber structure10And PM2.5Probe instrument apparatus and system

Similar Documents

Publication Publication Date Title
US5956139A (en) Cross-correlation method and apparatus for suppressing the effects of multiple scattering
JP2641927B2 (en) Particle measurement device
US9766174B2 (en) Optical measuring device and optical measuring method
JPH0810188B2 (en) Particulate matter analyzer and analysis method, ultrapure water production apparatus, semiconductor production apparatus, high-purity gas production apparatus
WO2012138918A1 (en) Microbial detection apparatus and method
CZ292359B6 (en) Method for measuring light scatter by particles and apparatus for making the same
US5012119A (en) Method and apparatus for monitoring particles using back-scattered light without interference by bubbles
JP3672158B2 (en) Turbidity measuring method and apparatus
JPH09273987A (en) Method and apparatus for measuring particle size, count concentration or turbidity of fine particle in liquid
JP2006308308A (en) Plastic surface diagnosis method and plastic surface diagnosis device
JPH04109141A (en) Particle counting method and device
JP2009069165A (en) Particulate detecting device
CN109975222B (en) Full-spectrum water quality detection automatic calibration and window cleaning reminding system
JPH05172732A (en) Method and apparatus for detecting particle in liquid
US6522405B2 (en) Method and apparatus for monitoring sub-micron particles
SE539843C2 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
JPH05215664A (en) Method and device for detecting submicron particle
Ebie et al. New measurement principle and basic performance of high-sensitivity turbidimeter with two optical systems in series
JPS63201554A (en) Particle analyzing device
CN206132617U (en) Element laser detecting analyzer ware
JPH04204039A (en) Corpuscle measuring system
JPH06180280A (en) Particle counting method
JPS631951A (en) Apparatus for measuring fine particle in liquid
JPH04366750A (en) Measuring method for particulate
KR20180082233A (en) Method and Apparatus for Predicting Movement of Nanoparticle in Fluid Flow