JPH0410883B2 - - Google Patents

Info

Publication number
JPH0410883B2
JPH0410883B2 JP59015597A JP1559784A JPH0410883B2 JP H0410883 B2 JPH0410883 B2 JP H0410883B2 JP 59015597 A JP59015597 A JP 59015597A JP 1559784 A JP1559784 A JP 1559784A JP H0410883 B2 JPH0410883 B2 JP H0410883B2
Authority
JP
Japan
Prior art keywords
polymerization
dispersion plate
water
monomers
horizontal dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59015597A
Other languages
Japanese (ja)
Other versions
JPS60161402A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1559784A priority Critical patent/JPS60161402A/en
Publication of JPS60161402A publication Critical patent/JPS60161402A/en
Publication of JPH0410883B2 publication Critical patent/JPH0410883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重合工程におけるスケールの付着を抑
制する塩化ビニル等の単量体の重合方法に関する
ものであり、特には重合液面に発生する泡立ちと
製品の飛沫同伴を防止し、これにより重合操作の
安全性向上を図ると共に、重合装置の稼動率を大
幅に向上させることを目的とするものである。 重合槽中で、塩化ビニル等の単量体を懸濁ある
いは乳化重合する場合に、重合槽の液面上に泡立
ちの現象が認められ、これが付設コンデンサ内あ
るいは未反応単量体回収用パイプ等に入つてそれ
らの稼働を困難にするほか、重合槽壁にスケール
を付着させるなど種々の不都合をもたらすことが
知られている。 この泡立ち現象は、重合開始前に単量体を懸
濁、乳化剤および添加剤と共に重合槽へ仕込む
際、および重合中または重合終了時に単量体の抜
き出し、回収する際に発生するが、これが著しい
と重合槽の気相部内壁のほぼ全面にスケールが形
成され、これが重合温度のコントロールを困難に
するほか、生成重合体の品質低下を招き、さらに
は泡に同伴された重合体粒子の逸出により稼働率
を大幅に低下させることになる。 本発明者らは、かかる問題点を解決すべく鋭意
研究を重ねた結果本発明に到達したのであつて、
本発明による塩化ビニル等の単量体の重合方法
は、回転軸の上部気相域に複数個の放射状の傾斜
羽根を周囲に備えた水平分散盤を、またその下部
液相域にかくはん翼をそれぞれ有する構造の重合
槽中で、塩化ビニル等の単量体を懸濁あるいは乳
化重合する際に、総仕込み容積の3%以上の量の
水を重合開始から重合終了時まで前記水平分散盤
上に注水しながら重合を行うことを特徴とするも
のである。 以下本発明の方法を実施するための装置を例示
する第1〜4図について詳しく説明する。 第1図に示す装置例は、重合槽として1.5オ
ートクレーブを用いた場合である。1は回転軸で
あつて下部液相域にかくはん翼2が取りつけられ
ている。回転軸1はオートクレーブの蓋3を貫通
し、適当な駆動手段によつて矢印方向に回転する
ようになつている。回転軸1の蓋3に近い上部気
相域に、水平分散盤4がボス5によつて固定さ
れ、分散盤4の周囲には4枚の円形羽根6がそれ
ぞれ水平面に対し約30゜の傾斜角で付設されてい
る。分散盤4上に注水する手段として、蓋3を貫
通し分散盤上にセツトされた給水パイプ7が用い
られる。この給水パイプには、蓋3のコツク8に
通じる注水ポンプ(図示していない)から、総仕
込み容積の3%以上の量の水が重合開始から重合
終了時まで、給水される。分散盤4上に注水され
た水は回転軸1の回転により均一に各羽根に分散
供給され、遠心力によつて各羽根から気相部壁面
へ、均一に水を飛散させる。壁面に達した水は壁
面にぬれ面を形成しながら、気相部および気液界
面を洗浄し、スケール付着の防止および除去を行
うことができる。 この場合のオートクレーブの槽径は105mmφ、
羽根付き分散盤の径は50mmφ、回転数は700回/
分であつた。 第2図は重合槽として1m3オートクレーブを用
いた場合を例示するものである。 回転軸1の液相部分には平羽根のかくはん翼2
が取り付けられており、気相部分の高位置に水平
分散盤4がボス5によつて固定されていることは
第1図の場合と同様であるが、水平分散盤4に付
設される8枚の羽根6は長方形で、第3図に示す
ように水平面4に対し30゜傾斜し、基部に三角の
当て板9を有し、傾斜下縁が折曲されて溝10を
形成する点において相異する。 給水手段は公知のいずれのものでもよいが、分
散盤上に注水できるように給水パイプ7をセツト
することが必要である。 この場合のオートクレーブの槽径は850mmφ、
羽根付き分散盤の径は500mmφ、長方形羽根の幅
は60mm、回転数は160回/分であつた。 本例においても前例と同様に水平分散盤上に注
水すると、注水は均一に気相部壁面へ飛散され、
泡立ちを洗浄し、製品の飛沫同伴を完全に防止す
ることができる。 第4図は本発明の方法で使用される水平分散盤
の他の実施態様として、傾斜羽根11がボス5に
よつて回転軸1の止着された水平分散盤4の周囲
に、山形(∧形)に連接してなる場合を例示する
ものであつて、これによつても前記と同様のスケ
ール付着防止と除去効果が得られる。 つぎに本発明の詳細を実施例により説明する。 実施例 1 (塩化ビニルの懸濁重合) 内部に400mmのパドル羽根をもつかくはん機を
備えた第2図に示すような1000のステンレス重
合槽に塩化ビニル単量体200Kg、ジイソプロピル
パーオキシジカルボネート75g、部分ケン化ポリ
ビニルアルコール250gとヒドロキシプロピルメ
チルセルロース25gを仕込み、水平分散盤上に総
仕込容積に対し、0、3、5、10、15%の水を重
合開始時より重合終了まで連続的に供給し、かく
はん速度200回/分でかくはんしながら内温57℃
で12時間重合をくり返し行い、気液界面および気
相部の傾斜羽根によるスケール付着防止と重合終
了時の単量体回収に伴う製品の飛沫同伴について
調べたところ、第1表の結果を得た。
The present invention relates to a method for polymerizing monomers such as vinyl chloride that suppresses scale adhesion during the polymerization process. In particular, it prevents foaming on the surface of the polymerization liquid and entrainment of product droplets, thereby improving the polymerization process. The purpose is to improve safety and significantly improve the operating rate of polymerization equipment. When monomers such as vinyl chloride are subjected to suspension or emulsion polymerization in a polymerization tank, a phenomenon of bubbling is observed on the liquid surface of the polymerization tank. It is known that in addition to making their operation difficult, they also cause various inconveniences such as scale adhesion to the walls of the polymerization tank. This bubbling phenomenon occurs when the monomers are suspended and charged into the polymerization tank together with emulsifiers and additives before the start of polymerization, and when the monomers are withdrawn and recovered during or at the end of polymerization, but this phenomenon is noticeable. Scale is formed on almost the entire inner wall of the gas phase of the polymerization tank, which makes it difficult to control the polymerization temperature, reduces the quality of the produced polymer, and even causes the escape of polymer particles entrained in bubbles. This will significantly reduce the operating rate. The present inventors have arrived at the present invention as a result of extensive research to solve these problems.
The method for polymerizing monomers such as vinyl chloride according to the present invention uses a horizontal dispersion plate equipped with a plurality of radially inclined blades around the upper gas phase region of a rotating shaft, and a stirring blade in the lower liquid phase region. When monomers such as vinyl chloride are subjected to suspension or emulsion polymerization in polymerization tanks having the same structure, water in an amount of 3% or more of the total charging volume is poured onto the horizontal dispersion plate from the start of polymerization to the end of polymerization. The feature is that polymerization is carried out while pouring water into the polymer. 1 to 4, which illustrate an apparatus for carrying out the method of the present invention, will be described in detail below. The example of the apparatus shown in FIG. 1 is a case where a 1.5 autoclave is used as a polymerization tank. Reference numeral 1 denotes a rotating shaft, and a stirring blade 2 is attached to the lower liquid phase region. The rotating shaft 1 passes through the lid 3 of the autoclave and is adapted to rotate in the direction of the arrow by suitable driving means. A horizontal dispersion plate 4 is fixed by a boss 5 in the upper gas phase region of the rotary shaft 1 near the lid 3, and around the dispersion plate 4 four circular blades 6 are arranged at an angle of approximately 30° with respect to the horizontal plane. attached at the corner. As a means for injecting water onto the distribution plate 4, a water supply pipe 7 that penetrates the lid 3 and is set on the distribution plate is used. Water in an amount of 3% or more of the total charging volume is supplied to this water supply pipe from a water injection pump (not shown) communicating with the pot 8 of the lid 3 from the start of polymerization to the end of polymerization. The water poured onto the dispersion plate 4 is uniformly distributed and supplied to each blade by the rotation of the rotating shaft 1, and the water is uniformly scattered from each blade to the wall surface of the gas phase section by centrifugal force. The water that has reached the wall surface forms a wet surface on the wall surface, cleans the gas phase portion and the gas-liquid interface, and can prevent and remove scale adhesion. In this case, the autoclave tank diameter is 105mmφ.
The diameter of the dispersion plate with blades is 50mmφ, and the number of rotations is 700 times/
It was hot in minutes. FIG. 2 exemplifies the case where a 1 m 3 autoclave is used as the polymerization tank. A flat blade stirring blade 2 is installed in the liquid phase portion of the rotating shaft 1.
is attached, and the horizontal dispersion plate 4 is fixed at a high position in the gas phase section by a boss 5, which is the same as in the case of Fig. 1, but the 8 plates attached to the horizontal dispersion plate 4 are The blade 6 is rectangular and is inclined at 30 degrees with respect to the horizontal plane 4 as shown in FIG. Different. Although any known water supply means may be used, it is necessary to set the water supply pipe 7 so that water can be poured onto the distribution panel. In this case, the autoclave tank diameter is 850mmφ.
The diameter of the bladed dispersion plate was 500 mmφ, the width of the rectangular blade was 60 mm, and the rotation speed was 160 times/min. In this example as well, when water is poured onto the horizontal dispersion plate as in the previous example, the water is uniformly scattered onto the wall surface of the gas phase section.
It can wash away foaming and completely prevent product entrainment. FIG. 4 shows another embodiment of the horizontal dispersion plate used in the method of the present invention, in which inclined blades 11 are arranged around the horizontal dispersion plate 4 to which the rotating shaft 1 is fixed by the boss 5 in a chevron shape (∧ This exemplifies the case in which the scales are connected to each other (shape), and the same scale adhesion prevention and removal effects as described above can also be obtained. Next, the details of the present invention will be explained with reference to examples. Example 1 (Suspension polymerization of vinyl chloride) 200 kg of vinyl chloride monomer and 75 g of diisopropyl peroxydicarbonate were placed in a 1000 stainless steel polymerization tank as shown in Figure 2, which was equipped with an agitator with a 400 mm paddle blade inside. , 250 g of partially saponified polyvinyl alcohol and 25 g of hydroxypropyl methylcellulose were charged, and 0, 3, 5, 10, and 15% water was continuously supplied from the start of polymerization to the end of polymerization based on the total charge volume on a horizontal dispersion plate. While stirring at a stirring speed of 200 times/min, the internal temperature was 57℃.
Polymerization was repeated for 12 hours, and the prevention of scale adhesion by the inclined blades at the gas-liquid interface and the gas phase and the entrainment of product droplets due to monomer recovery at the end of polymerization were investigated, and the results shown in Table 1 were obtained. .

【表】 実施例 2 (スチレンの懸濁重合) 実施例1と同様な重合槽にスチレン単量体180
Kg、アクリロニトリル120Kg、水300Kg、ヒドロキ
シアパタイト6Kg、ラウリル硫酸ナトリウム120
g、t−ブチルドデシルメルカプタン900g、ラ
ウロイルパーオキサイド1.2Kgを仕込み水平分散
盤へ総仕込容積に対し、0、3、5、10、15%の
水を重合開始時より重合終了まで、または重合途
中より重合終了まで連続的に供給し、かくはん速
度150回/分でかくはんしながら内温70℃で3時
間、その後2時間をかけて70゜から80℃に昇温し、
ついで80℃で1時間重合をくり返し、実施例1と
同様のスケール防止効果について調べたところ、
第2表の結果を得た。
[Table] Example 2 (Suspension polymerization of styrene) Styrene monomer 180% was added to the same polymerization tank as in Example 1.
Kg, acrylonitrile 120Kg, water 300Kg, hydroxyapatite 6Kg, sodium lauryl sulfate 120Kg
900 g of t-butyldodecyl mercaptan and 1.2 kg of lauroyl peroxide were charged into a horizontal dispersion plate, and 0, 3, 5, 10, 15% of water was added to the total volume from the start of polymerization until the end of polymerization, or during polymerization. The mixture was continuously fed until the polymerization was completed, and the internal temperature was kept at 70°C for 3 hours while stirring at a stirring rate of 150 times/min, and then the temperature was raised from 70° to 80°C over 2 hours.
Then, polymerization was repeated at 80°C for 1 hour, and the same scale prevention effect as in Example 1 was investigated.
The results shown in Table 2 were obtained.

【表】 実施例 3 (ABSの乳化重合) 実施例1と同様な重合槽にポリブタジエンラテ
ツクス180Kg(固形分50%)、スチレン単量体300
Kg、アクリロニトリル120Kg、t−ドデシルメル
カプタン600Kg、オレイン酸カリウム3Kg、過硫
酸カリウム3Kgを仕込み、水平分散盤上へ総仕込
容積に対し0、3、5、10、15%の水を重合開始
時より重合終了時まで供給し、かくはん速度150
回/分でかくはんしながら、内温50℃にて10時間
重合をくり返し、同様にスケール防止効果につい
て調べたところ第3表の結果を得た。
[Table] Example 3 (Emulsion polymerization of ABS) In the same polymerization tank as in Example 1, 180 kg of polybutadiene latex (solid content 50%) and 300 kg of styrene monomer were added.
Kg, acrylonitrile 120Kg, t-dodecylmercaptan 600Kg, potassium oleate 3Kg, and potassium persulfate 3Kg were charged, and 0, 3, 5, 10, 15% of water based on the total charge volume was added onto the horizontal dispersion plate from the start of polymerization. Supply until the end of polymerization, stirring speed 150
Polymerization was repeated for 10 hours at an internal temperature of 50° C. while stirring at a rate of 50° C., and the scale prevention effect was similarly investigated, and the results shown in Table 3 were obtained.

【表】 以上の各実施例から明らかなように、本発明の
方法によれば、水平分散盤上に注水された水は傾
斜羽根から均一に飛散して重合槽壁面の気相、気
液相界面を清浄化するので、重合槽にスケールの
付着がなく、スケールの除去も行われるので、重
合工程の稼働率を大幅に向上することができる。
[Table] As is clear from the above examples, according to the method of the present invention, the water injected onto the horizontal dispersion plate is uniformly scattered from the inclined blades, forming a gas phase and a gas-liquid phase on the wall surface of the polymerization tank. Since the interface is cleaned, there is no scale attached to the polymerization tank, and scale is also removed, so the operating rate of the polymerization process can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の
一例を示す部分説明図、第2図、第4図は他の実
施態様を示す部分説明図、第3図は第2図の部分
拡大図である。 1…回転軸、2…かくはん翼、3…蓋、4…水
平分散盤、5…ボス、6…羽根、7…給水パイ
プ、8…コツク、9…当て板、10…溝、11…
傾斜羽根。
FIG. 1 is a partial explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, FIGS. 2 and 4 are partial explanatory diagrams showing other embodiments, and FIG. 3 is a partial enlargement of FIG. 2. It is a diagram. 1...Rotating shaft, 2...Agitation blade, 3...Lid, 4...Horizontal distribution plate, 5...Boss, 6...Blade, 7...Water supply pipe, 8...Kotoku, 9...Backing plate, 10...Groove, 11...
Slanted vane.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸の上部気相域に複数個の放射状の傾斜
羽根を周囲に備えた水平分散盤を、またその下部
液相域にかくはん翼をそれぞれ有する構造の重合
槽中で、塩化ビニル等の単量体を懸濁あるいは乳
化重合する際に、総仕込み容積の3%以上の量の
水を重合開始から重合終了時まで前記水平分散盤
上に注水しながら重合を行うことを特徴とする塩
化ビニル等の単量体の重合方法。
1. Polymerization of monomers such as vinyl chloride is carried out in a polymerization tank that has a horizontal dispersion plate surrounded by multiple radial inclined blades in the upper gas phase region of the rotating shaft, and stirring blades in the lower liquid phase region. When carrying out suspension or emulsion polymerization of polymers, the polymerization is carried out while pouring water in an amount of 3% or more of the total charging volume onto the horizontal dispersion plate from the start of polymerization to the end of polymerization. Polymerization method of monomers such as
JP1559784A 1984-01-31 1984-01-31 Device for pouring water into polymerizer Granted JPS60161402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1559784A JPS60161402A (en) 1984-01-31 1984-01-31 Device for pouring water into polymerizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1559784A JPS60161402A (en) 1984-01-31 1984-01-31 Device for pouring water into polymerizer

Publications (2)

Publication Number Publication Date
JPS60161402A JPS60161402A (en) 1985-08-23
JPH0410883B2 true JPH0410883B2 (en) 1992-02-26

Family

ID=11893124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1559784A Granted JPS60161402A (en) 1984-01-31 1984-01-31 Device for pouring water into polymerizer

Country Status (1)

Country Link
JP (1) JPS60161402A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536191A (en) * 1976-07-05 1978-01-20 Kowa Kikai Kougiyou Kk Method of rotary heat sealing in pack wrapping machine and rotary heat seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536191A (en) * 1976-07-05 1978-01-20 Kowa Kikai Kougiyou Kk Method of rotary heat sealing in pack wrapping machine and rotary heat seal

Also Published As

Publication number Publication date
JPS60161402A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
GB1580747A (en) Process and apparatus for the production of vinyl chloride polymers
US2647103A (en) Latex coagulation process
CA1118120A (en) Process for continuous coagulation and washing of polymer latices
JPH0410883B2 (en)
US2537334A (en) Process for emulsion polymerization of vinylidene compounds
CN1085217C (en) Process for radical polymerisation of ethylenically unsaturated monomers in aqueous medium
US4456735A (en) Continuous process for the production of vinyl chloride polymers in aqueous suspension
US2941971A (en) Process for preparing stable emulsifierfree alkali metal-free latices of vinylidene monomers
JPH07119253B2 (en) Thermal energy coagulation and cleaning of latex particles
JPH07278210A (en) Production of emulsion
JP2731135B2 (en) Stirrer for suspension polymerization of vinyl chloride and method for suspension polymerization of vinyl chloride using the same
US4090014A (en) Process and apparatus for polymerizing α-ethylenically unsaturated monomers in aqueous media
EP1229056B1 (en) Process for producing polymer particles
EP0129804A2 (en) Novel vinyl suspension polymerization process halide
US4128516A (en) Process for the gentle degasification of coagulation-sensitive PVC latices
JPS5849710A (en) Defoaming method in preparation of vinyl chloride polymer and polymerizing apparatus
JP2001179069A (en) Stirring apparatus, coagulation separation method of polymer
JP2685597B2 (en) Vinyl chloride resin polymerization apparatus and manufacturing method
KR890003575B1 (en) Polymerization of vinylcloride in suspension
JPS6042804B2 (en) Polymerization method of vinyl chloride monomer
EP0000430B1 (en) Vinyl halide polymerization process
JP3005034B2 (en) Method for producing vinyl chloride polymer
JP3824811B2 (en) Aqueous dispersion polymerization method for polymer and polymerization machine for aqueous dispersion polymerization
CA1250085A (en) Polyvinyl chloride suspension polymerization process and product
JPS5810405B2 (en) How to get the job done