JPH04108743A - Production of pentafluorodichloropropanes - Google Patents

Production of pentafluorodichloropropanes

Info

Publication number
JPH04108743A
JPH04108743A JP2227501A JP22750190A JPH04108743A JP H04108743 A JPH04108743 A JP H04108743A JP 2227501 A JP2227501 A JP 2227501A JP 22750190 A JP22750190 A JP 22750190A JP H04108743 A JPH04108743 A JP H04108743A
Authority
JP
Japan
Prior art keywords
reaction
chloroform
catalyst
anhydrous
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2227501A
Other languages
Japanese (ja)
Other versions
JPH0784398B2 (en
Inventor
Hiroichi Aoyama
博一 青山
Sei Kono
聖 河野
Hisafumi Yasuhara
尚史 安原
Soichi Ueda
上田 惣一
Satoru Koyama
哲 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2227501A priority Critical patent/JPH0784398B2/en
Priority to CA002049821A priority patent/CA2049821A1/en
Priority to AU82784/91A priority patent/AU8278491A/en
Priority to AT91114338T priority patent/ATE119143T1/en
Priority to ES91114338T priority patent/ES2071878T3/en
Priority to CS912633A priority patent/CS263391A3/en
Priority to EP91114338A priority patent/EP0473105B1/en
Priority to PL29153791A priority patent/PL291537A1/en
Priority to SU915001481A priority patent/RU2029757C1/en
Priority to DK91114338.6T priority patent/DK0473105T3/en
Priority to DE69107732T priority patent/DE69107732T2/en
Priority to BR919103700A priority patent/BR9103700A/en
Priority to KR1019910014951A priority patent/KR920004321A/en
Publication of JPH04108743A publication Critical patent/JPH04108743A/en
Publication of JPH0784398B2 publication Critical patent/JPH0784398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce 1,1,1,2,2-pentafluoro-3,3-dichloro- and 1,1,2,2,3- pentafluoro-1,3-dichloropropane by reacting chloroform with difluorochloromethane and tetrafluoroethylene. CONSTITUTION:Chloroform is reacted with difluorochloromethane and tetrafluoroethylene in the presence of a catalyst at -20 to +60 deg.C to produce the title substances in high yield and selectivity. Anhydrous AlCl3 and a compound (e.g. aluminum chlorofluoride or chlorofluorinated alumina) expressed by the formula [(x+y+2z) is 3; 0<x<3; 0<=y<3; 0<=z<3/2, provided that at least either of (y) and (z) is not 0] are preferred as the catalyst. The respective raw materials may be either a gaseous or a liquid state and the title compounds are preferably used as a solvent to carry out the reaction. Since the chloroform will not remain at the time of completing the reaction, difficult separating operation is not required.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、産業上重要な1,1.2−トリクロロ−1,
2,2−トリフルオロエタンの代替化合物であって、地
球環境に及ぼす影響が少ない1.1.1゜2.2−ペン
タフルオロ−3,3−ジクロロプロパン(以下、R22
5caと呼ぶ。)および1.1,2゜2.3−ペンタフ
ルオロ−1,3−ジクロロプロパン(以下、R225c
bと呼ぶ。)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to industrially important 1,1,2-trichloro-1,
1.1.1゜2.2-pentafluoro-3,3-dichloropropane (hereinafter referred to as R22
It is called 5ca. ) and 1.1,2°2.3-pentafluoro-1,3-dichloropropane (hereinafter referred to as R225c
Call it b. ).

[従来の技術] 従来、R225caおよびcbの製造方法として、工業
的にはテトラフルオロエチレン(以下、TFEと呼ぶ。
[Prior Art] Conventionally, as a method for producing R225ca and cb, tetrafluoroethylene (hereinafter referred to as TFE) has been used industrially.

)とジクロロフロロメタン(以下、R−21と呼ぶ。)
を、無水塩化アルミニウムなどの触媒存在下、オートク
レーブまたはガラス反応容器中、ハツチ式で、15〜1
00℃の温度で反応させる方法が知られている〔米国特
許第2,462.402号、ジャーナル・オブ・ジ・ア
メリカン・ケミカル・ソサエティー(J ournal
 or theAmerican Chemical 
5ociety)、第71巻、979Lフレクシヨンズ
・オブ・チェコスロバーク・ケミカル・コミュニケーシ
ョンズ(Collectionsof Czechos
lovak Chemical Communicat
ions)。
) and dichlorofluoromethane (hereinafter referred to as R-21).
in an autoclave or a glass reaction vessel in the presence of a catalyst such as anhydrous aluminum chloride, in a Hatch method, from 15 to 1
A method of reacting at a temperature of 00°C is known [US Pat. No. 2,462.402, Journal of the American Chemical Society].
or the American Chemical
5ociety), Volume 71, 979L Flexions of Czechoslovak Chemical Communications (Collection of Czechoslovak Chemical Communications)
lovak Chemical Communicat
ions).

第36巻、1867年〕。Volume 36, 1867].

また、R225caの製造方法としては、TFEをジグ
ライム中、セシウムフルオライドと反応させた後、クロ
ロホルムと反応させる方法が知られている(米国特許第
3,381.042号)。
Furthermore, as a method for producing R225ca, a method is known in which TFE is reacted with cesium fluoride in diglyme and then reacted with chloroform (US Pat. No. 3,381.042).

[発明が解決しようとする課題] しかしなから、上記の無水塩化アルミニウムを用いる方
法においては、目的とする生成物の選択率、収率(46
〜58%)か低く、工業的には不経済である。また、反
応終了後、反応生成物と触媒を分離するために、真空下
冷却したトラ、ブに反応生成物を捕集するか、希塩酸で
触媒を処理した後反応生成物を分離しなければならない
[Problem to be solved by the invention] However, in the above method using anhydrous aluminum chloride, the selectivity and yield of the target product (46
58%), which is industrially uneconomical. In addition, in order to separate the reaction product from the catalyst after the reaction is completed, the reaction product must be collected in a vacuum-cooled tube or tube, or the reaction product must be separated after treating the catalyst with dilute hydrochloric acid. .

また、セシウムフルオライドを用いる反応は、選択率お
よび収率はよいものの、原料となるセシウムフルオライ
ドが非常に高価であり、経済的工業生産には全く適して
いない。
Further, although the reaction using cesium fluoride has good selectivity and yield, the cesium fluoride used as a raw material is very expensive and is not suitable at all for economical industrial production.

[課題を解決するための手段] 本発明者らは、上記特許および文献に記載された製造方
法を詳細に検討し、R225ca、cbの新しい製造方
法を鋭意検討した結果、驚くべきことに従来の必須の出
発原料であるR−21に代えて、クロロホルムおよびジ
フルオロクロロメタン(以下、R−22と呼ぶ。)を、
触媒存在下、TFEと反応させるとR−225caおよ
びcbが高選択率、高収率で得られることを見いだし本
発明を完成するに至った。
[Means for Solving the Problems] The present inventors have studied in detail the manufacturing methods described in the above patents and literature, and have intensively studied new manufacturing methods for R225ca and cb. In place of R-21, which is an essential starting material, chloroform and difluorochloromethane (hereinafter referred to as R-22) were used.
The present inventors have discovered that R-225ca and cb can be obtained with high selectivity and yield when reacted with TFE in the presence of a catalyst, and have completed the present invention.

すなわち、本発明の要旨は、クロロホルム、ジフルオロ
クロロメタンおよびテトラフルオロエチレンを触媒存在
下に反応させることを特徴とする1、1,1,2.2−
ペンタフルオロ−3,3−ジクロロプロパンおよび1,
1.2,2.3−ペンタフルオロ−1,3−ジクロロプ
ロパンの製造方法に存する。
That is, the gist of the present invention is 1,1,1,2.2- characterized in that chloroform, difluorochloromethane and tetrafluoroethylene are reacted in the presence of a catalyst.
Pentafluoro-3,3-dichloropropane and 1,
A method for producing 1.2,2.3-pentafluoro-1,3-dichloropropane.

本発明に用いられる触媒としては、R−21のTFEへ
の付加反応に対して活性を示すものであればいずれも使
用できるが、ルイス酸が好ましく、例えば、無水塩化ア
ルミニウム、無水四塩化チタン、無水四塩化スズ、無水
五塩化アンチモン、無水塩化亜鉛、無水塩化鉄、無水臭
化アルミニウム、三フッ化ホウ素などが挙げられる。さ
らに、式:%式% 〔式中、xSYおよび2は、x+y+2z=3、Q<x
<3、O≦y<3、O≦z<3/2を満たす数であり、
yおよびZの少なくとも一方は0でない。〕 で示される組成の触媒、例えば塩素化フッ素化アルミニ
ウム、塩素化フッ素化アルミナも好ましく使用される。
As the catalyst used in the present invention, any catalyst can be used as long as it shows activity for the addition reaction of R-21 to TFE, but Lewis acids are preferred, such as anhydrous aluminum chloride, anhydrous titanium tetrachloride, Examples include anhydrous tin tetrachloride, anhydrous antimony pentachloride, anhydrous zinc chloride, anhydrous iron chloride, anhydrous aluminum bromide, and boron trifluoride. Furthermore, the formula: %Formula% [In the formula, xSY and 2 are x+y+2z=3, Q<x
<3, O≦y<3, O≦z<3/2,
At least one of y and Z is not 0. ] Catalysts having the composition shown below, such as chlorinated fluorinated aluminum and chlorinated fluorinated alumina, are also preferably used.

本発明において触媒として使用される塩素化フ。Chlorinated fluoride used as a catalyst in the present invention.

素化アルミニウムは、塩化アルミニウムにフッ化水素、
フッ酸、炭素数4以下の、好ましくは、炭素数2以下の
フルオロ炭化水素またはクロロフルオロ炭化水素、例え
ば、トリフルオロメタン、テトラフルオロエタン、クロ
ロジフルオロメタン、ジクロロフルオロメタン、トリフ
ルオロジクロロエタン、トリフルオロクロロメタン、ジ
フルオロテトラクロロエタン、トリフルオロトリクロロ
エタンを作用させて製造することができる。その際、そ
れぞれ単独で作用させてもよいし、混合して作用させて
もよく、また、場合によっては、クロロ炭化水素と混合
して作用させてもよい。反応温度は、0〜120℃、好
ましくは0−100℃の範囲の温度であり、塩化アルミ
ニウムとの接触のさせ方は、液状でもよいし、前記物質
を気体として流通させてもよい。
Aluminum chloride is aluminum chloride, hydrogen fluoride,
Hydrofluoric acid, fluorohydrocarbons or chlorofluorohydrocarbons having up to 4 carbon atoms, preferably up to 2 carbon atoms, such as trifluoromethane, tetrafluoroethane, chlorodifluoromethane, dichlorofluoromethane, trifluorodichloroethane, trifluorochloromethane , difluorotetrachloroethane, and trifluorotrichloroethane. At that time, each of them may be allowed to act alone, or may be made to act in combination, or in some cases, may be made to act in combination with a chlorohydrocarbon. The reaction temperature is in the range of 0 to 120°C, preferably 0 to 100°C, and the contact with aluminum chloride may be carried out in a liquid state or in the form of a gas.

本発明で触媒として使用される塩素化フッ素化アルミナ
は、活性アルミナに100〜700’Cの温度でクロロ
炭化水素、クロロフルオロ炭化水素、フルオロ炭化水素
、塩化水素またはこれらの混合物を作用させて製造する
ことができ、通常以下のようにして得られる。ステンレ
ス、ハステロイまたはガラス製の反応管に所定のアルミ
ナを充填後、乾燥窒素気流下300〜500°Cの温度
に加熱し、充分にアルミナを乾燥させる。その後、所定
の温度、通常は100〜600℃、好ましくは200〜
400℃の温度で、所定のフロンを所定時間単独でまた
は塩化水素ガスもしくは酸素と混合して流通させること
により得られる。フロン処理の温度力月OO℃より低い
場合には、処理に要する時間が長くなりすぎ実用的でな
いし、600℃より高い場合には、アルミナ表面に炭素
の付着が生じ活性が低くなってしまう傾向がある。この
炭素の付着による活性の低下は、特公昭61−2737
5号公報に示されているように、酸素または空気の共存
により防ぐことが可能である。
The chlorinated fluorinated alumina used as a catalyst in the present invention is produced by reacting activated alumina with a chlorohydrocarbon, a chlorofluorohydrocarbon, a fluorohydrocarbon, hydrogen chloride, or a mixture thereof at a temperature of 100 to 700'C. can be obtained, and is usually obtained as follows. After filling a reaction tube made of stainless steel, Hastelloy, or glass with a specified amount of alumina, the tube is heated to a temperature of 300 to 500° C. under a stream of dry nitrogen to sufficiently dry the alumina. Thereafter, a predetermined temperature is set, usually 100 to 600°C, preferably 200 to 600°C.
It is obtained by flowing a specified fluorocarbon alone or in a mixture with hydrogen chloride gas or oxygen at a temperature of 400° C. for a specified period of time. If the temperature of fluorocarbon treatment is lower than 00°C, the time required for the treatment is too long to be practical, and if it is higher than 600°C, carbon tends to adhere to the alumina surface and the activity tends to decrease. There is. The decrease in activity due to the adhesion of carbon was explained in Japanese Patent Publication No. 61-2737.
As shown in Japanese Patent No. 5, this can be prevented by the coexistence of oxygen or air.

塩化水素ガスで処理することにより以下のようにして塩
素化フッ素化アルミナを得ることもできる。乾燥窒素気
流下、400〜800’Cに加熱し、充分に活性アルミ
ナを乾燥させる。その後、所定の温度、通常は300〜
700°Cで塩化水素ガスをそのまま、または窒素、ア
ルコン等の不活性カスもしくはR−12(ジクロロジフ
ルオロメタン)、R−21等のクロロフルオロ炭化水素
で希釈して流通させる。通常の流通時間は、3〜10時
間である。
Chlorinated fluorinated alumina can also be obtained by treatment with hydrogen chloride gas as follows. The activated alumina is sufficiently dried by heating to 400 to 800'C under a stream of dry nitrogen. After that, a predetermined temperature, usually 300~
At 700°C, hydrogen chloride gas is passed as it is or diluted with an inert gas such as nitrogen or alcon or a chlorofluorohydrocarbon such as R-12 (dichlorodifluoromethane) or R-21. Typical flow times are 3 to 10 hours.

アルミナは一般に市販されている、通常γ−アルミナを
主成分とする脱水用、触媒用として用いられる多孔質ア
ルミナであれば任意のものが使用できる。例えば、ネオ
ビード(Neobead)C,MHR,GB、D(水沢
化学工業株式会社)、住友化学工業株式会社製活性アル
ミナKHA、NKHI、NKH3などが用いられる。
Any commercially available alumina can be used as long as it is a porous alumina that is usually made of γ-alumina as a main component and is used for dehydration and catalyst purposes. For example, Neobead C, MHR, GB, D (Mizusawa Chemical Industries, Ltd.), activated alumina KHA, NKHI, NKH3 manufactured by Sumitomo Chemical Industries, Ltd., etc. are used.

クロロ炭化水素またはクロロフルオロ炭化水素は、水素
を含まないものとしては、炭素数1〜3、好ましくは1
〜2のものが使用され、特に好ましくは、四塩化炭素、
フルオロトリクロロメタ/、ジフルオロクロロメタン、
トリフルオロクロロメタン、1,1.2−トリクロロ−
1,2,2−トリフルオロエタン、1,1.1−トリク
ロロ−2,2゜2−トリフルオロエタン、1,1,2.
2−テトラフルオロ−1,2−ジクロロエタン、1.1
,1.2−テトラフルオロ−2,2−ジクロロエタン、
l。
Chlorohydrocarbons or chlorofluorohydrocarbons, which do not contain hydrogen, have 1 to 3 carbon atoms, preferably 1
-2 are used, particularly preferably carbon tetrachloride,
Fluorotrichloromethane/, difluorochloromethane,
Trifluorochloromethane, 1,1,2-trichloro-
1,2,2-trifluoroethane, 1,1.1-trichloro-2,2°2-trifluoroethane, 1,1,2.
2-tetrafluoro-1,2-dichloroethane, 1.1
, 1.2-tetrafluoro-2,2-dichloroethane,
l.

1.2.2−テトラクロロ−1,2−ジフルオロエタン
、1.1.1.2−テトラクロロ−2,2−ジフルオロ
エタンが挙げられる。水素を含むクロロ炭化水素または
クロロフルオロ炭化水素として、炭素数1〜3、好まし
くは1〜2のもの、特に好ましくは、フルオロジクロロ
メタン、ジフルオロクロロメタン、1.1.1−)リフ
ルオロ−2,2−ジクロロエタン、1,1.2−1リフ
ルオロ−1゜2−ジクロロエタン、1,1.1−トリフ
ルオロ−2−クロロエタンが挙げられる。
Examples include 1.2.2-tetrachloro-1,2-difluoroethane and 1.1.1.2-tetrachloro-2,2-difluoroethane. The hydrogen-containing chlorohydrocarbon or chlorofluorohydrocarbon has 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms, particularly preferably fluorodichloromethane, difluorochloromethane, 1.1.1-)refluoro-2,2 -dichloroethane, 1,1.2-1-trifluoro-1°2-dichloroethane, and 1,1.1-trifluoro-2-chloroethane.

また、塩素化フッ素化アルミナ触媒は、20〜450℃
でフッ化水素、300〜500℃でフン化81E黄(S
 F 、、S F 、等)、フッ化スルフリル、フッ化
チオニル、20〜450′Cてフッ化アンモニウム(酸
性フッ化アンモニウム、中性)、化アンモニウムなど)
の無機フッ化物を作用させた後、クロロフルオロ炭化水
素、クロロ炭化水素または塩化水素を作用させることに
より製造することができる。
In addition, the chlorinated fluorinated alumina catalyst has a temperature of 20 to 450°C.
Hydrogen fluoride at 300-500℃, fluoride 81E yellow (S
F,, SF, etc.), sulfuryl fluoride, thionyl fluoride, ammonium fluoride (acidic ammonium fluoride, neutral), ammonium fluoride, etc.)
It can be produced by reacting with an inorganic fluoride and then reacting with a chlorofluorohydrocarbon, a chlorohydrocarbon, or hydrogen chloride.

これら触媒の2種またはそれ以上の混合物を使用しても
良い。本発明で用いられる触媒中、特に好ましいのは、
無水塩化アルミニウムおよび上記式: %式% 〔式中、x、yおよび2は上記と同意義。〕で示される
触媒である。
Mixtures of two or more of these catalysts may also be used. Among the catalysts used in the present invention, particularly preferred are:
Anhydrous aluminum chloride and the above formula: % formula % [wherein x, y and 2 have the same meanings as above. ] It is a catalyst shown by.

本発明に用いられる反応の形態は経済性を考慮すれば原
料の仕込みと生成物の抜き出しを連続的に行う反応形態
が最も好ましいが、原料を連続的に一定量仕込んだ後、
仕込みを中断し、一定時間反応後、反応生成物を抜き出
すセミバッチ方式も採り得る。
Considering economic efficiency, it is most preferable for the reaction mode used in the present invention to be a reaction mode in which the raw materials are continuously charged and the product is extracted.
A semi-batch method may also be adopted in which the charging is interrupted and the reaction product is extracted after a certain period of reaction.

本発明の製造方法において、クロロホルム、ジフルオロ
クロロメタンおよびテトラフルオロエチレンの反応は溶
媒中で行ってよい。
In the production method of the present invention, the reaction of chloroform, difluorochloromethane and tetrafluoroethylene may be carried out in a solvent.

用いる溶媒の種類は、触媒に対して不活性であり、クロ
ロホルム、R−22及びTFEを溶解するものであれば
特に限定される物ではない。例えば本反応の原料である
クロロアルカンであるクロロホルムや、また本反応にお
ける副生成物であるハイドロクロロフルオロアルカンで
あるテトラフルオロトリクロロプロパン類であっても良
いし、クロロアルカンであるジクロロメタンのような一
般的溶媒でも良いし、クロロフルオロアルカンであるテ
トラクロロテトラフルオロプロパンでもよい。
The type of solvent used is not particularly limited as long as it is inert to the catalyst and dissolves chloroform, R-22 and TFE. For example, chloroform, which is a chloroalkane that is a raw material for this reaction, tetrafluorotrichloropropanes, which is a hydrochlorofluoroalkane, which is a byproduct of this reaction, or general chloroalkanes, such as dichloromethane, may be used. It may be a typical solvent, or it may be tetrachlorotetrafluoropropane, which is a chlorofluoroalkane.

しかし、反応操作の容易さを考えれば、原料であるクロ
ロホルムを、また、目的生成物であるR−225との分
離を考えればR−225そのものを用いるのが好適であ
る。
However, in view of ease of reaction operation and separation of raw material chloroform from R-225, the desired product, it is preferable to use R-225 itself.

本発明において、例えば触媒に無水塩化アルミニウム、
溶媒としてR225caもしくはR−225cbまたは
両者の混合物を用いる場合には、例えば、無水塩化アル
ミニウムの所定量を溶媒であるR  225caもしく
はR−225cbまたは両者のf!、合物中にV濁させ
た後、所定の温度にて、クロロホルム、R−22および
TFEを所定のモル比および流速で仕込んでいく。反応
の進行にともなって生成したR−225caおよびcb
を含む反応混合物を懸濁した無水塩化アルミニウムから
分離し反応容器から抜き出す。この懸濁した無水塩化ア
ルミニウムからの分離には、通常公知の方法、例えば、
濾過による液状での分離抜き出しや蒸留によるガス状で
の分離抜き出しなどが用いられる。
In the present invention, for example, anhydrous aluminum chloride as a catalyst,
When using R225ca or R-225cb or a mixture of both as a solvent, for example, a predetermined amount of anhydrous aluminum chloride is added to the f! After making V cloudy in the mixture, chloroform, R-22 and TFE are charged at a predetermined temperature and at a predetermined molar ratio and flow rate. R-225ca and cb generated as the reaction progresses
The reaction mixture containing is separated from the suspended anhydrous aluminum chloride and withdrawn from the reaction vessel. Separation from this suspended anhydrous aluminum chloride can be carried out using commonly known methods, e.g.
Separation and extraction in liquid form by filtration and separation and extraction in gaseous form by distillation are used.

このようにして得られた反応混合物を、公知の方法、例
えば精留などにより分離精製し、目的とするR225c
aおよびcbを得ることができる。触媒に対する溶媒の
量は、溶媒の重量が触媒の重量の2倍以上であればよく
、それ以下の場合には、撹拌が効率的でなくなり初期に
R225ca、cbの選択率が低くなる傾向があるため
好ましくない。
The reaction mixture thus obtained is separated and purified by a known method, such as rectification, to obtain the desired R225c.
a and cb can be obtained. The amount of solvent relative to the catalyst should be at least twice the weight of the catalyst; if it is less than that, stirring becomes inefficient and the selectivity of R225ca and cb tends to decrease initially. Therefore, it is undesirable.

本発明の製造法におけるクロロホルム、R−22および
TFHの仕込みモル比は、クロロホルムとR−220モ
ル比については、11以上、好ましくは、11〜1:1
0.R−22とT F ’Hの仕込みモル比は、12以
上、好ましくは、l:2〜l°10である。クロロホル
ムとR−22とTFEのモル比としては、例えば12:
4である。
The molar ratio of chloroform, R-22 and TFH in the production method of the present invention is 11 or more, preferably 11 to 1:1.
0. The charging molar ratio of R-22 and T F'H is 12 or more, preferably 1:2 to 1°10. The molar ratio of chloroform, R-22 and TFE is, for example, 12:
It is 4.

仕込み方法としては、クロロホルム、R−22およびT
FEをそれぞれ予め混合しておいてから加えても、別々
に同時に加えてもよく、場合によっては、クロロホルム
を一定量、一定時間加え、次にR−22とTFEの混合
ガスを加えるといった方法を用いても良い。
As for the preparation method, chloroform, R-22 and T
The FEs may be mixed in advance and then added, or they may be added separately at the same time. In some cases, chloroform may be added in a certain amount for a certain period of time, and then a mixed gas of R-22 and TFE may be added. May be used.

なお、それぞれの原料は、ガス状でも、液状でも仕込む
ことができる。
Note that each raw material can be charged in either gaseous or liquid form.

反応圧力は、特に限定されず、減圧下でも可能である。The reaction pressure is not particularly limited, and the reaction can be carried out under reduced pressure.

しかし、装置が複雑になるので、常圧以上で行うことが
好ましい。
However, since the apparatus becomes complicated, it is preferable to carry out the process at atmospheric pressure or higher.

反応温度は、−30〜+1.20℃、好ましくは、−2
0〜+60℃の範囲の温度である。反応温度が、120
℃より高くなると、副反応生成物の量が増加し、目的と
するR−225ca、cbの選択率か低下する。また、
反応温度が一30℃より低くなると、反応の進行が非常
に遅くなり実用性がない。
The reaction temperature is -30 to +1.20°C, preferably -2
The temperature ranges from 0 to +60°C. The reaction temperature is 120
When the temperature is higher than .degree. C., the amount of side reaction products increases, and the selectivity of target R-225ca and cb decreases. Also,
If the reaction temperature is lower than 130°C, the reaction progresses very slowly and is not practical.

本発明に使用される出発原料であるクロロホルム、R−
22およびTFEはいずれも、工業的に製造されている
。無水塩化アルミニウム等のルイス酸は、通常に市販さ
れている物をそのまま使用することができる。
Chloroform, the starting material used in the present invention, R-
Both 22 and TFE are manufactured industrially. As the Lewis acid such as anhydrous aluminum chloride, commercially available products can be used as they are.

本発明の方法においては、反応終了時にクロロホルムが
残らないので困難なりロロホルム分離の必要がない。
In the method of the present invention, no chloroform remains at the end of the reaction, so there is no need for difficult roloform separation.

[発明の効果] 本発明の方法によれば、クロロホルム、R−22および
TFEから、R225caおよびcbを高収率および高
選択率で得ることができる。また、連続的な反応形態を
とることができるので経済的である。
[Effects of the Invention] According to the method of the present invention, R225ca and cb can be obtained in high yield and high selectivity from chloroform, R-22 and TFE. Moreover, it is economical because it can take a continuous reaction form.

[実施例] 以下、本発明を実施例により説明する。[Example] The present invention will be explained below with reference to Examples.

実施例1 反応系内への水分混入防止用の7リカゲル乾燥管および
ガス導入管を備え付けた100jρのガラス製フラスコ
に、クロロホルム15gおよび無水塩化アルミニウム1
gを仕込んた。マグネチックスターラーで撹拌しながら
、TFEを20cc/分、R−22をl0cc/分の流
速で予め混合した後、ガス導入管より仕込んだ。このと
き、外部を氷水で冷却し、反応態度が5〜10℃になる
ように調節した。反応液をガスクロマトグラフィーによ
り分析すると、反応時間の経過とともにクロロホルムが
減少し、R225caおよびcbが増加していった。5
時間反応後、反応液の量は51gに増加しており、この
ときの反応液の組成は以下のようであった。
Example 1 15 g of chloroform and 11 g of anhydrous aluminum chloride were placed in a 100 jρ glass flask equipped with a 7 liica gel drying tube and a gas introduction tube to prevent moisture from entering the reaction system.
I prepared g. While stirring with a magnetic stirrer, TFE and R-22 were mixed in advance at a flow rate of 20 cc/min and 10 cc/min, and then charged through a gas introduction tube. At this time, the outside was cooled with ice water to adjust the reaction state to 5 to 10°C. When the reaction solution was analyzed by gas chromatography, chloroform decreased and R225ca and cb increased as the reaction time progressed. 5
After the time reaction, the amount of the reaction solution increased to 51 g, and the composition of the reaction solution at this time was as follows.

尚、クロロホルムは、検出されなかった。Note that chloroform was not detected.

注:*R−224はテトラフルオロトリクロロプロパン
を表す。
Note: *R-224 represents tetrafluorotrichloropropane.

実施例2 無水塩素化フッ素化アルミニウムを以下のようにして調
製した。
Example 2 Anhydrous chlorinated fluorinated aluminum was prepared as follows.

無水m化アルミニウム20gとフロロトリクロロメタン
20gを混合後、0〜5℃の温度で2時間撹拌し、その
後反応液を真空下に除去し、無水塩素化フッ素化アルミ
ニウムを得た。実施例1と同様の反応装置に、先に調製
した無水塩素化フ。
After mixing 20 g of anhydrous aluminum mide and 20 g of fluorotrichloromethane, the mixture was stirred at a temperature of 0 to 5° C. for 2 hours, and then the reaction solution was removed under vacuum to obtain anhydrous chlorinated aluminum fluoride. In a reactor similar to Example 1, the anhydrous chlorinated fluoride prepared previously was placed.

素化アルミニウム2gおよびR225(ca:cb=5
1 :49)40gを仕込んだ。外部を氷水で冷却し、
マグ不チックスターラーで撹拌しつつ、クロロホルムを
液状で1.33g/時間の流量で仕込みながら、TFE
を20cc/分、R−22を10cc/分の流量で予め
混合後仕込んだ。6時間後の反応液の重量は、68gに
増加していた。反応後の分析の結果を次に示す。クロロ
ホルムは、検出されなかった。
2g of aluminum chloride and R225 (ca:cb=5
1:49) 40g was charged. Cool the outside with ice water,
While stirring with a magnetic stirrer and adding chloroform in liquid form at a flow rate of 1.33 g/hour, TFE was added.
and R-22 were mixed in advance at a flow rate of 20 cc/min and 10 cc/min. The weight of the reaction solution after 6 hours had increased to 68 g. The results of analysis after the reaction are shown below. Chloroform was not detected.

特許出願人 ダイキン工業株式会社 代理人弁理士青山 葆 はか1名Patent applicant: Daikin Industries, Ltd. Representative patent attorney: Haka Aoyama (1 person)

Claims (1)

【特許請求の範囲】[Claims] 1、クロロホルム、ジフルオロクロロメタンおよびテト
ラフルオロエチレンを触媒存在下に反応させることを特
徴とする1,1,1,2,2−ペンタフルオロ−3,3
−ジクロロプロパンおよび1,1,2,2,3−ペンタ
フルオロ−1,3−ジクロロプロパンの製造方法。
1. 1,1,1,2,2-pentafluoro-3,3 characterized by reacting chloroform, difluorochloromethane and tetrafluoroethylene in the presence of a catalyst
- A method for producing dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane.
JP2227501A 1990-08-28 1990-08-28 Method for producing pentafluorodichloropropanes Expired - Fee Related JPH0784398B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2227501A JPH0784398B2 (en) 1990-08-28 1990-08-28 Method for producing pentafluorodichloropropanes
CA002049821A CA2049821A1 (en) 1990-08-28 1991-08-26 Preparation of pentafluorodichloropropanes
AU82784/91A AU8278491A (en) 1990-08-28 1991-08-27 Preparation of pentafluorodichloropropanes
AT91114338T ATE119143T1 (en) 1990-08-28 1991-08-27 PRODUCTION OF PENTAFLUORDICHLOROPROPANES.
ES91114338T ES2071878T3 (en) 1990-08-28 1991-08-27 PREPARATION OF PENTAFLUORODICLOROPROPANES.
CS912633A CS263391A3 (en) 1990-08-28 1991-08-27 Process for preparing pentafluorodichloropropanes
EP91114338A EP0473105B1 (en) 1990-08-28 1991-08-27 Preparation of pentafluorodichloropropanes
PL29153791A PL291537A1 (en) 1990-08-28 1991-08-27 Method of obtaining 1,1,1,2,2,-pentafluoro-3,3,-dichloropropane and 1,1,2,2,3,-pentafluoro-1,3,-dichloropropane as well as method of removing trichloromethane
SU915001481A RU2029757C1 (en) 1990-08-28 1991-08-27 Process for preparing 1,1,1,2,2-pentafluoro-3,3- dichloropropane and 1,1-2,2,3-pentafluoro-1,3- dichloropropane
DK91114338.6T DK0473105T3 (en) 1990-08-28 1991-08-27 Preparation of pentafluorodichloropropanes
DE69107732T DE69107732T2 (en) 1990-08-28 1991-08-27 Manufacture of pentafluorodichloropropanes.
BR919103700A BR9103700A (en) 1990-08-28 1991-08-28 PROCESS FOR THE PREPARATION OF 1,1,1,2,2-PENTAFLUORO-3,3-DICLORO PROPANO AND 1,1,2,2,3-PENTAFLUORO-1,3-DICLOROP ROPANO AND PROCESS FOR THE REMOVAL OF CHLOROFORM OF A MIXTURE OF CHLOROPHORM
KR1019910014951A KR920004321A (en) 1990-08-28 1991-08-28 Method for producing pentafluorodichloropropanes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227501A JPH0784398B2 (en) 1990-08-28 1990-08-28 Method for producing pentafluorodichloropropanes

Publications (2)

Publication Number Publication Date
JPH04108743A true JPH04108743A (en) 1992-04-09
JPH0784398B2 JPH0784398B2 (en) 1995-09-13

Family

ID=16861885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227501A Expired - Fee Related JPH0784398B2 (en) 1990-08-28 1990-08-28 Method for producing pentafluorodichloropropanes

Country Status (2)

Country Link
JP (1) JPH0784398B2 (en)
AU (1) AU8278491A (en)

Also Published As

Publication number Publication date
AU8278491A (en) 1992-03-05
JPH0784398B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
HUT75954A (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
JPS5946211B2 (en) 1-Chloro-1,1-difluoroethane matach/Oyobi 1,1,1-trifluoroethane
JP3516322B2 (en) Method for dehydrating 1,1,1,3,3-pentafluoropropane
JPH0449257A (en) Production of 1-chloro-2,2,2-trifluoroethane
EP0518353B1 (en) Process for preparation fluorinated compound
AU632885B2 (en) Process for preparing pentafluorodichloropropanes
US5177274A (en) Process for preparing pentafluorodichloropropanes
JPH04108743A (en) Production of pentafluorodichloropropanes
EP0421322B1 (en) Process for preparing penta-fluorodichloropropanes
RU2029757C1 (en) Process for preparing 1,1,1,2,2-pentafluoro-3,3- dichloropropane and 1,1-2,2,3-pentafluoro-1,3- dichloropropane
EP0129863B1 (en) Fluorination process
US5055624A (en) Synthesis of 1,1-dichloro-1,2,2,2-tetrafluoroethane
JPH04224527A (en) Production of pentafluorodichloropropane
JPH0368526A (en) Preparation of mixture containing 1-chloro-1- fluoroethylene and vinylidene fluoride by gas-phase contacting disproportionate reaction of 1-chloro-1, 1-difluoroethane
JPH0525066A (en) Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane
RU2041193C1 (en) Method of synthesis of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane
JPS6139297B2 (en)
JPH04108744A (en) Method for removing chloroform in pentafluorodichloropropane
EP0380129B1 (en) Process for preparing alpha-bromo-acyl-fluorides
JPH0786090B2 (en) Method for producing pentafluorodichloropropanes
JPH0145455B2 (en)
WO2004045763A1 (en) Porous aluminum fluoride
JP2658070B2 (en) Method for producing fluorine-containing alkane
JPH05155789A (en) Production of hexafluorotrichloropropanes
JPH04346947A (en) Production of chlorotrifluoroethylene

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees