JPH04108385A - Production of equalized cdna library - Google Patents

Production of equalized cdna library

Info

Publication number
JPH04108385A
JPH04108385A JP22462790A JP22462790A JPH04108385A JP H04108385 A JPH04108385 A JP H04108385A JP 22462790 A JP22462790 A JP 22462790A JP 22462790 A JP22462790 A JP 22462790A JP H04108385 A JPH04108385 A JP H04108385A
Authority
JP
Japan
Prior art keywords
cdna
stranded
library
double
mrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22462790A
Other languages
Japanese (ja)
Other versions
JP3164814B2 (en
Inventor
Minoru Ko
実 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP22462790A priority Critical patent/JP3164814B2/en
Publication of JPH04108385A publication Critical patent/JPH04108385A/en
Application granted granted Critical
Publication of JP3164814B2 publication Critical patent/JP3164814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an equalized cDNA library by separating cDNA reassociated into double strands and cDNA of intact single strands, synthesizing the single-stranded cDNA into double-stranded cDNA and respectively cloning the cDNA. CONSTITUTION:A double-stranded cDNA synthesized by using an mRNA as a template is denatured and further reassociated and the reassociated cDNA is separated from the cDNA of intact single strands. The resultant separated single-stranded cDNA is synthesized into a double-stranded cDNA and respectively cloned to prepare an equalized cDNA library. Furthermore, the single-stranded cDNA is preferably previously provided with an adhesive end at the 3'-terminal thereof and fragmented and the cDNA to be cloned or a fragment thereof is preferably amplified by a polymerase chain reaction(PCR) method. The single- stranded cDNA remaining after the reassociating reaction can be further amplified by the PCR method to readily afford the cDNA in an amount sufficient to ensure an excellent cloning efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、均一化cDNAライブラリー(equal
ized cDNA 1ibrary)と、その作製法
に関するものである。さらに詳しくは、この発明は、未
知遺伝子のクローニングや、ゲノムシーフェンスまたは
cosmid clone上の転写領域の同定、さらに
は多数の遺伝子群の発現パターンの同時同定等、広く医
学、生物学等の研究分野に有用な均一化cDNAライブ
ラリーとその作製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention is directed to the production of homogenized cDNA libraries (equal cDNA libraries).
ized cDNA library) and its production method. More specifically, this invention is applicable to a wide range of research fields such as medicine and biology, such as cloning of unknown genes, identification of transcribed regions on genome sequences or cosmid clones, and simultaneous identification of expression patterns of multiple gene groups. The present invention relates to a homogenized cDNA library useful for and a method for producing the same.

(従来の技術) 近年、生命体を構成する組織、機構についての科学的解
明と、それにともなう技術的応用が急速に進歩し、遺伝
子工学の基礎が次々に確立されてきている。
(Prior Art) In recent years, scientific elucidation of the tissues and mechanisms that make up living organisms and accompanying technological applications have progressed rapidly, and the foundations of genetic engineering are being established one after another.

このような状況において、原核生物からヒトも含めた真
核生物にいたるあらゆる生物の遺伝子について、種や個
々の組織に特有な構造あるいは機能を有する種々の遺伝
子か同定され、その遺伝情報の解析により多数の知見が
蓄積されてきているか、一方で、このようにして得られ
た個々の遺伝子それ自体を、必要に応してそれが随時利
用可能な状態に保管することは、その遺伝子についての
さらなる解析や、あるいはその医学的、生物学的、工学
的利用といった面からも極めて重要な課題である。
Under these circumstances, genes from all living things, from prokaryotes to eukaryotes including humans, have been identified with structures or functions unique to species and individual tissues, and through analysis of their genetic information, A large amount of knowledge has been accumulated, and on the other hand, storing the individual genes obtained in this way so that they can be used at any time as needed is important for further information about that gene. This is an extremely important issue from the viewpoint of analysis and its medical, biological, and engineering applications.

従来より、特定の遺伝子の保管に際しては、その遺伝子
DNAを部分的に制限分解し、各断片をクローニングベ
クター等にクローン化して、個々のクローンのコレクシ
ョンから、いわゆる遺伝子ライブラリーを作製する方法
か用いられている。
Traditionally, when storing a specific gene, a method has been used in which the genetic DNA is partially restricted and digested, each fragment is cloned into a cloning vector, etc., and a so-called gene library is created from a collection of individual clones. It is being

このような遺伝子ライブラリーの一つに、ゲノムライブ
ラリーかある。これは、ある特定の生物に存在するすべ
ての遺伝子(ゲノムDNA)を断片化して個々にクロー
ン化したものである。
One such gene library is a genomic library. This is the fragmentation and individual cloning of all the genes (genomic DNA) present in a particular organism.

特定の生物のゲノムの内、タンパク質をコートしている
部分、つまり実際に生物を構成するときに重要な役割を
果たしている部分は1%たらずであると見積もられてい
る。即ち、ライブラリー中の大部分の情報は不要である
ことが多い。このタンパク質をコードしている部分たけ
をクローニングするのがcDNAライブラリーである。
It is estimated that less than 1% of a particular organism's genome is coated with proteins, that is, the portion that plays an important role in actually forming the organism. That is, most of the information in the library is often unnecessary. A cDNA library is created by cloning only the portion encoding this protein.

これは、原核生物、真核生物をとわず、細胞内に存在し
ているmRNAを鋳型として、逆転写酵素をもちいて相
補的DNA (complementary DNA 
:cDNA)を合成し、これを個々にクローン化して遺
伝子ライブラリーを作製するものである。
This process uses reverse transcriptase as a template to generate complementary DNA (complementary DNA) in both prokaryotes and eukaryotes, using mRNA present in cells as a template.
: cDNA) is synthesized and individually cloned to create a gene library.

このライブラリーは、発現ベクターにつないで、動物細
胞内でその蛋白を発現させるなど、ゲノムライブラリー
にはないさまざまな使い方が可能であり、従来より多く
の種のさまざまなタイプの細胞について広く作製されて
きている。
This library can be used in a variety of ways that genomic libraries cannot, such as connecting it to an expression vector and expressing the protein in animal cells, and can be widely produced in many different types of cells from more species than before. It has been done.

(発明が解決しようとする課題) しかしながら、cDNAライブラリーの場合にはゲノム
ライブラリーと違い、材料をどの細胞からとってくるか
によって異なった種類のものができる。というのも、は
とんどの多細胞生物は、個々の細胞が特殊化されており
、言い替えれば、種々の異なったタイプの細胞の集合体
として構成されている。しかも、個々の細胞はすべてひ
と揃いの遺伝子を有しているか、細胞の種類によって発
現する遺伝子群が決定されており、発現する遺伝子だけ
がmRNAに転写されているからである。
(Problems to be Solved by the Invention) However, unlike genomic libraries, cDNA libraries can be of different types depending on which cells the material is taken from. This is because most multicellular organisms have specialized individual cells, or in other words, are composed of aggregates of various different types of cells. Moreover, each individual cell has a set of genes, or the group of genes to be expressed is determined depending on the type of cell, and only the expressed genes are transcribed into mRNA.

さらに、1つの細胞は多くの種類の発現遺伝子を有して
おり、たとえば肝細胞の場合には、発現遺伝子の種類は
2〜3万種にも達すると推定されている。しかもその各
々が均一の割合で存在する訳ではなく、肝細胞の場合、
そのmRNA量の約16%はアルブミンという蛋白質を
コートする一種類のmRNAが占めている。又、ニワト
リの輸卵管細胞をニストロジエンで刺激した時に転写さ
れる全mRNA量の50%はオブアルブミンという一種
類のmRNAである。一方、含有率の最も少ない遺伝子
は全mRNAのわずか0.0005%以下であると推定
されており、その差は実にlO万倍にも達する。
Furthermore, one cell has many types of expressed genes; for example, in the case of liver cells, it is estimated that the number of types of expressed genes reaches 20,000 to 30,000. Moreover, each of them does not exist in the same proportion; in the case of hepatocytes,
Approximately 16% of the amount of mRNA is one type of mRNA that coats a protein called albumin. Furthermore, when chicken oviduct cells are stimulated with nistrogien, 50% of the total amount of mRNA transcribed is one type of mRNA called ovalbumin. On the other hand, it is estimated that the gene with the lowest content is only 0.0005% or less of the total mRNA, and the difference is actually 10,000 times greater.

従って、従来の方法、すなわち発現遺伝子から転写され
たmRNAを鋳型としてcDNAを合成し、それらを個
々にクローン化してcDNAライブラリーを作製した場
合には、各々のmRNA種の含有率の差がそのライブラ
リーを構成するクローンの種類毎の含有率の差にそのま
ま反映されることになる。すなわち肝細胞のcDNAラ
イブラリーの場合、全体の約16%は同一種のcDNA
クローンであり、一方、少ないものはわずかに0、00
05%存在するにすぎないことになる。
Therefore, in the conventional method, that is, when cDNA is synthesized using mRNA transcribed from an expressed gene as a template and a cDNA library is created by individually cloning them, the difference in the content of each mRNA species is This is directly reflected in the difference in the content rate of each type of clone making up the library. In other words, in the case of a hepatocyte cDNA library, approximately 16% of the total is cDNA of the same species.
clone, while the lesser one is only 0,00
This means that only 0.5% of them exist.

このため、含有率の少ないcDNA種をも含んだライブ
ラリーは、大きなものとなってしまう。
For this reason, a library that also includes cDNA species with a low content rate becomes large.

例えば、肝臓では全種類のmRNAの合計は、たかだか
致方なのに、従来のライブラリーでは、数十〜数百万の
大きさがないと、全部を含んでいないこととなる。
For example, in the liver, the total number of all types of mRNA is at most a small number, but conventional libraries do not contain all of the mRNA unless it is several dozen to several million in size.

cDNAライブラリーを使用する場合、実際に必要なの
は1種類の遺伝子に対して1個のcDNAであり、ライ
ブラリーの中で重複して存在するcDNAは余分なばか
りか、目的とするc [) N 、Aの検索の妨げにも
なる。もちろん、このような余分なcDNAクローンを
多数含有する従来のcDNAライブラリーにおいても、
塩基配列か既知である特定の遺伝子を対象とする場合に
は、たとえばハイブリダイモーションプロービング法等
の公知の方法により、比較的容易に目的とするcDNA
を同定、単離することができる。また、塩基配列が未知
であっても、その蛋白に対する抗体が存在する場合など
もスクリーニング法は確立されている。
When using a cDNA library, what is actually required is one cDNA for one type of gene, and cDNAs that are duplicated in the library are not only redundant but also difficult to obtain the desired c[)N. , it also hinders the search for A. Of course, even in conventional cDNA libraries containing many such extra cDNA clones,
When targeting a specific gene whose nucleotide sequence is known, it is relatively easy to obtain the target cDNA using known methods such as hybrid motion probing.
can be identified and isolated. Furthermore, even if the base sequence is unknown, screening methods have been established for cases where antibodies against the protein exist.

問題は、機能を示標として、その蛋白をコードしている
cDNAを同定、単離する場合である。
The problem is identifying and isolating cDNA encoding the protein using function as an indicator.

この場合は、ひとつひとつのcDNAを発現ベクターに
挿入し、蛋白を細胞内で作らせ、その蛋白が細胞にどの
ような影響を与えるかを調べなければならない。また、
ライブラリー中の膨大な数のクローンを1個づつ検索し
なければ同定、単離できないと考えられている遺伝子も
多数存在する。
In this case, each cDNA must be inserted into an expression vector, the protein produced within the cell, and the effect of that protein on the cell must be investigated. Also,
There are many genes that cannot be identified or isolated unless a huge number of clones in a library are searched one by one.

近年、このような未知遺伝子の検索のためのcDNAラ
イブラリーの利用が重要になりつつあるか、その場合、
従来のcDNAライブラリーにおける多数の重複した余
分なc D N 、Aの存在は大きな問題である。
In recent years, has the use of cDNA libraries to search for unknown genes become more important?
The presence of large numbers of duplicate and redundant cDN,A in conventional cDNA libraries is a major problem.

また、同様の理由で、発現し得るすへての遺伝子の種類
は限られているのに(ヒトで約lO万種類といわれてる
)、そのc D N A種の1セ・ソトをそろえること
すらできていない。
Also, for the same reason, although the types of genes that can be expressed are limited (it is said that there are about 100,000 types in humans), it is important to have one set of cDNA types. I haven't even been able to do it.

仮にそういったものを作ることかできたならは、もはや
個々の研究者が個々の場合に、それぞれcDNAライブ
ラリーを作る必要はなくなるであろう。
If it were possible to create such a library, there would no longer be a need for each individual researcher to create a cDNA library for each case.

この発明は、以上の通りの事情に鑑みてなされたもので
あり、従来のcDNAライブラリーの課題を克服し、各
々のmRNAすなわち発現遺伝子の分子種を、より等し
い割合で含有する均一化c’ D N Aライブラリー
の作製法と、そのような均一化cDNAライブラリーを
提供することを目的としている。
This invention was made in view of the above circumstances, and it overcomes the problems of conventional cDNA libraries and provides a homogenized cDNA library that contains the molecular species of each mRNA, that is, the expressed gene, in a more equal proportion. The purpose of this invention is to provide a method for producing a DNA library and a homogenized cDNA library.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、mRN
Aを鋳型として合成した二本鎖cDNAを変性させ、さ
らに再会合させた後、二本鎖に再会合したcDNAと一
本鎖のままのcDNAを分離し、この一本鎖cDNAを
二本鎖cDNAに合成して各々クローン化してなること
を特徴とする均一化cDNAライブラリーの作製法と、
このような方法により作製する均一化cDNAライブラ
リーを提供する。
(Means for Solving the Problems) The present invention solves the above problems by using mRNA
The double-stranded cDNA synthesized using A as a template is denatured and further re-associated, the cDNA that has re-associated into double-strands and the cDNA that remains single-stranded are separated, and this single-stranded cDNA is converted into double-stranded cDNA. A method for producing a homogenized cDNA library, characterized in that it is synthesized into cDNA and cloned individually;
A homogenized cDNA library prepared by such a method is provided.

またこの発明は、一本鎖cDNAを、予めその3′末端
に付着端を配設して断片化すること、および、クローン
化するcDNAまたはその断片をPCR法によって増幅
させることを好ましい態様としてもいる。
This invention also provides a preferred embodiment of fragmenting a single-stranded cDNA by providing a cohesive end in advance at its 3' end, and amplifying the cDNA to be cloned or a fragment thereof by PCR. There is.

以下、こQ発明の構成について詳しく説明する。The configuration of this Q invention will be explained in detail below.

まず、この発明においては、あらゆる種のあらゆるタイ
プの細胞を対象として、その遺伝子のcDNAライブラ
リーを作製することができる。
First, in this invention, a cDNA library of the gene can be created for any type of cell of any species.

そして、原理的には、種ごとに発現し得る遺伝子の1セ
ツトを全て含んだcDNAライブラリーの作製も射呈内
にはいることになる。
In principle, this also involves the creation of a cDNA library containing a complete set of genes that can be expressed for each species.

また、cDNAの鋳型となるm R’N Aの抽出、精
製は公知の常法に従って行なうことができ、たとえばそ
の−例として次のように行うことかできる。
Furthermore, extraction and purification of mR'NA, which serves as a template for cDNA, can be carried out according to known conventional methods, for example, as follows.

すなわち、たとえば真核生物の細胞質のmRNAはリポ
ソームとの複合体であるポリソーム中に濃縮されている
ため、まず、分別遠心あるいはショ糖溶液やその密度勾
配中での遠心等によりポリソームを分離する。次に、フ
ェノールとクロロホルムとの混液、あるいはpH9の緩
衝液で飽和したフェノールまたは熱5DS−フエノール
等を用いて、上記ポリソームからmRNAを抽出する。
That is, for example, since eukaryotic cytoplasmic mRNA is concentrated in polysomes, which are complexes with liposomes, the polysomes are first separated by differential centrifugation or centrifugation in a sucrose solution or its density gradient. Next, mRNA is extracted from the polysome using a mixture of phenol and chloroform, phenol saturated with a pH 9 buffer, hot 5DS-phenol, or the like.

このように抽出したmRNAは、さらにショ糖密度勾配
遠心やゲル電気泳動等を用いて大きさによる特異的mR
NAへと精製する。
The mRNA extracted in this way is further analyzed by size-specific mRNA using sucrose density gradient centrifugation, gel electrophoresis, etc.
Purify to NA.

このようにして得たmRNAからcDNAを合成する場
合も、公知の方法を利用することができる。たとえば、
真核細胞の細胞質中に存在するmRNAの多くはその3
′末端にioo〜200塩基からなるポリA配列をもつ
ため、このポリAに、たとえばオリゴ(dT)プライマ
ーをアニールし、これをプライマーとして逆転写酵素を
用いRNA鎖と相補的なりNAからなるポリヌクレオチ
ドを合成する。さらにこのポリヌクレオチにアルカリ処
理を行ない、RNA鎖を分解して一本鎖c D N A
とするが、この一本鎖cDNAには、その3′末端にヘ
アピンループが形成され、これをプライマーとして相補
的なcDNA鎖が合成されて二本鎖cDNAとなる。
Known methods can also be used to synthesize cDNA from the mRNA thus obtained. for example,
Most of the mRNA present in the cytoplasm of eukaryotic cells is
' Since the terminal has a polyA sequence consisting of ioo to 200 bases, for example, an oligo (dT) primer is annealed to this polyA, and this is used as a primer to generate a polynucleotide consisting of NA that is complementary to the RNA strand using reverse transcriptase. Synthesize nucleotides. Furthermore, this polynucleotide is treated with alkali to degrade the RNA strand and create a single-stranded cDNA.
However, a hairpin loop is formed at the 3' end of this single-stranded cDNA, and a complementary cDNA strand is synthesized using this as a primer to form a double-stranded cDNA.

通常のcDNAライブラリーを作製する場合であれば、
この二本鎖cDNAを、その両端をたとえばS1ヌクレ
アーゼ等で処理し、さらに付着端を付した後、適当なり
ローニングベクターを用いてクローン化するが、本発明
においては、得られたcDNAの全てをクローン化する
のではなく、それらを選択して、各々のcDNA種を等
しい割合とするための均一化を行なう。
When creating a regular cDNA library,
Both ends of this double-stranded cDNA are treated with, for example, S1 nuclease to add cohesive ends, and then cloned using an appropriate loning vector. In the present invention, all of the obtained cDNA is Rather than cloning them, they are selected and homogenized to have equal proportions of each cDNA species.

このような均一化を行なうため、まず、得られた全ての
二本鎖cDNAを、たとえばアルカリ性変性液に浸した
り、または熱を与えたりすることにより変性(dena
tur’ation)させて一本鎖に解離し、さらにこ
の一本鎖cDNAを任意の温度(たとえば65℃)の再
会合緩衝液中で反応させて、再度二本鎖のcDNAへと
再会合(reassoc 1ation)させる。この
とき、各々の一本鎖cDNAは当然、相補的なもの同士
が再会合するか、反応液中に多数重複して存在するc 
D N Aはど速やかに再会合し、含有率の低いcDN
Aは再会合を完了するのに時間を要する。そこで、適当
な時間で再会合反応を停止させると、その反応液中には
二本鎖に再会合したcDNAと一本鎖のままのcDNA
が存在することになる。このうち、二本鎖cDNAのグ
ループはそのほとんどが本来多数重複して存在したcD
NA種によって占められるため、残りの一本鎖cDNA
のグループには、時間内での再会合に失敗した含有率の
高いcDNA種の一本鎖と、本来再会合しにくい含有率
の低いcDNA種の一本鎖が存在することになる。そこ
で、反応液中に存在する二本鎖cDNAと一本鎖cDN
Aを公知の方法、たとえばハイトロキシルアパタイトの
カラム等を用いて分離し、一本鎖のcDNAだけを前述
と同様に再度二本鎖へと合成すれば、このcDNAのグ
ループでは、各cDNA種毎の含有率の差が大幅に小さ
くなる。
In order to achieve such homogenization, first, all of the obtained double-stranded cDNAs are denatured (denatured) by, for example, immersing them in an alkaline denaturing solution or by applying heat.
tur'ation) to dissociate into single strands, and then this single stranded cDNA is reacted in a reassociation buffer at an arbitrary temperature (for example, 65°C) to reassociate (reassociate) into double stranded cDNA. reassoc 1ation). At this time, each single-stranded cDNA naturally re-associates complementary cDNAs, or cDNAs present in large numbers in duplicate in the reaction solution.
DNA quickly re-associates, resulting in low cDNA content.
A needs time to complete the reconvening. Therefore, when the reassociation reaction is stopped at an appropriate time, the reaction mixture contains cDNA that has reassembled into double strands and cDNA that remains single stranded.
will exist. Among these, most of the double-stranded cDNA groups are cDNAs that originally existed in large numbers in duplicate.
The remaining single-stranded cDNA is occupied by the NA species.
In this group, there are single strands of cDNA species with a high content that have failed to reassociate within a certain period of time, and single strands of cDNA species with a low content that are originally difficult to reassociate. Therefore, the double-stranded cDNA and single-stranded cDNA present in the reaction solution
If A is separated using a known method, such as a hytroxylapatite column, and only the single-stranded cDNA is synthesized again into double-stranded cDNA in the same manner as described above, in this group of cDNAs, each cDNA species will be separated. The difference in the content of each type becomes significantly smaller.

さらにこのような変性、再会合処理を複数回繰り返すこ
とにより、最終的に各cDNA種が等しい割合で含まれ
るcDNAの集合を得ることができ、常法に従いこれら
のcDNAを各々クローニングベクターに挿入連結する
ことにより、均一化cDNAライブラリーを作製するこ
とができる。
Furthermore, by repeating such denaturation and reassociation processes multiple times, it is possible to finally obtain a collection of cDNAs containing equal proportions of each cDNA species, and these cDNAs are inserted and ligated into cloning vectors according to standard methods. By doing so, a homogenized cDNA library can be created.

なお、このような均一化を計るために用いた変性、再会
合処理それ自体は、たとえば2種類の細胞のmRNAか
ら、一方の細胞でのみ特異的に発現するmRNAを選別
する場合や、あるいは任意の手段(たとえば特定のホル
モンを作用させる)等により特異的に発現が誘導される
mRNAを、その細胞に個有な発現mRNAから選別す
る場合等に広く用いられている方法である。たとえば、
細胞(A)と細胞(B)を対象として、細胞(A)で特
異的に発現するmRNA種のみのcDNAライブラリー
を作製する場合には、一般に細胞(A)のmRNAを一
本鎖cDNAに変換し、これと細胞(B)のmRNAを
会合させて、一本鎖のまま残ったcDNAをクローニン
グする手続きがとられているが、その際に、両方の細胞
(A)、(B)で共通に発現しているmRNA種を完全
に除(ため細胞(A)のcDNAに対して細胞(B)の
mRNAを大過剰に加えることが必要である。しかしな
がら、この発明では、全種類のcDNAが、一つも脱落
することなく、かつ均一の割合で残存することを必須と
するため、再会合反応に供するcDNAの各々の相補鎖
は、正確に一対一の割合とすることを絶対条件としてい
る。
The denaturation and reassociation process itself used to achieve such homogenization can be used, for example, when selecting mRNA that is specifically expressed in only one cell from two types of cell mRNA, or when using an arbitrary method. This method is widely used to select mRNA whose expression is specifically induced by such means (for example, by applying a specific hormone) from mRNA expressed uniquely to that cell. for example,
When creating a cDNA library containing only mRNA species that are specifically expressed in cell (A) using cell (A) and cell (B), generally the mRNA of cell (A) is converted into single-stranded cDNA. A procedure is being taken to clone the remaining single-stranded cDNA by combining it with the mRNA of the cell (B), but at this time, the cDNA of both cells (A) and (B) is In order to completely remove commonly expressed mRNA species, it is necessary to add a large excess of mRNA from cells (B) to cDNA from cells (A). However, it is essential that none of the complementary strands of the cDNAs are dropped and that they remain in a uniform ratio, so it is an absolute condition that the complementary strands of each cDNA subjected to the reassociation reaction must be in an exact one-to-one ratio. .

またこれによって、全てのmRNA種(c DNA種)
をもれなく均一化ライブラリーの中に含むことが理論的
に保障される。
This also allows all mRNA species (c DNA species)
It is theoretically guaranteed that all of the following are included in the homogenized library.

ただし、上記方法により均一化cDNAライブラリーを
作製する場合、対象とする細胞の種類等によっては、次
のような2つの問題が生じる危険性がある。
However, when producing a homogenized cDNA library by the above method, there is a risk that the following two problems may occur depending on the type of target cells.

ひとつは、均一化を行なうための変性、再会合処理中の
、必要なCDNA種の脱落である。通常、一本鎖cDN
Aを会合反応させた場合、その配列が相補的なもの同士
か会合して二本鎖cDNAを形成する。ところが実際に
は、異なるmRNAに由来するcDNAの一本鎖同士で
あっても、互いに50bp程度の相同領域を有する場合
には、それらの一本鎖cDNAは二本鎖を形成してしま
う可能性がある。たとえば、アクチンという蛋白質をコ
ードするmRNAは約10種類存在するが、その蛋白コ
ード領域は非常に相同性が高いため、これらの各々の一
重鎖cDNAを会合させると、同じようにアクチンをコ
ードするが、しかし別種であるcDNA同士が二本鎖を
形成してしまうことがある。前述の通り、この発明にお
いては、一定時間内の再会合反応の結果、二本鎖を形成
したCDNAは、ライブラリーの対象からは除外してし
まう。そのため、上記アクチン遺伝子の場合のように別
種の一重鎖cDNA同士が再会合してしまった場合、必
要なcDNAの数種が脱落した不完全なライブラリーと
なってしまう。このような問題を克服するため、この発
明では、mRNAから合成した全長cDNAを、予め機
械的せん断力によって数百塩基対単位に断片化し、3′
末端側領域のcDNA断片のみをクローン化する均一化
cDNAライブラリーの作製法も提供する。
One is the shedding of necessary CDNA species during the denaturation and reassociation process for homogenization. Usually single-stranded cDN
When A is subjected to an association reaction, those whose sequences are complementary associate with each other to form double-stranded cDNA. However, in reality, even if single strands of cDNA are derived from different mRNAs, if they each have a homologous region of about 50 bp, there is a possibility that the single strands of cDNA may form a double strand. There is. For example, there are about 10 types of mRNA that encode the protein actin, and their protein-coding regions are highly homologous, so when the single-stranded cDNAs of each of these are combined, they code for actin in the same way. However, cDNAs of different types may form double strands. As described above, in the present invention, CDNAs that have formed double strands as a result of reassociation reaction within a certain period of time are excluded from the library. Therefore, when different types of single-stranded cDNAs re-associate as in the case of the actin gene described above, an incomplete library is created in which several types of necessary cDNAs are missing. In order to overcome such problems, in the present invention, full-length cDNA synthesized from mRNA is fragmented in advance into several hundred base pair units by mechanical shearing force, and the 3′
A method for producing a homogenized cDNA library by cloning only cDNA fragments in the terminal region is also provided.

すなわち、一般に、−本のmRNA上で他の遺伝子と相
同性の高い領域は、蛋白コード領域等、ごく一部に限ら
れており、逆に3′末端側の非翻訳領域は各々の特異性
が高いことが知られている。
In other words, in general, regions of high homology with other genes on a single mRNA are limited to only a few, such as the protein coding region, and conversely, the untranslated region at the 3' end has its own specificity. is known to be high.

従ってこの3′末端側領域のcDNAは、再会合反応に
よっても別種の一重鎖cDNA同士が二本鎖を形成する
ことはなく、必要なCDNA種がライブラリーから脱落
する危険性もない。
Therefore, cDNAs in the 3' end region will not form double strands between different types of single-stranded cDNAs even through reassociation reactions, and there is no risk that necessary cDNA species will drop out of the library.

なお、この方法において、3′末端側領域のcDNA断
片を選択的にクローン化する場合には、たとえば、全長
cDNAを断片化する前に、その3−末端に付着端を付
することによりその断片のみがクローニングベクターに
連結可能とすればよい。
In this method, when selectively cloning cDNA fragments in the 3'-end region, for example, before fragmenting the full-length cDNA, the fragments can be cloned by attaching cohesive ends to the 3-end. It is only necessary to enable ligation to the cloning vector.

次に、この発明の作製法におけるもう一つの問題は、多
数重複して存在する余分なCDNA種の大部分を除去し
て均一化した結果、最終的にクローン化に供するcDN
Aが少なくなるため、cDNAのクローニングベクター
への組み込み効率が低下するということである。しかし
ながら、このような問題は、クローン化の対象となるc
DNAをPCR法(Polymerase Chain
Reaction)等を用いて増幅させることにより解
決することができる。たとえば、再会合反応の後に残存
する一重鎖cDNAを、PCR法によって増幅させれば
、良好なりローニング効率を確保するに充分な量のcD
NAを容易に得ることができる。
Next, another problem with the production method of this invention is that as a result of removing and homogenizing most of the redundant CDNA species that exist in large numbers, the cDNA that is finally used for cloning is
This means that because the amount of A decreases, the efficiency of cDNA integration into the cloning vector decreases. However, such problems arise when cloning target c
PCR method (Polymerase Chain)
This can be solved by amplifying the problem using a method such as Reaction). For example, if the single-stranded cDNA remaining after the reassociation reaction is amplified by PCR, a sufficient amount of cDNA can be obtained to ensure good or loning efficiency.
NA can be easily obtained.

そこで、以下に示す実施例においては、マウスの繊維芽
細胞株であるL tk−細胞を対象として、その均一化
cDNAライブラリーを作製した例を示す。
Therefore, in the example shown below, an example will be shown in which a homogenized cDNA library was prepared using Ltk- cells, which are a mouse fibroblast cell line.

実施例1 (mRNAの精製およびcDNAの合成)Ltk−細胞
のmRNAを抽出、精製し、これをcDNAへと合成し
た。
Example 1 (mRNA purification and cDNA synthesis) Ltk- cell mRNA was extracted and purified, and was synthesized into cDNA.

まず、Ltk−細胞をlO%午胎仔血清含有培地中で培
養し、その成長期の細胞から常法に従い全RNAを分離
した。次いで、これらのRNAから、mRNA精製キッ
ト(ファルマシア社)を用いてポリA配列を有するmR
NAを抽出、精製した。
First, Ltk- cells were cultured in a medium containing 1O% fetal serum, and total RNA was isolated from the growing cells according to a conventional method. Next, from these RNAs, mR having a polyA sequence was purified using an mRNA purification kit (Pharmacia).
NA was extracted and purified.

さらに、このようにして調製したLtk−細胞のmRN
Aに、外来遺伝子であるneo遺伝子(1,3kb)お
よびtk遺伝子(1,8kb)のmRNAをコントロー
ル・マーカーとして各々10w/w%、0.0005w
/w%加え、これをcDNAの鋳型として用いた。
Furthermore, mRNA of Ltk- cells prepared in this way
In A, mRNA of neo gene (1,3 kb) and tk gene (1,8 kb), which are foreign genes, were used as control markers at 10 w/w% and 0.0005 w, respectively.
/w% was added and used as a template for cDNA.

このようにして得たmRNAの5μgを、常法に従い、
オリゴ(dT)−No t Iプライマー(5= −A
ATTCGCGGCCGCTTTTTTTTTTTTT
TT −3−プロメガ社)を用いてcDNA合成した。
5 μg of the mRNA thus obtained was added according to a conventional method.
Oligo(dT)-Not I primer (5=-A
ATTCGCGGCCGCTTTTTTTTTTT
cDNA was synthesized using TT-3-Promega).

次に、合成した全長二本鎖cDNAを、Branson
 5onifier 250 (Branson社)を
用いて、200−400bpに断片化し、アガロースゲ
ル電気泳動によって選別した後、T4DNAポリメラー
ゼで末端処理した。
Next, the synthesized full-length double-stranded cDNA was
The fragments were fragmented into 200-400 bp fragments using 5onifier 250 (Branson), selected by agarose gel electrophoresis, and then treated with T4 DNA polymerase.

実施例2 (PCR法によるCDNA断片の増幅)実施例1で得た
二本鎖CDNA断片をPCR法を用いて増幅させた。
Example 2 (Amplification of CDNA fragment by PCR method) The double-stranded CDNA fragment obtained in Example 1 was amplified using PCR method.

実施例1で得た各CDNA断片は、両端がプラント末端
であるため、ここに以下のリンカ−プライマー(LL−
R1)を付着させた。
Since both ends of each CDNA fragment obtained in Example 1 are plant ends, the following linker-primer (LL-
R1) was attached.

LL−RIA : 5−− pGAGATATTAGA
ATTCTACTC−3LL−RIB・3−−   T
ATAATCTTAAGATGAGp−5このLL−R
1の突出末端同士は接着しないため、上記リンカ−の単
一分子がCDNA断片の両端に特異的に結合する。
LL-RIA: 5-- pGAGATATTAGA
ATTCTACTC-3LL-RIB・3--T
ATAATCTTAAGATGAGp-5This LL-R
Since the protruding ends of CDNA 1 do not adhere to each other, a single molecule of the linker specifically binds to both ends of the CDNA fragment.

このようにしてcDNAの両端にLL−RIを付着させ
た後、第1図に示したLL−RIAoligomers
をプライマーとしてPCRを行ない、CDNA断片を増
幅した。すなわち、logのcDNAを100μmの反
応液に添加し、順次94℃の温度で2分間、50°Cで
2分間、および72℃で2分間のサイクルを25回繰り
返し、cDNAを増幅させた。
After attaching LL-RI to both ends of the cDNA in this way, the LL-RIA oligomers shown in FIG.
PCR was performed using this as a primer to amplify the CDNA fragment. That is, log cDNA was added to a 100 μm reaction solution, and a cycle of 2 minutes at 94° C., 2 minutes at 50° C., and 2 minutes at 72° C. was repeated 25 times to amplify the cDNA.

次に、TEで飽和した等量のフェノールークロロホルム
ーイソアミールアルコールで、増幅したcDNAを抽出
し、さらにCentricon−100(アミコン社)
を用いてcDNA鎖に取り込まれなかったフリープライ
マーを除去した。
Next, the amplified cDNA was extracted with an equal volume of phenol-chloroform-isoamyl alcohol saturated with TE, and further extracted with Centricon-100 (Amicon).
Free primers that were not incorporated into the cDNA strand were removed using .

実施例3 (cDNAの均一化) 実施例2で増幅したCDNA断片に対し、変性および再
会合処理を3回繰り返し、各cDNA種毎の含有率を均
一化した。
Example 3 (Uniformization of cDNA) The cDNA fragments amplified in Example 2 were subjected to denaturation and reassociation treatment three times to equalize the content of each cDNA species.

すなわち、1回目の均一化(EI)および2回目の均一
化(E II)では、増幅した20MgのcDNAを1
.5 ynl Eppendorfチューブ中でIOμ
lの蒸留水に溶解し、これに等量の2×hibridi
zation溶液(0,24M N a H2P O4
[pH6,8]、1.64M  NaC1,2mMED
TA、0.2%5DS)を添加した。また、3回目の均
一化(EI[)では、上記と等量の溶液中に100μg
のcDNAを添加した。
That is, in the first homogenization (EI) and the second homogenization (E II), 20 Mg of amplified cDNA was
.. 5 ynl IOμ in Eppendorf tube
Dissolve in 1 liter of distilled water and add an equal amount of 2x hybridi to this.
zation solution (0,24M Na H2P O4
[pH6,8], 1.64M NaCl, 2mMED
TA, 0.2% 5DS) was added. In addition, in the third homogenization (EI[), 100 μg was added to the same amount of solution as above.
cDNA was added.

これらの各試料液の蒸発を防ぐために、その表面を軽油
でおおい、5分間煮沸してcDNAを変性させ一本鎖と
した。次に、EIおよびEI[に対しては65℃の温度
で12時間、またEI[[には同温で24時間の再会合
反応を行なわせた。
In order to prevent evaporation of each sample solution, the surface thereof was covered with light oil and boiled for 5 minutes to denature the cDNA and make it a single strand. Next, EI and EI[ were subjected to a reassociation reaction at a temperature of 65° C. for 12 hours, and EI[[ was subjected to a reassociation reaction at the same temperature for 24 hours.

相補的なりNA鎖が再会合する程度を現す示標として、
Cot値があるが、El、Ell、Emを作る時のCo
t値(mol、 1itre=、 sec )は、各々
、130、130. 1100であった。
As an indicator of the degree of reassociation of complementary NA strands,
There is a Cot value, but Co when making El, Ell, and Em.
The t values (mol, 1itre=, sec) are 130, 130. It was 1100.

このような変性および再会合の結果、二本鎖に再会合し
たcDNAと一本鎖のままのcDNAが得られたが、こ
れらを、常法に従いハイトロキシルアパタイトを充填し
た60℃の温度のカラム中で分離し、一本鎖cDNA断
片に対して、Centricon−100による脱塩処
理を行なった後、これらを実施例2と同様のPCR法に
より増幅し、再度二本鎖へと合成した。
As a result of such denaturation and reassociation, cDNA that had reassociated into double strands and cDNA that remained single stranded were obtained, and these were incubated at a temperature of 60°C filled with hytroxylapatite according to a conventional method. After separating in a column and desalting single-stranded cDNA fragments using Centricon-100, these were amplified by the same PCR method as in Example 2 and synthesized into double-stranded fragments again.

実施例4 (cDNAライブラリーの作製とその均一化の評価) 実施例3において3回の均一化処理を行なったCDNA
断片をクローン化し、その形質転換体のコロニーからc
DNAライブラリーを作製した。
Example 4 (Preparation of cDNA library and evaluation of its homogenization) CDNA subjected to homogenization treatment three times in Example 3
The fragment was cloned and c
A DNA library was created.

まず、実施例3で得た二本鎖cDNAを制限酵素Eco
RIおよびNotIで切断し、これをプラスミドベクタ
ーpBluescript SK (−)のEcoRI
−No t I開裂部位に挿入連結した。
First, the double-stranded cDNA obtained in Example 3 was treated with restriction enzyme Eco.
Cut with RI and NotI, and convert this into the plasmid vector pBluescript SK (-) with EcoRI.
- Insert ligated into the Not I cleavage site.

さらに、このベクターを宿主細胞に導入し、この宿主細
胞を形質転換させてコロニーを形成させた。
Furthermore, this vector was introduced into host cells, and the host cells were transformed to form colonies.

次にミこのようにして得たcDNAライブラリーの均一
度を以下の方法によって評価した。すなわち、ライブラ
リーの均一化の程度を表わす指標として、重複指数(A
bundance variation)という概念を
導入した。これは、cDNAライブラリーを構成する各
クローンのうち、最も重複して存在するクローンの含有
%を最も少ないクローンの含有%で除して得られる数値
である。実際にはすべてのクローンについて、各々の含
有%を調べることは物理的に不可能なため、調へ得たク
ローンについて算出した。なお、この重複指数の求め方
として、ふたつの方法が考えられる。一つは、特定のc
DNAをプローブとして常法に従いコロニハイプリダイ
セーションを行い、ポジティブコロニーかライブラリー
の中で占める割合を測定する方法である。この場合、で
きるだけ多くの種類のプローブcDNAを使用するのが
好ましい。二つめは、ライブラリー中からcDNAクロ
ーンをランダムに拾ってその塩基配列を決定し、個々の
塩基配列を比較することによって、同一クローンがどの
程度重複して存在するかを推定する方法である。
Next, the homogeneity of the cDNA library thus obtained was evaluated by the following method. In other words, the redundancy index (A
introduced the concept of "bundance variation". This is a numerical value obtained by dividing the content percentage of the most duplicated clone among the clones constituting the cDNA library by the content percentage of the least duplicated clone. In reality, it is physically impossible to check the content percentage of each clone for all clones, so calculations were made for the clones obtained. There are two possible methods for calculating this overlap index. One is the specific c
In this method, colony hybridization is performed according to a conventional method using DNA as a probe, and the proportion of positive colonies in the library is measured. In this case, it is preferable to use as many types of probe cDNA as possible. The second method is to randomly pick up cDNA clones from a library, determine their nucleotide sequences, and compare the individual nucleotide sequences to estimate how many duplicate identical clones exist.

ここでは、前者の方法を用い、上記の通り作製したcD
NAライブラリーの重複指数を算出した。
Here, using the former method, we used cD prepared as described above.
The redundancy index of the NA library was calculated.

使用したプローブは、コントロールマーカーとして加え
たneo、 tk、およびLtk−細胞の発現遺伝子で
あるマウスβ−アクチン、elF −4A、Vimen
tin、  I AP、  EF −1a、 ATPa
se −6遺伝子の合計8種類である。
The probes used were mouse β-actin, eIF-4A, and Vimen, which are expressed genes of neo, tk, and Ltk cells, which were added as control markers.
tin, IAP, EF-1a, ATPa
There are a total of 8 types of se-6 genes.

結果を第1表に示したつこの第1表は、比較例として示
した従来方法によるCDNAライブラIJ−(S)およ
びこの発明の均一化cDNAライブラリー(EI、EI
I、EI)の各々につ0て、各プローブに対するポジテ
ィブコロニーの個数と()内にはその含有%を示したも
のである。
The results are shown in Table 1, which shows the cDNA library IJ-(S) by the conventional method shown as a comparative example and the homogenized cDNA library (EI, EI) of the present invention.
For each of I and EI), the number of positive colonies for each probe and the percentage content are shown in parentheses.

この第1表からも明らかな通り、従来の方法で得られる
cDNAライブラリー(S)では1600以上(推定で
は約20.000)ある重複指数か、3回の均一化処理
を行ったこの発明のライブラリー(E DI)では40
まで減少した。理論上の完全な均一化cDNAライブラ
リーは、その重複指数か1であるものを指すが、実験上
の誤差等を考慮に入れるならば、含有率が最大のものと
最小のものとの割合が40倍ということは、均一化の程
度としては十分な達成度であると思われる。
As is clear from Table 1, the cDNA library (S) obtained by the conventional method has a duplication index of more than 1,600 (estimated to be about 20,000), or the cDNA library (S) obtained by the conventional method has a duplication index of more than 1,600 (estimated to be about 20,000). 40 in the library (E DI)
decreased to Theoretically, a completely homogenized cDNA library is one with a redundancy index of 1, but if experimental errors are taken into account, the ratio of the highest content to the lowest content is 40 times seems to be a sufficient degree of uniformity.

(発明の効果) 以上詳しく説明した通り、この発明によって、未知遺伝
子のクローニングやその同定、あるいは多数の遺伝子群
の発現パターンの同時同定、さらにはヒトを含む生物の
発現し得る全遺伝子を1セツト有するcDNAライブラ
リーの作製等、医学生物学研究分野および遺伝子工学分
野において広く有用な均一化cDNAライブラリーとそ
の作製方法が提供される。
(Effects of the Invention) As explained in detail above, the present invention enables the cloning and identification of unknown genes, the simultaneous identification of the expression patterns of multiple gene groups, and even a single set of all genes that can be expressed in organisms including humans. Provided are homogenized cDNA libraries that are widely useful in the fields of medical biological research and genetic engineering, such as the production of cDNA libraries containing cDNA libraries, and methods for producing the same.

Claims (4)

【特許請求の範囲】[Claims] (1)mRNAを鋳型として合成した二本鎖cDNAを
変性させ、さらに任意の時間内で再会合させた後、二本
鎖に再会合したcDNAと一本鎖のままのcDNAを分
離し、この一本鎖 cDNAを二本鎖cDNAに合成して各々クローン化し
てなることを特徴とする均一化cDNAライブラリーの
作製法。
(1) Double-stranded cDNA synthesized using mRNA as a template is denatured, and then re-associated within an arbitrary period of time, and the cDNA that has re-associated into double-strands is separated from the cDNA that remains single-stranded. 1. A method for producing a homogenized cDNA library, which comprises synthesizing single-stranded cDNA into double-stranded cDNA and cloning each cDNA.
(2)mRNAを鋳型として合成した二本鎖cDNAを
、予めその3′末端に付着端を配設して断片化する請求
項(1)記載の均一化cDNAライブラリーの作製法。
(2) The method for producing a homogenized cDNA library according to claim (1), wherein double-stranded cDNA synthesized using mRNA as a template is fragmented by providing a cohesive end in advance at its 3' end.
(3)クローン化するcDNAまたはその断片をPCR
法によって増幅させてなる請求項(1)および(2)記
載の均一化cDNAライブラリーの作製法。
(3) PCR the cDNA to be cloned or its fragment
A method for producing a homogenized cDNA library according to claims (1) and (2), which is amplified by a method.
(4)請求項(1)ないし(3)記載の方法によつて作
製してなることを特徴とする均一化cDNAライブラリ
ー。
(4) A homogenized cDNA library produced by the method according to claims (1) to (3).
JP22462790A 1990-08-27 1990-08-27 Preparation of homogenized cDNA library Expired - Fee Related JP3164814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22462790A JP3164814B2 (en) 1990-08-27 1990-08-27 Preparation of homogenized cDNA library

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22462790A JP3164814B2 (en) 1990-08-27 1990-08-27 Preparation of homogenized cDNA library

Publications (2)

Publication Number Publication Date
JPH04108385A true JPH04108385A (en) 1992-04-09
JP3164814B2 JP3164814B2 (en) 2001-05-14

Family

ID=16816674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22462790A Expired - Fee Related JP3164814B2 (en) 1990-08-27 1990-08-27 Preparation of homogenized cDNA library

Country Status (1)

Country Link
JP (1) JP3164814B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007244A1 (en) * 1995-08-11 1997-02-27 The United States Of America, Represented By The ISOLATION OF AMPLIFIED GENES VIA cDNA SUBTRACTIVE HYBRIDIZATION
WO2010024231A1 (en) 2008-08-26 2010-03-04 株式会社日立ハイテクノロジーズ METHOD FOR PRODUCTION OF cDNA LIBRARY HAVING REDUCED CONTENT OF cDNA CLONE DERIVED FROM HIGHLY EXPRESSED GENE
US10927419B2 (en) 2013-08-28 2021-02-23 Becton, Dickinson And Company Massively parallel single cell analysis
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
US11220685B2 (en) 2016-05-31 2022-01-11 Becton, Dickinson And Company Molecular indexing of internal sequences
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
US11332776B2 (en) 2015-09-11 2022-05-17 Becton, Dickinson And Company Methods and compositions for library normalization
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11460468B2 (en) 2016-09-26 2022-10-04 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11525157B2 (en) 2016-05-31 2022-12-13 Becton, Dickinson And Company Error correction in amplification of samples
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007244A1 (en) * 1995-08-11 1997-02-27 The United States Of America, Represented By The ISOLATION OF AMPLIFIED GENES VIA cDNA SUBTRACTIVE HYBRIDIZATION
WO2010024231A1 (en) 2008-08-26 2010-03-04 株式会社日立ハイテクノロジーズ METHOD FOR PRODUCTION OF cDNA LIBRARY HAVING REDUCED CONTENT OF cDNA CLONE DERIVED FROM HIGHLY EXPRESSED GENE
JP2010051195A (en) * 2008-08-26 2010-03-11 Hitachi High-Technologies Corp METHOD FOR PREPARING cDNA LIBRARY HAVING REDUCED RATE OF CONTENT OF cDNA CLONE DERIVED FROM HIGH-EXPRESSION GENE
US11634708B2 (en) 2012-02-27 2023-04-25 Becton, Dickinson And Company Compositions and kits for molecular counting
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
US10927419B2 (en) 2013-08-28 2021-02-23 Becton, Dickinson And Company Massively parallel single cell analysis
US10954570B2 (en) 2013-08-28 2021-03-23 Becton, Dickinson And Company Massively parallel single cell analysis
US11618929B2 (en) 2013-08-28 2023-04-04 Becton, Dickinson And Company Massively parallel single cell analysis
US11702706B2 (en) 2013-08-28 2023-07-18 Becton, Dickinson And Company Massively parallel single cell analysis
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11332776B2 (en) 2015-09-11 2022-05-17 Becton, Dickinson And Company Methods and compositions for library normalization
US11525157B2 (en) 2016-05-31 2022-12-13 Becton, Dickinson And Company Error correction in amplification of samples
US11220685B2 (en) 2016-05-31 2022-01-11 Becton, Dickinson And Company Molecular indexing of internal sequences
US11467157B2 (en) 2016-09-26 2022-10-11 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11460468B2 (en) 2016-09-26 2022-10-04 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11782059B2 (en) 2016-09-26 2023-10-10 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins

Also Published As

Publication number Publication date
JP3164814B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JPH04108385A (en) Production of equalized cdna library
JP4448619B2 (en) Method for obtaining recombinant polynucleotide sequences in vitro, a sequence bank and the sequences thus obtained
JP3030417B2 (en) Improved method for in vitro DNA amplification, genomic cloning and mapping
US7932029B1 (en) Methods for nucleic acid mapping and identification of fine-structural-variations in nucleic acids and utilities
EP2914745B1 (en) Barcoding nucleic acids
US5695937A (en) Method for serial analysis of gene expression
CN110249057A (en) Method for the nucleic acid in free token and analysis biological sample
US20070117121A1 (en) cDNA library preparation
JPH1094392A (en) Cotton gene
JPS58501771A (en) Oligonucleotide therapeutic agent and its manufacturing method
JPH07500735A (en) Messenger RNA identification, isolation and cloning
JP2004500061A (en) Use of multiple recombination sites with unique selectivity in recombination cloning
JPH04501353A (en) RNA and DNA amplification methods
JP2022548062A (en) Modified bacterial retroelements with enhanced DNA production
JPH11506332A (en) Improved method for obtaining full-length cDNA sequences
US6461814B1 (en) Method of identifying gene transcription patterns
US5891637A (en) Construction of full length cDNA libraries
CN110914418A (en) Compositions and methods for sequencing nucleic acids
JPH0527400B2 (en)
JPWO2002036822A1 (en) Nucleic acid base sequencing method
AU2002254773B2 (en) Novel methods of directed evolution
CN108026525A (en) The composition and method of polynucleotides assembling
CN116694603A (en) Novel Cas protein, crispr-Cas system and use thereof in the field of gene editing
KR100762261B1 (en) Process for preparation of full-length cDNA and anchor and primer used for the same
JP4220744B2 (en) Processing libraries using ligation inhibition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees