JPH04107892A - Simulation apparatus for pulse laser - Google Patents

Simulation apparatus for pulse laser

Info

Publication number
JPH04107892A
JPH04107892A JP22434890A JP22434890A JPH04107892A JP H04107892 A JPH04107892 A JP H04107892A JP 22434890 A JP22434890 A JP 22434890A JP 22434890 A JP22434890 A JP 22434890A JP H04107892 A JPH04107892 A JP H04107892A
Authority
JP
Japan
Prior art keywords
laser
light
inu
equation
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22434890A
Other languages
Japanese (ja)
Inventor
Hideomi Takahashi
秀臣 高橋
Kiyohisa Terai
清寿 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22434890A priority Critical patent/JPH04107892A/en
Publication of JPH04107892A publication Critical patent/JPH04107892A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize excellent simulation through gradual fall of pulse like the actual measurement by adding non-linear loss term to the differential equa tion of laser oscillation. CONSTITUTION:A differential equation of laser oscillation of a pulse laser, for example, CO2 pulse laser of atmospheric pressure is expressed by the equa tion (8) adding the non-linear term Cfunc(Inu) to the conventional equation (7). Here, Cfunc(Inu) is expressed, for example, by the equation (9). Inu is intensity of laser beam within the light resonator; while nuL(1) the number of vibrations of laser beam; c, velocity of light; h, Planck's constant; N is inverted distribution density; W, quantity related to transition probability of light. Moreover, 7c is life expectation of laser beam within the optical resonator which is given, for example, by the relation, tauc=-(2L/c).lnRo. Moreover, N001 is upper level density of laser and PLA is a constant releted to the self-generating transition probability. Moreover, Inu,c is a constant determined by structure and size of experiment apparatus and experimient condition and a light intensity of the limit generating sudden attenuation within the optical resonator.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はパルス・レーザのシミュレーションに於て、特
に大気圧CO2パルス・レーザで、用いられるシミュレ
ーション装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Field of Application) The present invention relates to a simulation apparatus used in the simulation of pulsed lasers, particularly atmospheric pressure CO2 pulsed lasers.

(従来の技術) 大気圧CO2パルス・レーザのシミュレーション装置に
おけるシミュレーションコードでは。
(Prior Art) A simulation code for an atmospheric pressure CO2 pulse laser simulation device.

英国、クィーンズ大で広く出している”CPCプログラ
ム・ライブラリ″が良く知られている。そこでは、第1
図の5温度モデルについて次式を与えている(参考文献
Computer P hys−icsCommuni
cations t  よO(1975)  ppH7
−132)。
The "CPC Program Library" widely published at Queen's University in the UK is well known. There, the first
The following equation is given for the five-temperature model shown in the figure (Reference: Computer P hys-ics Community
cations t YoO (1975) ppH7
-132).

亀−E、”(T、) % =Ne(t)’NNi”hv*’Xs  **3(
T)批 へ=Na(t)・(1−f)・h・hガ・丸市 E= (NN、+  Nco、+ 1NHs)・kTこ
こでEL−Ez、Ez−E4− EsはCO,レーザの
発振に関係したエネルギ・レベルであり、El。
Tortoise-E,”(T,)% =Ne(t)’NNi”hv*’Xs**3(
T) To criticize = Na(t)・(1-f)・h・hga・Maruichi E= (NN, + Nco, + 1NHs)・kT where EL-Ez, Ez-E4- Es is CO, The energy level associated with laser oscillation, El.

E、、E、は、それぞれCo2の対称振動モード、屈曲
モード及び非対称振動モードである。又、E4とE、は
はそれぞれN2の下位振動レベル及びCOの下位振動レ
ベルである− Ne(t)は電子密度の時間変化であり
、(1−f)はCO2の分解率であり、hはブランク定
数である。 ν□、)2.ν、はそれぞれ前記、E、、
E、、E、に対応する振動モードの振動数であり、雫、
、乍、は同様に振動モードE4.E、に対応する振動数
である。又、Ei”(T)、”’ i”(Tv T j
)、Eie(Tt Tjt Th) **振動モードi
の熱平衡エネルギで、それぞれガス温度Tの場合、ガス
温度TでjレベルがTjの場合、ガス温g がTでjレ
ベルがTj、にレベルがTkの場合である。又、τ1゜
(T)、τ、2(置τ□(T= Ti、”ra)、τ2
゜(T)、τ1□(T、)、τ λ(T 9 TII 
T2)(λ=3.5)、  τ 4コ(T)−τ5λ(
T、Tλ)(L =3.4)などはそれぞれの式で示さ
れた緩和過程の速度を与える緩和時間である。
E, ,E, are the symmetrical, bending, and asymmetrical vibrational modes of Co2, respectively. Also, E4 and E are the lower vibrational level of N2 and the lower vibrational level of CO, respectively - Ne(t) is the time change of electron density, (1-f) is the decomposition rate of CO2, and h is a blank constant. ν□, )2. ν are the above, E, , respectively.
It is the frequency of the vibration mode corresponding to E, ,E, and the drop,
, 乍, similarly have vibration mode E4. It is the frequency corresponding to E. Also, Ei” (T), “’ i” (Tv T j
), Eie (Tt Tjt Th) **Vibration mode i
The thermal equilibrium energy is, respectively, when the gas temperature is T, when the gas temperature is T and the j level is Tj, when the gas temperature g is T and the j level is Tj, and when the level is Tk. Also, τ1゜(T), τ, 2 (setting τ□(T= Ti, “ra), τ2
゜(T), τ1□(T, ), τ λ(T 9 TII
T2)(λ=3.5), τ4ko(T)−τ5λ(
T, Tλ) (L = 3.4), etc. are relaxation times that give the speed of the relaxation process shown in each equation.

レーザ光の発振の為にはさらに光に関する方程式が必要
で次式である。
In order to oscillate laser light, an equation related to light is also required, which is the following equation.

dIV   Iシ ー=−一+c・ν、・h・ΔN”W”Iy+C’h’S
’L’Noax”PLA ”・■dt   τに こでIνは光共振器内でのレーザ光強度であり、νLは
レーザ光の振動数、 Cは光速、hはブランク定数、Δ
Nは反転分布密度であり、Wは光の遷移確率に関係した
量である。又、τCはレーザ光の光共振器内寿命で次式
で与えられる。
dIV Ic=-1+c・ν,・h・ΔN"W"Iy+C'h'S
'L'Noax"PLA"・■dt τNiko where Iν is the laser beam intensity within the optical resonator, νL is the frequency of the laser beam, C is the speed of light, h is the blank constant, Δ
N is the population inversion density, and W is a quantity related to the transition probability of light. Further, τC is the lifetime of the laser beam within the optical resonator and is given by the following equation.

τc =(2L / c )・QnR さらにNo。、はレーザ上位レベル密度であり、PLA
は自発遷移確率に関係した定数である。
τc = (2L/c)・QnR Furthermore, No. , is the laser upper level density and PLA
is a constant related to the spontaneous transition probability.

これら7つの方程式がこのシミュレーションの基本であ
る。
These seven equations are the basis of this simulation.

(発明が解決しようとする課題) このCPCライブラリのシミュレーション。(Problem to be solved by the invention) Simulation of this CPC library.

コードは広く出回っており、引用も多くされているが、
実際には必ずしも満足に現象をシミュレート出来ない1
例えば、  GO,/N、/Ho=1/1/8でlat
臘のレーザ・ガスについて実験とシミュレーションとを
比較すると第2図(a)(b)(c)の様になる。第2
図(a)を見るとレーザ共振器でのミラー反射率Rとレ
ーザ・パルス出力Pjとの関係は実測と良い一致を示し
ていることが判る。一方、ミラー反射率を変えた場合の
レーザ出力波形は、第2図(b)(c)に示した様に、
余り良く一致せず、特にミラーの反射率Rが小さくなる
と実測との相違が甚だしく成ることが判る。
Although the code is widely distributed and often cited,
In reality, it is not always possible to simulate the phenomenon satisfactorily1
For example, GO, /N, /Ho = 1/1/8 and lat
A comparison of experiments and simulations regarding the laser gas of 100% is as shown in FIGS. 2(a), (b), and (c). Second
Looking at Figure (a), it can be seen that the relationship between the mirror reflectance R in the laser resonator and the laser pulse output Pj is in good agreement with the actual measurement. On the other hand, the laser output waveform when the mirror reflectance is changed is as shown in Figure 2 (b) and (c).
It can be seen that they do not match very well, and the difference from the actual measurements becomes significant, especially when the reflectance R of the mirror becomes small.

本発明はこの良く知られたシミュレーション・コードの
不具合の本質を把握してコードを改良し、実際と良く合
うコードとすることにより、パルス・レーザ開発に役立
つシミュレーション・コードを備えたパルスレーザ装置
用シミュレーション装置を提供することを目的とするも
のである。
The present invention grasps the essence of this well-known problem in the simulation code, improves the code, and makes it a code that matches reality well.The present invention provides a code for pulsed laser equipment equipped with a simulation code that is useful for pulsed laser development. The purpose is to provide a simulation device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 発明者等は前記シミュレーションと実際との比較から、
光共振器内に於てレーザ光強度が或−定レベル以上とな
ると、急速な減衰を受ける非線形項が有ることを見いだ
した。従ってレーザ発振の微分方程式■に非線形損失項
Cfunc(Iν)を加えて次式とした。
(Means for Solving the Problem) The inventors have determined from the comparison between the simulation and the actual situation,
It has been found that when the laser light intensity exceeds a certain level within the optical resonator, there is a nonlinear term that undergoes rapid attenuation. Therefore, a nonlinear loss term Cfunc (Iv) is added to the laser oscillation differential equation (2) to form the following equation.

+c−hシL”Noo 1・PLA CfunJv) 
     ・・・<8)(作用) この非線形項は光共振器内での光の強度が高くなると、
CO,レーザの下位レベル(100)に吸収される光子
が同時に2個以上という場合が生じる為で有ると考える
+c-hshiL"Noo 1・PLA CfunJv)
...<8) (effect) When the intensity of light inside the optical resonator increases, this nonlinear term becomes
We believe that this is because there are cases where two or more photons are absorbed at the lower level (100) of the CO laser at the same time.

即ちレーザ光共振器内では第3図に示した様に光軸方向
のCO2の上位と下位レベル差に相当するエネルギを持
った光が、上位レベルCO8分子との衝突で誘導放出を
発生させ入射光と同一位相、同一波長の光を放出させる
(レーザ作用)。
In other words, inside the laser beam resonator, as shown in Figure 3, light with energy corresponding to the difference between the upper and lower levels of CO2 in the optical axis direction generates stimulated emission by colliding with upper level CO8 molecules and enters the cavity. Emit light with the same phase and wavelength as light (laser action).

ところがレーザ共振器内の光強度レベルが高くなると、
上位レベルにあるCO2分子に同時に2個の光が衝突す
る事態を生じる。 この時、CO。
However, when the light intensity level inside the laser cavity increases,
This causes a situation in which two pieces of light simultaneously collide with the CO2 molecules at the upper level. At this time, CO.

分子の放出する光子は1個であるから光の増幅度は、前
述の光強度の低い場合より落ちることに成る(いわゆる
ゲインの飽和である)。
Since the molecule emits only one photon, the light amplification is lower than in the case where the light intensity is low (so-called gain saturation).

発明者等はこのゲインの飽和に加えて次の様な新しい光
の減衰過程を見いだした。即ち、レーザ光強度が上がる
と下位レベルに在るCO2分子に同時に2個以上の光子
が衝突する可能性が生じる。
In addition to this gain saturation, the inventors discovered the following new light attenuation process. That is, as the laser light intensity increases, there is a possibility that two or more photons will collide with CO2 molecules located at a lower level at the same time.

1個の光子であれば下位レベルCO2分子が上位レベル
に上るだけであるからレーザ光の損失とはならない(第
4図の■)、然るに同時に2個以上の光子が作用した場
合は、下位レベルに居たco。
If it is one photon, the lower level CO2 molecule will just go up to the upper level, so there will be no loss of laser light (■ in Figure 4).However, if two or more photons act at the same time, the lower level CO2 molecule will rise to the upper level. I was in a co.

分子は上位レベルを越えた更に上のレベルへと励起され
てしまう(第4図の■)、このレーザ上位レベルの上の
レベルに在るCO□分子はレーザ発振には無関係であり
、他の波長の光や他の分子との衝突でエネルギを失う。
The molecules are excited to a level even higher than the upper level (■ in Figure 4).The CO□ molecules present at the level above the upper level of the laser are unrelated to laser oscillation, and other It loses energy through collisions with wavelengths of light and other molecules.

従って急激な減衰作用を光に及ぼすことになる。この様
にして発明者等の見いだした非線形損失項Cfunc(
エヤ)の妥当性が明らかとなる。
Therefore, a rapid attenuation effect is exerted on the light. In this way, the inventors discovered the nonlinear loss term Cfunc(
The validity of Eya) becomes clear.

レーザ発振の微分方程式に非線形損失項を加えた為に、
成るレベル以上に光共振器内のレーザ強度が上がると、
急激な減衰作用の為、光はそれ以上に増加し得なく成る
。従って光のピークは成る値で制限されるので、レーザ
上位レベルに在る002分子がパルス・レーザ光のピー
クで消費され過ぎることが無く、パルスの立ち下がりが
実測の様にシミュレーションに比較して揺るやかになり
、良好なシミュレーションが可能となる。
Since a nonlinear loss term is added to the differential equation of laser oscillation,
When the laser intensity inside the optical cavity increases beyond the level of
Due to the rapid attenuation effect, the light cannot increase any further. Therefore, since the peak of the light is limited by the value, the 002 molecules present at the upper level of the laser are not consumed too much at the peak of the pulsed laser light, and the falling edge of the pulse is compared to the simulation as in the actual measurement. This makes it possible to perform better simulations.

(実施例) 本発明では以上に鑑み、従来のシミュレーション式■〜
ωに於て、光発振に関する微分方程式■を次式の様に修
正する。
(Example) In view of the above, in the present invention, the conventional simulation formula
At ω, the differential equation (2) regarding optical oscillation is modified as shown in the following equation.

+C”h vL”N0II、・PLA Cfunc(I
v)ここでCfune(I v)は本発明の非線形修正
項で例えば1次式の形で与えられる。
+C”h vL”N0II,・PLA Cfunc(I
v) Here, Cfune(Iv) is a nonlinear correction term of the present invention, and is given, for example, in the form of a linear equation.

Cfunc(Iy) =C1・(r、/ L+t。)”
 4vここでエヤ、。は実験装置の構造、寸法及び実験
条件によって決まる定数で、光共振器に於て急速な減衰
を生じる限界の光強度である0本シミュレーションのポ
イントはここに在るが、本シミュレーションではさらに
光寿命で。に就いても光共振器内の損失τを考えて次式
の修正を施した。
Cfunc(Iy)=C1・(r,/L+t.)”
4v Eya here. is a constant determined by the structure, dimensions, and experimental conditions of the experimental equipment, and is the critical light intensity that causes rapid attenuation in the optical resonator. This is the key point of the 0-line simulation, but in this simulation, we further estimate the optical lifetime. in. We also modified the following equation by considering the loss τ within the optical resonator.

これに因って光共振器の特性が更に良好なものと成る。Due to this, the characteristics of the optical resonator become even better.

実施例では従来例の放電化学反応は同一であるから、C
O2やN2そしてCO等のレーザ発振に関連した振動レ
ベル密度の時間変化は、レーザ発振が無ければ同様に進
行する。レーザ発振が生じると光共振器内のレーザ光強
度ニジが実験装置及び実験条件で決まる定数I vvC
以下であれば、従来と同様にレーザ光が外部に放出され
る。しかるに光共振器内のレーザ光強度ニジが前記定数
エヤ、。以上となると既に述べた様に、急激な減衰の為
、レーザ光の増加は強力に制限を受け、レーザ光強度I
Vのピークが抑制される。従ってco2のレーザ上位レ
ベルの消費が抑えられるので、レーザ光の立ち下がりが
従来例より緩やかと成り、第5図(a)、(b)に示し
た様に、実測と良く一致したシミュレーション結果が得
られる。
In the example, since the discharge chemical reaction is the same as in the conventional example, C
The temporal change in vibration level density associated with laser oscillations such as O2, N2, and CO would proceed in the same way as in the absence of laser oscillation. When laser oscillation occurs, the laser light intensity within the optical resonator is a constant I vvC determined by the experimental equipment and experimental conditions.
If it is below, the laser beam is emitted to the outside as in the conventional case. However, the laser light intensity within the optical resonator is constant. As mentioned above, the increase in laser light is strongly restricted due to the rapid attenuation, and the laser light intensity I
The peak of V is suppressed. Therefore, since the consumption of CO2 at the upper level of the laser is suppressed, the fall of the laser light becomes more gradual than in the conventional example, and as shown in Fig. 5 (a) and (b), the simulation results are in good agreement with the actual measurement. can get.

この様に本発明は、多光子吸収と言う従来CO2レーザ
に於て考慮されてぃなかった基礎的物理過程に立脚して
、シミュレーション・コードが構成されているので、単
なるカーブ・フィッチングでは得られない良好な実験と
シミュレーションとの一致が達成されたことが判る。
In this way, the present invention has a simulation code based on multi-photon absorption, a fundamental physical process that has not been considered in conventional CO2 lasers, so that it can be obtained by simply curve fitting. It can be seen that good agreement between experiment and simulation was achieved.

この発明の実施例では、非線形損失係数c funeと
して光共振器内のレーザ光強度I9の自乗に比例する項
を導入した場合を示したが、本発明はかかる場合に限定
されるものではなく、1乗の項や3乗の項、さらには第
6図に示した様に、レーザ光の増分がIvの成るレベル
でゼロとなる様なものでも良い。
In the embodiment of the present invention, a term proportional to the square of the laser light intensity I9 in the optical resonator is introduced as the nonlinear loss coefficient c fune, but the present invention is not limited to such a case. A term of the first power, a term of the third power, or even a term in which the increment of the laser beam becomes zero at the level of Iv as shown in FIG. 6 may be used.

さらに本発明では、C02パルス・レーザを中心に述べ
たが、下位レベルでの2光子以上の吸収に基ずく急激な
減衰による非線形損失項は、他のレーザにも適用出来る
ことは当然である。
Further, although the present invention has been mainly described with reference to a C02 pulse laser, it is natural that the nonlinear loss term due to rapid attenuation based on absorption of two or more photons at a lower level can also be applied to other lasers.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明では多光子吸収と言う基本概念
の下にレーザ発振に関連した微分方程式に非線形損失項
を加えた為に、シミュレーションが実験を良く模擬する
ことが判った。
As described above, in the present invention, a nonlinear loss term is added to the differential equation related to laser oscillation based on the basic concept of multiphoton absorption, and therefore, it has been found that the simulation simulates the experiment well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は良く知られたCO2レーザの5温度ジョン結果
と実験との比較、第3図はレーザ作用とゲインの飽和及
び損失過程を説明した図であり。 第4図はエネルギ・レベル図の上からの同様の説明図、
第5図は本発明のシミュレーション・コードを用いたシ
ミュレーション結果であり、第6図は他の実施例で採用
した非線形ゲイン特性である。 代理人 弁理士 則 近 憲 佑 第1図 ミラー反射率k(”/、) 第2図 第2図 全反射ミラー         出力ミラーCO2分子
(上位レベルの002分子)第3図 第4図 (a)              (b)第5図 第6図
FIG. 1 is a comparison of the well-known 5-temperature results of a CO2 laser and an experiment, and FIG. 3 is a diagram explaining the laser action, gain saturation, and loss process. Figure 4 is a similar explanatory diagram from above the energy level diagram,
FIG. 5 shows simulation results using the simulation code of the present invention, and FIG. 6 shows nonlinear gain characteristics employed in other embodiments. Agent Patent Attorney Noriyuki Chika Figure 1 Mirror reflectance k (''/,) Figure 2 Figure 2 Total reflection mirror Output mirror CO2 molecules (upper level 002 molecules) Figure 3 Figure 4 (a) ( b) Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)パルス・レーザのシミュレーション装置に於て、
光増幅式に非線形項を導入したことを特徴とするパルス
・レーザ用シミュレーション装置。
(1) In a pulsed laser simulation device,
A pulsed laser simulation device characterized by introducing a nonlinear term into the optical amplification equation.
(2)大気圧CO_2パルス・レーザに於て、損失項が
2乗以上の非線形項を導入したことを特徴とする大気圧
CO_2パルス・レーザ用シミュレーション装置。
(2) A simulation device for an atmospheric pressure CO_2 pulsed laser, characterized in that a nonlinear term whose loss term is a square or more is introduced into the atmospheric pressure CO_2 pulsed laser.
(3)パルス・レーザのシミュレーションの光増幅式に
於て、光共振器内の光強度レベルが一定値以上で光のゲ
インが急激にゼロとなるパルス・レーザ用シミュレーシ
ョン装置。
(3) A simulation device for a pulsed laser in which, in an optical amplification type of pulsed laser simulation, the optical gain suddenly drops to zero when the optical intensity level in the optical resonator exceeds a certain value.
JP22434890A 1990-08-28 1990-08-28 Simulation apparatus for pulse laser Pending JPH04107892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22434890A JPH04107892A (en) 1990-08-28 1990-08-28 Simulation apparatus for pulse laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22434890A JPH04107892A (en) 1990-08-28 1990-08-28 Simulation apparatus for pulse laser

Publications (1)

Publication Number Publication Date
JPH04107892A true JPH04107892A (en) 1992-04-09

Family

ID=16812361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22434890A Pending JPH04107892A (en) 1990-08-28 1990-08-28 Simulation apparatus for pulse laser

Country Status (1)

Country Link
JP (1) JPH04107892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899737A (en) * 1996-09-20 1999-05-04 Lsi Logic Corporation Fluxless solder ball attachment process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899737A (en) * 1996-09-20 1999-05-04 Lsi Logic Corporation Fluxless solder ball attachment process

Similar Documents

Publication Publication Date Title
Wielandy et al. Investigation of electromagnetically induced transparency in the strong probe regime
Gladyshev et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture
Jauregui et al. On the Raman threshold of passive large mode area fibers
Soukieh et al. Mathematical modeling of CO2 TEA laser
JPH04107892A (en) Simulation apparatus for pulse laser
Eberly et al. Wave equation for dark coherence in three-level media
Mallek et al. Instabilities in high power fiber lasers induced by stimulated Brillouin scattering
Cerullo et al. Problems in laser physics
JPH04107893A (en) Simulation apparatus for pulse laser
Kocharovskaya et al. Regimes of generation in low-Q distributed-feedback lasers with strong inhomogeneous broadening of the active medium
Gauthier Two-photon lasers
Wang et al. Theory for Raman superradiance in atomic gases
Jiang et al. Nonlinear-emission photonic glass fiber and waveguide devices
Yastremskii et al. Modeling of lasing possibility in XeF (CA) amplifier of the THL-100 laser system
Jafari et al. Suppression of the Stimulated Brillouin and Raman Scattering in Actively Q‐switched Fiber Lasers through Temporal Pulse Shaping
Soukieh et al. Numerical calculations of intracavity dye Q-switched ruby laser
Korytin et al. Dissipative solitons in the complex Ginzburg-Landau equation for femtosecond lasers
Rothe et al. Spatial-dependent simulation of TEA CO2 lasers
Ghani TEA CO2 laser simulator: a software tool to predict the output pulse characteristics of TEA CO2 laser
Chinn et al. Subnanosecond (Er, Yb) Glass $ Q $-Switched Microlasers: 3-D Transient Modeling and Experiments
Hassan Synchronously pumped and continuous wave mid-IR hollow core fibre gas lasers
Beniwal Mid-infrared fibre lasers for use in wavefront coe= rrection in advanced gravitational wave detectors
Hessel Dynamics and bifurcation analysis of mode-locking in coupled optical micro-cavities
Wang et al. Pure single line oscillation of HF lasers in fine atmospheric window
Soukieh et al. Mathematical modeling of TE CO2 laser with SF6 as a saturable absorber