JPH04107318A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH04107318A
JPH04107318A JP2227372A JP22737290A JPH04107318A JP H04107318 A JPH04107318 A JP H04107318A JP 2227372 A JP2227372 A JP 2227372A JP 22737290 A JP22737290 A JP 22737290A JP H04107318 A JPH04107318 A JP H04107318A
Authority
JP
Japan
Prior art keywords
rotor
current
windings
bearing device
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2227372A
Other languages
Japanese (ja)
Inventor
Masao Inoue
正夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2227372A priority Critical patent/JPH04107318A/en
Publication of JPH04107318A publication Critical patent/JPH04107318A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To rotatably drive a rotor while supporting it in non-contact by the use of a single stator and coil by controlling displacements of the rotor on the basis of the amplitude of a current, and simultaneously, changing a phase of the current so as to rotate a magnetic field produced by the coil around the rotor. CONSTITUTION:An induced current is generated in a rotor 2 in the same principle as that of an induction motor. Interaction between the induced current and a magnetic field produced by a coil applies rotation driving force in the clockwise direction to the rotor 2. Adjustment of a current switching speed of the coil wire can control a rotating speed of the rotor 2. Attraction force exerted on the rotor 2 is dependent on an absolute value of the current flowing in the coil wire 3 irrespective of the direction of the current flowing in the coil wire 3. If a displacement (x) of the rotor in the lateral direction and a displacement (y) thereof in the vertical direction are measured, suitable adjustment of the attraction force can control the vertical and lateral positions of the rotor 2 in the sheet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばターボ真空ポンプなどに使用されて
いる磁気軸受など、ロータを非接触で支持して回転させ
る磁気軸受装置に関するものである0 〔従来の技術〕 第8図は、例えばエヌ嗜チー・エヌ東洋ベアリング株式
会社カタログNo、 80:L4に記載された従来の磁
気軸受装置を示す断面構成図である。図において、(1
)はステータ、(2)はロータ、(3A) 、 (3B
) 、 (30)、(3D) (総称する時は(3))
はと記ステータ(1)の磁極に巻かれた巻線である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic bearing device that supports and rotates a rotor without contact, such as a magnetic bearing used in, for example, a turbo vacuum pump. [Prior Art] FIG. 8 is a cross-sectional configuration diagram showing a conventional magnetic bearing device described in, for example, NN Toyo Bearing Co., Ltd. Catalog No. 80:L4. In the figure, (1
) is the stator, (2) is the rotor, (3A), (3B
), (30), (3D) ((3) when used collectively)
This is the winding wound around the magnetic poles of the stator (1).

次にこの装置の動作を説明する。磁気軸受装置ではロー
タを非接触支持するだめにロータの変位を検出し、これ
が所望の値となるように巻線(3A) + (3B)I
 (30) 、 (r5D)の吸引力を調整する。すな
わち、検出されたロータの水平方向、上下方向の変位を
それぞれX、7とすれば、4つの巻線(3A) 、 (
3B) 。
Next, the operation of this device will be explained. In order to support the rotor without contact, the magnetic bearing device detects the displacement of the rotor and connects the windings (3A) + (3B)I so that the displacement becomes the desired value.
(30) Adjust the suction force of (r5D). That is, if the detected horizontal and vertical displacements of the rotor are X and 7, respectively, then the four windings (3A), (
3B).

(30)、(3D)に流れる電流IA+IB+IC+I
Dが01)〜α→式となるように制御する。
Current flowing in (30), (3D) IA+IB+IC+I
Control is performed so that D is expressed as 01) to α→.

I A = I BIA8− Kp7− Kd7   
θ◇より=IBIAII −Kpx−KdX   (J
2JI c =IBIAs ” Kp7 +Kd7  
  α枠In=InrAs +Kpx+KaX   (
14)ここで、I!Ir*s (>O)は各巻線に与え
られる一定のバイアス電流、)C,ンは各々x+ 7の
時間微分量、K、、Kdは位置誤差のフィードバックゲ
インであシ、前者は軸受に復元力を、後者は運動に減衰
を与え制御系を安定化する効果を持つ。ステータ(1)
の発生する吸引力は近似的に巻線(3)に流れる電流の
絶対値に比例するので、このような処置を施すことによ
って、ロータ(2)には北下方向と左右方向に人工的な
復元力が与えられ、ステータ(1)に対し非接触にその
位置を仇つことが可能である。
I A = I BIA8- Kp7- Kd7
From θ◇=IBIAII −Kpx−KdX (J
2JI c =IBIAs ” Kp7 +Kd7
α frame In=InrAs +Kpx+KaX (
14) Here, I! Ir*s (>O) is a constant bias current applied to each winding, )C,n are the time derivatives of x+7, respectively, and K, , Kd are position error feedback gains, the former being restored to the bearing. The latter has the effect of damping the motion and stabilizing the control system. Stator (1)
The attraction force generated by the rotor (2) is approximately proportional to the absolute value of the current flowing through the winding (3). A restoring force is given to the stator (1), making it possible to change its position without contacting the stator (1).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の磁気軸受装置は以とのような構成によシロータ(
2)を非接触支持していたが、これだけではロータ(2
)は静止浮上しているだけであシ、所望の角速度でロー
タ(2)を回転させるためには、磁気軸受装置とは別に
回転駆動のだめの電動機を備えなければならなかった。
The conventional magnetic bearing device has the following configuration, and the rotor (
2) was supported in a non-contact manner, but this alone did not support the rotor (2).
) is only stationary and floating, and in order to rotate the rotor (2) at the desired angular velocity, an electric motor for rotational drive must be provided in addition to the magnetic bearing device.

そのため通常の玉軸受のような機械的な軸受を用いた装
置に比較して磁気軸受の分だけ大型になシ、費用・重量
−容積の制限の厳しい場合には設計が困難になる場合が
あった。
Therefore, compared to devices using mechanical bearings such as ordinary ball bearings, magnetic bearings are larger and may be difficult to design when there are severe cost, weight, and volume restrictions. Ta.

この発明は上記のような問題点を解決するためになされ
たものであシ、小型・軽量で設計が容易な磁気軸受装置
を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a magnetic bearing device that is small, lightweight, and easy to design.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる磁気軸受装置は、各巻線に流れる電流
の絶対値を変化させて、ロータの変位を制御すると共に
、上記各巻線に流れる電流の極性を所定の周期で変化さ
せて、上記各巻線によりつくられる各磁界がと記ロータ
の回りを回転するようにしたものである。
The magnetic bearing device according to the present invention changes the absolute value of the current flowing through each winding to control the displacement of the rotor, and also changes the polarity of the current flowing through each of the windings at a predetermined period to control the displacement of the rotor. Each magnetic field created by the rotor rotates around the rotor.

〔作用〕[Effect]

この発明における磁気軸受装置では、電流の振幅(絶対
値)によってロータの変位が制御され、同時に、電流の
位相(極性)を変化させて、巻線によりつくられる磁界
をロータのまわシに回転させることによってロータを回
転させるトルクを得ることができるので、専用の電動機
を用いることなく、同一のステータと巻線とを使ってロ
ータを非接触支持したまま回転駆動することが可能とな
る。
In the magnetic bearing device of this invention, the displacement of the rotor is controlled by the amplitude (absolute value) of the current, and at the same time, the phase (polarity) of the current is changed to rotate the magnetic field created by the windings to the rotor. As a result, the torque to rotate the rotor can be obtained, so it is possible to rotate the rotor while supporting it in a non-contact manner using the same stator and windings without using a dedicated electric motor.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)はステータ、(2)はロータ、(3
a)〜(3h)は上記ステータに巻かれた8つの独立な
巻線である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is the stator, (2) is the rotor, and (3) is the stator.
a) to (3h) are eight independent windings wound around the stator.

第2図はこの装置の回転駆動装置としての動作を示した
ものである。第2図(a)、第2図(b)、第2図(C
)、第2図(d)は、それぞれある時刻に電流が流され
ている巻線とその電流の方向を示したものであり、(a
)→(b)→(C)→(d)、または(1)−” (C
) −’ (b) −(a)の順番に繰り返されるもの
とする。また、巻線に記された記号は紙面に垂直な電流
向きを表す記号であシ、■が裏から表へ、■が表から裏
へ向かう方向を示している。
FIG. 2 shows the operation of this device as a rotary drive device. Figure 2(a), Figure 2(b), Figure 2(C)
) and Figure 2(d) show the windings through which current is flowing at a certain time and the direction of the current, respectively.
)→(b)→(C)→(d), or (1)-” (C
) −' (b) −(a) shall be repeated in the order. Further, the symbols written on the windings are symbols representing the direction of current perpendicular to the plane of the paper, and ■ indicates the direction from the back to the front, and ■ indicates the direction from the front to the back.

第2図(a)においては8つの巻線(3a)〜(3h)
のうち(3a)〜(3d)の4つだけに電流が流され、
巻線(3a)、(3c)に流れる電流によって矢印で示
されるようにロータ(2)からステータ(1)へ向かう
磁束の流れが発生し、巻線(3b)、(34)に流れる
電流によって矢印で示されるようにステータ(1)から
ロータ(2)へ向かう磁束の流れが発生する。
In Fig. 2(a), there are eight windings (3a) to (3h).
Current is passed through only four of them (3a) to (3d),
The current flowing through the windings (3a) and (3c) causes a flow of magnetic flux from the rotor (2) to the stator (1) as shown by the arrow, and the current flowing through the windings (3b) and (34) causes A flow of magnetic flux is generated from the stator (1) to the rotor (2) as indicated by the arrow.

第2図(b)においては8つの巻線(3a)〜(3h)
のうち(3e)〜(3f)の4つだけに電流が流され、
巻線(3e)、(3g)に流れる電流によって矢印で示
されるようにロータ(2)からステータ(1)へ向かう
磁束の流れが発生し、巻線(3f) 、 (3h)に流
れる電流によって矢印で示されるようにステータ(1)
からロータ(2)へ向かう磁束の流れが発生する。これ
は第2図(a)の磁束の流れを時計まわシに45度だけ
回転させた状態に相当する。
In Fig. 2(b), there are eight windings (3a) to (3h).
Current is passed through only four of them (3e) to (3f),
The current flowing through the windings (3e) and (3g) causes a flow of magnetic flux from the rotor (2) toward the stator (1) as shown by the arrow, and the current flowing through the windings (3f) and (3h) causes Stator (1) as indicated by the arrow
A flow of magnetic flux is generated from the rotor (2) toward the rotor (2). This corresponds to the state in which the flow of magnetic flux in FIG. 2(a) is rotated clockwise by 45 degrees.

第2図(0)においては、使用される巻線は第2図(a
)と同一であるが、その電流の向きは第2図(a)と反
対である。したがって、発生する磁束の流れも矢印で示
されているように第2図(a)とは反対方向になる。こ
れは第2図(b)の磁束の流れを時計まわりに45度だ
け回転させた状態に相当する。
In Fig. 2(0), the winding used is shown in Fig. 2(a).
), but the direction of the current is opposite to that in FIG. 2(a). Therefore, the flow of the generated magnetic flux is also in the opposite direction to that in FIG. 2(a), as indicated by the arrow. This corresponds to the state in which the flow of magnetic flux in FIG. 2(b) is rotated clockwise by 45 degrees.

第2図(d)においては、使用される巻線は第2図(b
)と同一であるが、その電流の向きは第2図(b)と反
対である。したがって、発生する磁束の流れも矢印で示
されているように第2図(b)とは反対方向になる。こ
れは第2図(0)を時計まわシに45度だけ回転させた
状態に相当し、第2図(d)をさらに時計まわりに45
度だけ回転させれば第2図(a)の状態となる。
In Figure 2(d), the windings used are as shown in Figure 2(b).
), but the direction of the current is opposite to that in FIG. 2(b). Therefore, the flow of the generated magnetic flux is also in the opposite direction to that in FIG. 2(b), as indicated by the arrow. This corresponds to the state in which Figure 2 (0) is rotated clockwise by 45 degrees, and Figure 2 (d) is further rotated by 45 degrees clockwise.
If it is rotated by a degree, the state shown in FIG. 2(a) will be obtained.

以上のように8つの巻線(3a)〜(3h)に流れる電
流の向きを第2図のように(a)→(b) −(c)→
(d)の順番に繰り返すことによってロータ(2)のま
わシには藝度毎に回転する磁界が生じることになる。し
たがって、誘導電動機と同一の原理によってロータ(2
)には誘導電流が発生し、この誘導電流と巻線のつくる
磁界との作用で、ロータ(2)には時計回りの回転駆動
力が加えられることになる。巻線の電流の切替え速度を
調節することによってロータ(2)の回転速度を制御す
ることも可能であり、また巻線に流す電流の順番を(d
)→(C)→(b) −(a)と逆転させることによっ
てロータの回転方向を反転させることもできる。
As described above, the direction of the current flowing through the eight windings (3a) to (3h) is as shown in Figure 2 (a) → (b) - (c) →
By repeating the sequence (d), a magnetic field is generated in the rotation of the rotor (2) that rotates for each rotation. Therefore, the rotor (2
), an induced current is generated, and due to the interaction of this induced current and the magnetic field created by the winding, a clockwise rotational driving force is applied to the rotor (2). It is also possible to control the rotational speed of the rotor (2) by adjusting the switching speed of the current in the windings, and the order of the currents flowing through the windings can be controlled by (d
) → (C) → (b) - (a) The rotation direction of the rotor can also be reversed.

第3図はこの装置の非接触軸受としての機能を示しだも
のであシ、第3図(a)は巻線(3a)〜(3d)だけ
が励起された状態、第3図(b)は巻線(3e)〜(3
h)だけが励起された状態をあられしている。ロータ(
2)に加わる吸引力は巻線(3)に流れる電流の方向に
は関わりなく、巻線(3)に流れる電流の絶対値に依存
する。これを図では白抜きの矢印で示した0従ってロー
タの左右方向の変位又と上下方向の変位yとが測定され
ているとすれば、従来の磁気軸受装置と同様に第3図0
の4つの吸引力を適当に調整することによってロータ(
2)の紙面内でのとTm左右方向の位置を制御すること
が可能である。
Figure 3 shows the function of this device as a non-contact bearing. Figure 3(a) shows a state in which only the windings (3a) to (3d) are excited, and Figure 3(b) shows a state in which only the windings (3a) to (3d) are excited. are windings (3e) to (3
h) is the only excited state. Rotor (
The attractive force applied to 2) is independent of the direction of the current flowing through the winding (3) and depends on the absolute value of the current flowing through the winding (3). This is indicated by a white arrow in the figure. Therefore, assuming that the left-right displacement of the rotor and the vertical displacement y are measured, the same as in the conventional magnetic bearing device is shown in FIG.
By appropriately adjusting the four suction forces of the rotor (
2) It is possible to control the position in the horizontal direction of Tm within the plane of the paper.

第3図(b)においても、吸引方力向のロータ(2)の
変位は測定量” + 7の適当な座標変換によって得る
ことができるので同様に位置の制御が可能である。
In FIG. 3(b), the displacement of the rotor (2) in the direction of the suction force can be obtained by appropriate coordinate transformation of the measured quantity "+7", so that the position can be controlled in the same way.

第4図はこの発明の一実施例による磁気軸受装置の構成
を示すブロック図でラシ、図において、(4)は変位検
出器、(5)は関数発生6、(6)は演算装置、(7a
)〜(7h)は電力増幅器である。変位検出器(4)に
よって検出されたロータ(2)の左右φ上下方向の変位
” + 7と、指定された磁界回転角速度ωとから、演
算装置(5)は8つの巻線(3a)〜(3h)に流れる
べき電流工2〜Ihを(1)〜αQ式のように算出する
FIG. 4 is a block diagram showing the configuration of a magnetic bearing device according to an embodiment of the present invention. In the figure, (4) is a displacement detector, (5) is a function generator 6, (6) is an arithmetic unit, ( 7a
) to (7h) are power amplifiers. Based on the left/right φ vertical displacement of the rotor (2) detected by the displacement detector (4) + 7 and the specified magnetic field rotational angular velocity ω, the calculation device (5) calculates the eight windings (3a) to 3. The electric current 2 to Ih that should flow in (3h) is calculated as in equations (1) to αQ.

I、=61gn(1/2ωt       )・IIB
tAs−Kp3’−Kdrl    (1)Ib=si
gn(1/2ωt+0.50π)−IIBtAs−Kp
x−Kdrl    (2)Ie=F3ign(1/2
ωt + 1.00π)−11+Hλs+Kpy+Kd
yl  (3)1.1=sign(1/2ωt+1.5
0+r)すInn5+Kpx+KdHl     (4
)I、 =sign(1/2ωt+o、25yr)iI
nus−Kpη−Kd!l  (5)If=eign(
1/2ωt + O,’75π) el IBIAII
I −Kpξ−Kdξ1(6)I、=sign(1/2
ωt+1.25π)・l I++us +Kpη+Kd
の1(7)Ib= e i gn (1/2ωt + 
1.’i’5π)・l IBIAS + Kpξ+Kd
#1(8)ξ= (x+ y ) cos45°   
         (9)η=(x−y)cos45°
            αQ8つの電力増幅器(7a
)〜(7h)はそれぞれに接続されている巻線(3a)
〜(3h)に(1)〜(8)式で演算された値の電流が
流れるように制御されている。
I, = 61gn(1/2ωt)・IIB
tAs-Kp3'-Kdrl (1) Ib=si
gn(1/2ωt+0.50π)-IIBtAs-Kp
x-Kdrl (2) Ie=F3ign(1/2
ωt + 1.00π)-11+Hλs+Kpy+Kd
yl (3) 1.1=sign(1/2ωt+1.5
0+r) Inn5+Kpx+KdHl (4
)I, =sign(1/2ωt+o, 25yr)iI
nus-Kpη-Kd! l (5) If=eign(
1/2ωt + O,'75π) el IBIAII
I −Kpξ−Kdξ1(6)I,=sign(1/2
ωt+1.25π)・l I++us +Kpη+Kd
1(7) Ib= e i gn (1/2ωt +
1. 'i'5π)・l IBIAS + Kpξ+Kd
#1(8)ξ= (x+y) cos45°
(9) η=(x-y)cos45°
αQ 8 power amplifiers (7a
) to (7h) are the windings (3a) connected to each
It is controlled so that the current having the value calculated by the equations (1) to (8) flows from to (3h).

ただし、tは時刻、ξ、ηは巻線(3e)、(3f)に
よる発生吸引方力向のロータ(2)の変位、39号は各
々ξ、ηの時間微分量、IBIA!+ (>O)は各巻
線に与えられるバイアス電流、ωは磁束の回転角速度、
K、、Kdは位置制御のだめのフィートノ(ツクゲイン
、81gへ・)は関数発生器(5)から出力される電流
の極性(符号)を与えるだめの信号で、第5図に示され
るような周期πの関数である0この関数は0.25π時
間おきに0となるので式(1)〜(8)かられかるよう
に、巻線(3a) 〜(3(1)と巻線(3e) 〜(
3h)とが同時に励起されることはない。ただし電流の
符号は磁束がロータ(2)からステータ(1)へ流れる
方向を正とする。
Here, t is the time, ξ and η are the displacements of the rotor (2) in the direction of the suction force generated by the windings (3e) and (3f), and No. 39 are the time derivatives of ξ and η, respectively, IBIA! + (>O) is the bias current given to each winding, ω is the rotational angular velocity of the magnetic flux,
K, , Kd are the signals that give the polarity (sign) of the current output from the function generator (5), and the signal for position control is the signal that gives the polarity (sign) of the current output from the function generator (5). This function becomes 0 every 0.25π time, so as can be seen from equations (1) to (8), windings (3a) to (3(1)) and windings (3e) ~(
3h) are never excited at the same time. However, the sign of the current is positive in the direction in which the magnetic flux flows from the rotor (2) to the stator (1).

(1)〜(8)式の右辺は電流の符号(位相)を与える
関数sign(s)とロータ(2)の変位を制御するた
めの電流の絶対値(振幅)との積として与えられるので
、電流の絶対値の成分でロータ(2)の位置を非接触状
態に保つように制御することができると同時に、電流の
符号の切替えを用いて作られるロータ(2)の回りに回
転する磁界の効果によってロータ(2)に回転トルクを
与えることが可能である。
The right side of equations (1) to (8) is given as the product of the function sign(s) that gives the sign (phase) of the current and the absolute value (amplitude) of the current to control the displacement of the rotor (2). , the position of the rotor (2) can be controlled to be kept in a non-contact state by the absolute value component of the current, and at the same time the magnetic field rotating around the rotor (2) created by switching the sign of the current It is possible to apply rotational torque to the rotor (2) by this effect.

なお、上記実施例ではステータ(1)の磁極数および巻
線数をいずれも8としたが、第6図に示すように、この
数を12としてもよい。この場合、磁界の回転は6回の
切替えで半周し、演算はやや複雑になるが、急激な磁界
極性の変化がなくなシ特性の向上が期待できる。第7図
にこの場合の関数発生器の信号を示す。さらにこれ以外
の極数や巻線数で構成することも可能である。
In the above embodiment, the number of magnetic poles and the number of windings of the stator (1) were both 8, but as shown in FIG. 6, these numbers may be set to 12. In this case, the rotation of the magnetic field is made half a revolution by switching six times, and the calculation becomes a little complicated, but there is no sudden change in the magnetic field polarity, and an improvement in the characteristics can be expected. FIG. 7 shows the signal of the function generator in this case. Furthermore, it is also possible to configure the structure with a number of poles and a number of windings other than these.

〔発明の効果〕〔Effect of the invention〕

以北のように、この発明によれば各巻線に流れる電流の
絶対値を変化させて、ロータの変位を制御すると共に、
上記各巻線に流れる電流の極性を所定の周期で変化させ
て、北記各巻線によりつくられる各磁界が上記ロータの
回りを回転するようにしたので、同一のステータと巻線
とによって、ロータの非接触支持と回転駆動が可能であ
シ、装置が全体として小型・軽量になり、また安価なも
のが得られるという効果がある。
According to the present invention, the absolute value of the current flowing through each winding is changed to control the displacement of the rotor, and
The polarity of the current flowing through each of the windings is changed at a predetermined period so that each magnetic field created by each winding rotates around the rotor. Non-contact support and rotational drive are possible, and the device as a whole can be made smaller, lighter, and less expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による磁気軸受装置を示す
断面構成図、第2図(a) 、 (b) 、 (c) 
、 (d)はこの発明の一実施例による磁気軸受装置の
磁界の回転を示す説明図、第3図(a)、(b)は各々
この発明の一実施例による磁気軸受装置の発生吸引力を
示す説明図、第4図はこの発明の一実施例による磁気軸
受装置の構成を示すブロック図、第5図はこの発明の一
実施例に係わる関数発生器の信号を示す波形図、第6図
はこの発明の他の実施例による磁気軸受装置を示す断面
構成図、第7図はこの発明の他の実施例に係わる関数発
生器の信号を示す波形図、及び第8図は従来の磁気軸受
装置を示す断面構成図である。 図において、(1)はステータ、(2)はロータ、(3
a)、(3b)、(3c)、(3d)、(3e)、(3
f)、(3g)+(3h) l (3)は巻線、(4)
は変位検出器、(5)は関数発生6、(6)は演算装置
、(7a)、(7b) 〜(7h)は電力増幅器である
。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional configuration diagram showing a magnetic bearing device according to an embodiment of the present invention, and FIGS. 2(a), (b), (c)
, (d) is an explanatory diagram showing the rotation of the magnetic field of a magnetic bearing device according to an embodiment of the present invention, and FIGS. 3(a) and 3(b) are respective illustrations of the attraction force generated by the magnetic bearing device according to an embodiment of the present invention. FIG. 4 is a block diagram showing the configuration of a magnetic bearing device according to an embodiment of the invention, FIG. 5 is a waveform diagram showing signals of a function generator according to an embodiment of the invention, and FIG. Fig. 7 is a cross-sectional configuration diagram showing a magnetic bearing device according to another embodiment of the present invention, Fig. 7 is a waveform diagram showing signals of a function generator according to another embodiment of the invention, and Fig. 8 is a conventional magnetic bearing device. FIG. 2 is a cross-sectional configuration diagram showing a bearing device. In the figure, (1) is the stator, (2) is the rotor, and (3) is the stator.
a), (3b), (3c), (3d), (3e), (3
f), (3g) + (3h) l (3) is the winding, (4)
(5) is a function generator 6, (6) is an arithmetic unit, and (7a), (7b) to (7h) are power amplifiers. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] ステータ磁極に巻かれた複数の巻線に流れる電流のつく
る電磁吸引力を用いて、ロータを非接触浮上させる磁気
軸受装置において、上記各巻線に流れる電流の絶対値を
変化させて、上記ロータの変位を制御すると共に、上記
各巻線に流れる電流の極性を所定の周期で変化させて、
上記各巻線によりつくられる各磁界が上記ロータの回り
を回転するようにしたことを特徴とする磁気軸受装置。
In a magnetic bearing device that levitates a rotor in a non-contact manner using electromagnetic attraction generated by currents flowing through multiple windings wound around stator magnetic poles, the absolute value of the current flowing through each of the windings is changed to In addition to controlling the displacement, the polarity of the current flowing through each of the windings is changed at a predetermined period,
A magnetic bearing device characterized in that each magnetic field created by each of the windings rotates around the rotor.
JP2227372A 1990-08-28 1990-08-28 Magnetic bearing device Pending JPH04107318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2227372A JPH04107318A (en) 1990-08-28 1990-08-28 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227372A JPH04107318A (en) 1990-08-28 1990-08-28 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH04107318A true JPH04107318A (en) 1992-04-08

Family

ID=16859775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227372A Pending JPH04107318A (en) 1990-08-28 1990-08-28 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH04107318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424595A (en) * 1993-05-04 1995-06-13 General Electric Company Integrated magnetic bearing/switched reluctance machine
EP0939480A2 (en) * 1998-02-25 1999-09-01 Electric Boat Corporation Permanent magnet synchronous machine with integrated magnetic bearings
JP2009273214A (en) * 2008-05-03 2009-11-19 Tokyo Univ Of Science Bearingless motor and artificial heart mounted with the bearingless motor, blood pump, artificial heart-lung machine, pump, fan, blower, compressor, actuator, reaction wheel, flywheel, and oscillating stage
JP2014121098A (en) * 2012-12-12 2014-06-30 Tokyo Institute Of Technology Bearingless motor, rotary machine and non-contact magnetic force support pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424595A (en) * 1993-05-04 1995-06-13 General Electric Company Integrated magnetic bearing/switched reluctance machine
EP0939480A2 (en) * 1998-02-25 1999-09-01 Electric Boat Corporation Permanent magnet synchronous machine with integrated magnetic bearings
EP0939480A3 (en) * 1998-02-25 2000-12-06 Electric Boat Corporation Permanent magnet synchronous machine with integrated magnetic bearings
JP2009273214A (en) * 2008-05-03 2009-11-19 Tokyo Univ Of Science Bearingless motor and artificial heart mounted with the bearingless motor, blood pump, artificial heart-lung machine, pump, fan, blower, compressor, actuator, reaction wheel, flywheel, and oscillating stage
JP2014121098A (en) * 2012-12-12 2014-06-30 Tokyo Institute Of Technology Bearingless motor, rotary machine and non-contact magnetic force support pump

Similar Documents

Publication Publication Date Title
US4841204A (en) Combination electric motor and magnetic bearing
US5237229A (en) Magnetic bearing device with a rotating magnetic field
JPS58149899A (en) Magnetic bearing wheel for controlling attitude of artificial satellite
WO2011114912A1 (en) Bearingless motor
US4285552A (en) Torquer apparatus for magnetically suspended members
JP5963134B2 (en) Axial maglev motor
Lee et al. Torque model for design and control of a spherical wheel motor
JPS62221856A (en) Spherical motor
JPS63314195A (en) Method and device for driving 3-phase dc brushless motor
JPH04107318A (en) Magnetic bearing device
JP2001268981A (en) Disc type bearingless rotating machine
JPH0524759B2 (en)
JP2766745B2 (en) Control moment gyro
JPH11218130A (en) Disc type rotating machine without bearing
WO2024013935A1 (en) Bearingless motor control device, control method for motor system and bearingless motor
JPH0564417A (en) Motor having spherical rotor
JP3780313B2 (en) Biaxial actuator, drive circuit thereof, and drive method thereof
JPH063375B2 (en) Flex gyroscope
RU201726U1 (en) SPHERICAL ELECTRIC MOTOR WITH ROTOR CONTROL AND DISPLACEMENT CONTROL SYSTEM
JPS62177314A (en) Magnetic floating type rotary machine
JP2006288166A (en) Actuator utilizing electromagnetic driving force in two directions
JPS5832113A (en) Magnetic bearing ginbal wheel for artificial satellite
JP2002511228A (en) DC motor actuator that generates radial force
JP2606256Y2 (en) Magnetic bearing device
US20220288776A1 (en) Method and a medium for cogging compensating a motor driving signal