JPH04105821A - Feeding piece for wire cut electric discharging machine - Google Patents

Feeding piece for wire cut electric discharging machine

Info

Publication number
JPH04105821A
JPH04105821A JP22429290A JP22429290A JPH04105821A JP H04105821 A JPH04105821 A JP H04105821A JP 22429290 A JP22429290 A JP 22429290A JP 22429290 A JP22429290 A JP 22429290A JP H04105821 A JPH04105821 A JP H04105821A
Authority
JP
Japan
Prior art keywords
feeder
wire
feeding piece
wire electrode
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22429290A
Other languages
Japanese (ja)
Inventor
Shunzo Izumiya
和泉屋 俊三
Tomonobu Sakuragawa
櫻川 智信
Toshirou Tsutsumi
堤 都志郎
Izumi Azuma
東 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP22429290A priority Critical patent/JPH04105821A/en
Publication of JPH04105821A publication Critical patent/JPH04105821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make one part of the feeding electric power not to be dispersed as a Joule heat, by composing a feeding piece with the conductive material whose electric resistance is smaller than that of a cemented carbide material, and providing a hard material plating layer on the surface. CONSTITUTION:Feeding pieces 20, 22 are formed with the conductive material whose proper electric resistance is smaller than that of a cemented carbide material, and the wear protection is planned with the plating layer 24 of the hard metal material of chrome, etc., being provided on the surface contacted with a wire electrode 13. Thus, the loss of the work energy accompanied by a Joule heat at the contact and electrifying part between the feeding piece and wire electrode is reduced, the electric discharging power to be fed is applied as electric discharging energy effectively, and the work efficiency of the wire cut electric discharging can largely be improved. Also, the generation rates of work flaws and wear on the surface of the feeding piece are reduced sufficiently by the protection layer of the hard metal material of the surface, and the service life of the feeding piece can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤカット放電加工機に関し、特に、走行
するワイヤ電極に当接して同ワイヤ電極と被加工ワーク
との間で放電を発生させるための電力を供給する給電子
の改良構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wire-cut electrical discharge machine, and in particular, a wire-cut electrical discharge machine that comes into contact with a traveling wire electrode to generate electrical discharge between the wire electrode and a workpiece. This invention relates to an improved structure of a feeder for supplying electric power.

〔従来技術〕[Prior art]

ワイヤカット放電加工機は、平面内で直交2軸方向に移
動可能なワークテーブルに被加工材料である金属ワーク
を装着し、他方、ワイヤ電極をそのワークを経由して定
方向に走行させ、ワークとワイヤ電極との間に微小間隙
を介してパルス電圧を付与することにより、放電現象を
発生させ、その放電エネルギーによってワークから加工
屑を除去してワークに放電加工を行うものである。そし
て、このとき、ワークはワークテーブルと共に2軸方向
に移動制御されるので、放電加工により所望の形状をワ
ークに加工形成することができるのである。
In a wire-cut electric discharge machine, a metal workpiece, which is the material to be machined, is mounted on a worktable that can be moved in two orthogonal axes within a plane, and a wire electrode is run in a fixed direction via the workpiece to move the workpiece. By applying a pulse voltage through a small gap between the wire electrode and the wire electrode, an electric discharge phenomenon is generated, and the discharge energy is used to remove machining debris from the workpiece and perform electric discharge machining on the workpiece. At this time, since the workpiece is controlled to move in two axial directions together with the worktable, a desired shape can be formed on the workpiece by electrical discharge machining.

従来、このようなワイヤカット放電加工機において、走
行するワイヤ電極に接触して放電加工用電力として放電
加工電源からのパルス電圧を供給、  する給電子は、
走行するワイヤ電極との接触部で発生する磨耗により電
気的接触不良が発生するのを回避するために超硬材料を
用いて形成されていた。すなわち、通常は、ワイヤ電極
の走行路に臨んで円筒形又はサイコロ形に形成された超
硬材料製の給電子を配置していた。
Conventionally, in such a wire-cut electrical discharge machine, a feeder that contacts a running wire electrode and supplies pulse voltage from an electrical discharge machining power supply as electric power for electrical discharge machining is as follows.
In order to avoid poor electrical contact due to abrasion occurring at the contact portion with the traveling wire electrode, it is formed using a superhard material. That is, normally, a cylindrical or dice-shaped feeder made of a superhard material is placed facing the travel path of the wire electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然しなから、従来から用いられていた超硬会合材料は、
電気抵抗の小さい導電材料の典型である銅材料に比較す
ると、例えば、後者の銅系材料が略1.7μΩ/m程度
であるのに対して、後者の超硬合金では固有電気抵抗が
略20μΩ/m程度であり、従って、故に、超硬給電子
とワイヤ電極との間では放電加工電源から供給される電
力の一部がジュール熱として散逸される結果となり、放
電加工エネルギーの一部が無駄に費消される結果と成っ
ている。
However, the conventionally used cemented carbide associative materials are
Compared to copper material, which is a typical conductive material with low electrical resistance, for example, the latter copper-based material has a specific electrical resistance of about 1.7 μΩ/m, while the latter cemented carbide has a specific electrical resistance of about 20 μΩ. /m, and therefore, between the carbide feeder and the wire electrode, part of the power supplied from the electrical discharge machining power source is dissipated as Joule heat, and a part of the electrical discharge machining energy is wasted. The result is that it is consumed in

依って、本発明は斯かる問題点を解決することを目的と
するものである。
Therefore, the present invention aims to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上述の解決課題に鑑みて、ワイヤカット放電
加工機の給電子の素材を考察し、ジュール熱による加工
エネルギーの散逸を防止すべく、材料選定を行ったもの
である。すなわち、本発明によれば、ワークテーブルに
装着されたワークと所定の方向に走行するワイヤ電極と
の間に放電加工機電源からの放電々力を供給するワイヤ
カット放電加工機の給電子において、上記給電子を超硬
合金材料より電気抵抗の小さい導電材料により構成した
ことを特徴とするワイヤカット放電加工機の給電子を提
供するもので、好ましい導電材料としては、例えば、無
酸素銅(固有電気抵抗が約1゜7μΩ/ m )等の銅
材料、或いは黄銅材料等で形成される。更に、好ましく
は、これらの電気抵抗の小さい導電材料から成る給電子
は表面に給電子の本体部より硬質の金属材料、例えば、
クロム等のメッキ層を形成し、ワイヤ電極との接触によ
る表面磨耗の低減を図るようにする。以下、本発明を添
付図面により、更に、作用、効果等に就いて説明する。
In view of the above-mentioned problem to be solved, the present invention considers the material for the feeder of a wire-cut electric discharge machine, and selects the material in order to prevent the dissipation of machining energy due to Joule heat. That is, according to the present invention, in a feeder for a wire-cut electrical discharge machine that supplies electrical discharge force from the electrical discharge machine power source between a work mounted on a work table and a wire electrode running in a predetermined direction, The present invention provides a feeder for a wire-cut electrical discharge machine, characterized in that the feeder is made of a conductive material having a lower electrical resistance than a cemented carbide material. Preferred conductive materials include, for example, oxygen-free copper (specific It is made of a copper material, brass material, etc. with an electrical resistance of about 1.7 μΩ/m. Furthermore, preferably, the surface of the feeder made of a conductive material with low electrical resistance is coated with a metal material that is harder than the main body of the feeder, for example,
A plating layer of chromium or the like is formed to reduce surface abrasion due to contact with the wire electrode. Hereinafter, the present invention will be further explained with reference to the accompanying drawings in terms of its functions, effects, etc.

〔実施例〕〔Example〕

第1図は、本発明に係るワイヤカット放電加工機の放電
加工部の構成を示した略示図、第2図は本発明の実施例
による給電子の構造を示した斜視図、第3図は本発明に
よる給電子と従来の給電子との効果の比較を実験に基づ
いて示すグラフ図である。
FIG. 1 is a schematic diagram showing the configuration of the electrical discharge machining section of a wire-cut electrical discharge machine according to the present invention, FIG. 2 is a perspective view showing the structure of a feeder according to an embodiment of the present invention, and FIG. 1 is a graph diagram showing a comparison of effects between the feeder according to the present invention and a conventional feeder based on an experiment.

第1図に示すように、ワイヤカット放電加工機において
は、ワーク12がワークテーブル11上に取付けられて
同ワークテーブル11と共に平面内で2軸方向に移動可
能であり、ワークテーブル11の2軸方向の移動は周知
のNC制御装置等の放電加工制御装置(図示なし)によ
って制御される。ワーク12の上下には、ワイヤ電極1
3を所定の走行路に沿ってワイヤ電極供給源からワイヤ
電極巻取り装置に向けてガイドローラ16.17を経由
して走行案内する上下ワイヤガイド14.15が設けら
れ、このワイヤガイド14.15には加工電源から放電
加工用電力を供給する電気ケーブルが配線されている。
As shown in FIG. 1, in the wire-cut electrical discharge machine, a workpiece 12 is mounted on a worktable 11 and can move together with the worktable 11 in two axes within a plane. The directional movement is controlled by an electric discharge machining control device (not shown), such as a well-known NC control device. Wire electrodes 1 are placed above and below the workpiece 12.
Upper and lower wire guides 14.15 are provided for guiding the wire 3 along a predetermined travel path from the wire electrode supply source to the wire electrode winding device via guide rollers 16.17. An electric cable is wired to supply electric discharge machining power from a machining power source.

そして、上下ワイヤガイド14.15の内部に給電子2
0.22が設けられ、この給電子20.22が走行する
ワイヤ電極13に接触することにより、−放電電力の通
電が行われる構成にある。
Then, the feeder 2 is placed inside the upper and lower wire guides 14 and 15.
0.22 is provided, and when this feeder 20.22 comes into contact with the running wire electrode 13, -discharge power is applied.

本発明によれば、給電子20.22が何れも従来の超硬
会合材料から成る給電子に比較して固有電気抵抗が著し
く低減できる導電材料、即ち、銅材料、黄銅材料等に依
って形成された円筒体部材又はサイコロ形部材等に形成
されている。
According to the present invention, the feeders 20 and 22 are both made of a conductive material, such as a copper material or a brass material, whose specific electrical resistance can be significantly reduced compared to a conventional feeder made of a cemented carbide material. It is formed into a cylindrical member or a dice-shaped member.

第2図は円筒形の給電子20又は22を示し、また、本
実施例では、主要な給電子本体部23を上記の小電気抵
抗材料で形成し、ワイヤ電極13と接触する表面にクロ
ム等の硬質金属材料の層24を設けて磨耗保護を図るよ
うにした構造を示している。このような磨耗保護層は略
100〜120ミクロン程度の厚さの層をメッキ法で付
着、形成すれば、給電子20又は22の耐用寿命を延長
することができる。
FIG. 2 shows a cylindrical feeder 20 or 22, and in this embodiment, the main feeder body 23 is formed of the above-mentioned low electrical resistance material, and the surface in contact with the wire electrode 13 is made of chromium, etc. A structure is shown in which a layer 24 of hard metal material is provided to provide wear protection. By depositing and forming such a wear protection layer with a thickness of about 100 to 120 microns by plating, the service life of the feeder 20 or 22 can be extended.

なお、円筒形の給電子の場合には円筒表面がワイヤ電極
13との接触、通電面として用いられ、定期的に給電子
20又は22を取付軸心回りに回転させれば、接触面の
更新を図ることができる。
In the case of a cylindrical feeder, the cylindrical surface is used as a contact surface with the wire electrode 13 and as a current-carrying surface, and if the feeder 20 or 22 is periodically rotated around the mounting axis, the contact surface can be updated. can be achieved.

また、サイコロ形、立方体形状、直方体形状等の場合に
は、その側面の平坦面が接触、通電面に用いられ、この
場合にも、定期的に接触、通電面を更新するように付は
代えれば良い。また、給電子20.22の形状は上述し
た円筒形や角形に限定されるものでは無く、多面構造体
等に形成しても良い。また、給電子20.22は上下の
ワイヤガイド14.15の両者に設ける場合に限定され
るものでは無く、必要に応じて、何れか一方のワイヤガ
イド14または15の内部にだけ設けるような実施例と
しも良い。
In addition, in the case of a dice shape, cube shape, rectangular parallelepiped shape, etc., the flat side surface is used as the contact and current-carrying surface, and in this case as well, the contact and current-carrying surfaces are replaced so as to be updated periodically. Good. Further, the shape of the feeder 20.22 is not limited to the above-mentioned cylindrical shape or rectangular shape, and may be formed into a multifaceted structure or the like. Furthermore, the feeder 20.22 is not limited to being provided in both the upper and lower wire guides 14.15, but may be provided only inside either one of the wire guides 14 or 15, if necessary. Good example.

上述の構成から成る本発明のワイヤカット放電加工機の
給電子によれば、従来の超硬合金材料からなる給電子に
比較して固有電気抵抗が小さい金属材料ないし導電材料
から形成されているので、給電子とワイヤ電極との接触
、通電部分におけるジュール熱に伴う加工エネルギーの
損失が低減されるので、放電加工電源からワイヤ電極と
ワークとの微小間隙を介した放電加工部に供給される放
電電力が有効に放電加工エネルギーとして適用されるの
である。この結果、ワイヤカット放電加工の加工能率を
大きく向上させることができる。また、給電子の本体部
分を上述のように小電気抵抗材料で形成し、表面に硬質
金属材料による保護層をメッキ法等で形成した構造にす
ると、給電子の表面における加工傷の発生率や磨耗の発
生率が十分に低減され、給電子の耐用寿命を向上させる
ことができるのである。
According to the feeder for a wire-cut electric discharge machine of the present invention having the above-described configuration, it is made of a metal material or a conductive material that has a lower specific electrical resistance than a conventional feeder made of a cemented carbide material. , the contact between the feeder and the wire electrode and the loss of machining energy due to Joule heat in the current-carrying part are reduced, so the electrical discharge that is supplied from the electrical discharge machining power source to the electrical discharge machining part through the minute gap between the wire electrode and the workpiece is reduced. Electric power is effectively applied as electrical discharge machining energy. As a result, the machining efficiency of wire cut electrical discharge machining can be greatly improved. In addition, if the main body of the feeder is made of a material with low electrical resistance as described above, and a protective layer of hard metal material is formed on the surface by plating, etc., the incidence of processing scratches on the surface of the feeder can be reduced. The incidence of wear is sufficiently reduced, and the service life of the feeder can be improved.

第3図はこのような本発明の給電子の加工能率の向上を
実験的に確認したグラフ図であり、横軸は従来の超硬合
金材料と本発明に係る小電気抵抗材料の例である銅、黄
銅の材料を示し、縦軸は、加工速度(従来の値を100
%として表示)を示している。このグラフ図から、本発
明に係る給電子の場合には約20%弱の加工速度を向上
が得られ、故に、単位時間当たりのワーク加工能率が向
止させることができることが分かった。しかも、ワイヤ
ガイドから加工液を放電加工部に吐出する吐出量を増加
させると、更に、加工能率の向上も可能であることが、
実験的に確認された。
Figure 3 is a graph that experimentally confirms the improvement in machining efficiency of the feeder according to the present invention, and the horizontal axis shows examples of conventional cemented carbide materials and low electrical resistance materials according to the present invention. Copper and brass materials are shown, and the vertical axis is the processing speed (conventional value 100
(expressed as %). From this graph, it was found that in the case of the feeder according to the present invention, the machining speed could be improved by about 20%, and therefore the workpiece machining efficiency per unit time could be improved. Furthermore, it is possible to further improve machining efficiency by increasing the amount of machining fluid discharged from the wire guide to the electrical discharge machining section.
Confirmed experimentally.

〔発明の効果〕〔Effect of the invention〕

本発明によるワイヤカット放電加工機の給電子によれば
、給電子とワイヤ電極との接触、通電部でジュール熱に
よる加工エネルギーの散逸が低減されるので、放電加工
電源から供給される放電加工電力における放電加工エネ
ルギーとして有効利用されるエネルギー量の向上が得ら
れ、故に、ワイヤカット放電加工の加工能率を向上させ
ることができた。
According to the feeder of the wire-cut electric discharge machine according to the present invention, the dissipation of machining energy due to Joule heat at the contact between the feeder and the wire electrode and the current-carrying part is reduced, so the electric discharge machining power supplied from the electric discharge machining power supply is reduced. The amount of energy effectively utilized as electric discharge machining energy was improved, and therefore, the machining efficiency of wire cut electric discharge machining was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るワイヤカット放電加工機の放電
加工部の構成を示した略示図、第2図は本発明の実施例
による給電子の構造を示した斜視図、第3図は本発明に
よる給電子と従来の給電子との効果の比較を実験に基づ
いて示すグラフ図。 12・・・ワーク、11・・・ワークテーブル、13・
・・ワイヤ電極、14.15・・・上下ワイヤガイド、
20.22・・・給電子。
FIG. 1 is a schematic diagram showing the configuration of the electrical discharge machining section of a wire-cut electrical discharge machine according to the present invention, FIG. 2 is a perspective view showing the structure of a feeder according to an embodiment of the present invention, and FIG. FIG. 2 is a graph diagram showing a comparison of effects between the feeder according to the present invention and a conventional feeder based on an experiment. 12...Work, 11...Work table, 13.
...Wire electrode, 14.15...Upper and lower wire guide,
20.22...Feeding electron.

Claims (1)

【特許請求の範囲】 1、ワークテーブルに装着されたワークと所定の方向に
走行するワイヤ電極との間に放電加工機電源からの放電
々力を供給するワイヤカット放電加工機の給電子におい
て、 前記給電子を超硬合金材料より電気抵抗の小さい導電材
料により構成したことを特徴とするワイヤカット放電加
工機の給電子。 2、前記給電子は、前記小電気抵抗材料からなると共に
表面に硬質材料のメッキ層を設けたことを特徴とする請
求項1に記載のワイヤカット放電加工機の給電子。
[Claims] 1. In a power supply for a wire-cut electrical discharge machine that supplies electrical discharge force from an electrical discharge machine power source between a work mounted on a work table and a wire electrode running in a predetermined direction, A feeder for a wire-cut electric discharge machine, characterized in that the feeder is made of a conductive material having a lower electrical resistance than a cemented carbide material. 2. The feeder for a wire-cut electric discharge machine according to claim 1, wherein the feeder is made of the low electrical resistance material and has a plated layer of hard material on its surface.
JP22429290A 1990-08-28 1990-08-28 Feeding piece for wire cut electric discharging machine Pending JPH04105821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22429290A JPH04105821A (en) 1990-08-28 1990-08-28 Feeding piece for wire cut electric discharging machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22429290A JPH04105821A (en) 1990-08-28 1990-08-28 Feeding piece for wire cut electric discharging machine

Publications (1)

Publication Number Publication Date
JPH04105821A true JPH04105821A (en) 1992-04-07

Family

ID=16811490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22429290A Pending JPH04105821A (en) 1990-08-28 1990-08-28 Feeding piece for wire cut electric discharging machine

Country Status (1)

Country Link
JP (1) JPH04105821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086457B2 (en) 2014-04-30 2018-10-02 Canon Marketing Japan Kabushiki Kaisha Power supply unit and multi-wire electrical discharge machining apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165727A (en) * 1984-09-05 1986-04-04 Inoue Japax Res Inc Electrical feeder in wire-cut electric discharge machining device
JPS6322223A (en) * 1986-04-02 1988-01-29 アクチエンゲゼルシヤフト フユ−ル インヅストリエル エレクトロニク アギ− ロ−ソネ バイ ロカルノ Power feeder for wire electrode of electric discharge machine
JPS63245329A (en) * 1987-03-30 1988-10-12 Inoue Japax Res Inc Wire-cut electric discharge machining device
JPH03281124A (en) * 1990-03-29 1991-12-11 Mitsubishi Electric Corp Electrifying element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165727A (en) * 1984-09-05 1986-04-04 Inoue Japax Res Inc Electrical feeder in wire-cut electric discharge machining device
JPS6322223A (en) * 1986-04-02 1988-01-29 アクチエンゲゼルシヤフト フユ−ル インヅストリエル エレクトロニク アギ− ロ−ソネ バイ ロカルノ Power feeder for wire electrode of electric discharge machine
JPS63245329A (en) * 1987-03-30 1988-10-12 Inoue Japax Res Inc Wire-cut electric discharge machining device
JPH03281124A (en) * 1990-03-29 1991-12-11 Mitsubishi Electric Corp Electrifying element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086457B2 (en) 2014-04-30 2018-10-02 Canon Marketing Japan Kabushiki Kaisha Power supply unit and multi-wire electrical discharge machining apparatus

Similar Documents

Publication Publication Date Title
CA2653730A1 (en) Abrasion assisted wire electrical discharge machining process
WO2003039800A1 (en) Improved consumable electrode arc welding
KR20040068601A (en) Wire for high-speed electrical discharge machining
KR100376755B1 (en) wire electrode
US5194126A (en) Method and device for dressing grinding wheels
US4717804A (en) EDM wire electrode
JPH04261714A (en) Wire electrode for cutting work piece by electrical discharge machining
US4762974A (en) Electrically independent wire electroerosion discharge machine
JPH04105821A (en) Feeding piece for wire cut electric discharging machine
JP5264514B2 (en) Feeding die for wire electric discharge machine
JP2831828B2 (en) Power supply device for wire electric discharge machine
EP0794027A1 (en) Electric discharge machining apparatus and electric discharge machining method
US8519294B2 (en) Electric discharge machining wire with optimized surface coating
JPH03281124A (en) Electrifying element
JPH04115823A (en) Workpiece setting bed for electric discharge machining device
JP2015009346A (en) Electrolytic dressing method and electrolytic dressing device
JPS63188477A (en) Guide and electrification member for welding
JPH01222821A (en) Wire cut electric discharge machine
EP0180195A2 (en) Wire electrode discharge machining apparatus
JPH04360720A (en) Wire electric discharge machining device
JPS61197128A (en) Jig for electric discharge machine
JPH05177444A (en) Guide and current-carrying device in wire cut electric discharge machining device
US5882490A (en) Wire electrode arrangement for electroerosive cutting
US3383302A (en) Electrical stock removal electrode
JP3587968B2 (en) Wire cut electric discharge machine