JPH04105783A - Articulated robot for laser beam processing - Google Patents

Articulated robot for laser beam processing

Info

Publication number
JPH04105783A
JPH04105783A JP2224298A JP22429890A JPH04105783A JP H04105783 A JPH04105783 A JP H04105783A JP 2224298 A JP2224298 A JP 2224298A JP 22429890 A JP22429890 A JP 22429890A JP H04105783 A JPH04105783 A JP H04105783A
Authority
JP
Japan
Prior art keywords
robot
axis
laser beam
duct
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2224298A
Other languages
Japanese (ja)
Inventor
Takao Nakatani
中谷 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2224298A priority Critical patent/JPH04105783A/en
Publication of JPH04105783A publication Critical patent/JPH04105783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the reflecting mirrors to be disposed in a robot and to allow the easy adjustment of an optical axis by providing an external optical system which moves in follow up to the forward arm axis of the robot on the outside part of the perpendicular articulated robot and making a laser beam incident on the internal optical system of the robot from this external optical system. CONSTITUTION:The incident laser beam on the front arm axis 8 is refracted by the 3rd reflecting mirror 11 and 4th reflecting mirror 14 respectively of a wrist axis 20 and is then condensed to a lens 13, from which the laser beam is projected and used for processing. The external optical system of this case is pulled by the forward arm axis 8 to move in follow up to the arbitrary movements of the robot body 1 as the 1st and 2nd reflectors 16, 18 can turn respectively in two ways and a light guide 17 has 6 degrees of freedom to allow expansion, contraction and rotation. The laser beam is thus made incident always on the axial center of the forward arm shaft 8.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はレーザ加工用ロボット、特に垂直多関節アーム
手段を用いたレーザ加工用多関節ロボットに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a robot for laser processing, and particularly to an articulated robot for laser processing using vertical articulated arm means.

[従来の技術] 第5図は特開昭82−13078111号公報に開示さ
れた従来のレーザ加工用多関節ロボットのレーザ光経路
を示す略式斜視図である。図において(41)はロボッ
ト基部、(42)は基部(41)に回動自在に支持され
たフォーク部材、(43)はフォーク部材(42)に関
節接続した回動自在のアーム、(44)はフォーク部材
(42)とアーム(43)にまたがるケース、(45)
はアーム(43)の他端に関節接続した回動自在の前腕
部、(4B)は前腕部(45)の非関節接続部に取り付
けられ前腕部(45)に平行な軸心の回りて回動自在と
しこの回動軸心に実質的に垂直な軸心を中心として回動
自在の端部を有する手首アセンブリである。
[Prior Art] FIG. 5 is a schematic perspective view showing a laser beam path of a conventional articulated robot for laser processing disclosed in Japanese Patent Laid-Open No. 82-13078111. In the figure, (41) is the robot base, (42) is a fork member rotatably supported by the base (41), (43) is a rotatable arm jointly connected to the fork member (42), (44) (45) is a case spanning the fork member (42) and the arm (43);
(4B) is a rotatable forearm jointed to the other end of the arm (43), and (4B) is attached to a non-articulated joint of the forearm (45) and rotates around an axis parallel to the forearm (45). A wrist assembly is movable and has an end pivotable about an axis substantially perpendicular to the pivot axis.

(47)〜(56)はロボット各部の内部に配置された
レーザー光を通すダクト、(57)〜(65)はレーザ
光の方向を変えるための反射鏡である。
(47) to (56) are ducts arranged inside each part of the robot for passing laser light, and (57) to (65) are reflecting mirrors for changing the direction of the laser light.

上記構成のレーザ加工用多関節ロボットは、5自由度の
動きを有し、ロボット内部に配したダクト(47)〜(
5B)、及び反射鏡(57)〜(65〉によって、加工
位置に自在にレーザ光を照射している。
The articulated robot for laser processing with the above configuration has five degrees of freedom of movement, and has ducts (47) to (
5B) and reflecting mirrors (57) to (65>), the laser beam is freely irradiated onto the processing position.

[発明が解決しようとする課題] しかしながら上記のような従来の構成では、ロボットの
内部に反射鏡の数が多くなるため、光軸を調整すること
が非常に困難であるという課題があった。
[Problems to be Solved by the Invention] However, in the conventional configuration as described above, there is a problem that it is very difficult to adjust the optical axis because the number of reflecting mirrors increases inside the robot.

本発明は係る課題を解決するために成されたもので、ロ
ボットの内部に配置する反射鏡を最小限に押さえ、光軸
の調整が簡単に行えるレーザ加工用多関節ロボットを得
ることを目的とする。
The present invention has been made to solve the above problems, and its purpose is to provide an articulated robot for laser processing in which the number of reflectors disposed inside the robot can be minimized and the optical axis can be easily adjusted. do.

[課題を解決するための手段] 本発明に係るレーザ加工用多関節ロボットは、ロボット
を回動する旋回軸、この旋回軸の支点に連結し揺動する
上腕軸、この上腕軸の他端支点に連結し揺動する前腕軸
、この前腕軸の端部に連結し前腕輪と独立して回動自在
の手首軸を備えた多関節ロボットと、 発振器で出力したレーザ光を案内する所定位置に固定し
た第1のダクト、ロボットの前腕輪に固着しレーザ光を
ロボット内部へ案内する第2のダクト、一対の反射鏡を
対向して配置し入射光を屈折する第1の反射鏡により屈
折された光の中心と直交かつ回動可能に放射する第2の
反射鏡を収納し2自由度の回動を有した第1及び第2の
反射装置、一対の円筒構造体に直線摺動輪受と転がり軸
受を収納し回動と伸縮を可能とした光ガイドを備え、第
1のダクトと第1の反射装置、この第1の反射装置と光
ガイド、この光ガイドと第2の反射装置、この第2の反
射装置と第2のダクトとを夫々連結した外部光学系と、 この外部光学系につながるロボットの内部光学系とから
構成したものである。
[Means for Solving the Problems] An articulated robot for laser processing according to the present invention includes a pivot shaft for rotating the robot, a brachial shaft that is connected to a fulcrum of the pivot shaft and swings, and a fulcrum at the other end of the brachial shaft. An articulated robot equipped with a forearm shaft that is connected to and swings, a wrist shaft that is connected to the end of this forearm shaft and can rotate independently of the forearm, and a robot that is connected to a predetermined position that guides the laser beam output from an oscillator. A fixed first duct, a second duct that is fixed to the forearm of the robot and guides the laser beam into the robot, and a first reflecting mirror that refracts the incident light by a pair of reflecting mirrors arranged opposite each other. The first and second reflecting devices house a second reflecting mirror that emits light rotatably and perpendicular to the center of the light, and have two degrees of freedom of rotation. It is equipped with a light guide that accommodates a rolling bearing and is rotatable and expandable, and includes a first duct, a first reflecting device, this first reflecting device and a light guide, this light guide and a second reflecting device, and this light guide. It is composed of an external optical system that connects a second reflection device and a second duct, and an internal optical system of the robot that is connected to this external optical system.

[作用] 本発明において、レーザ光は第4図の模式図に示すよう
に進む。第4図において、第1図と同一符号は同−又は
相当部分を示す。すなわち、第1のダクト、第1の反射
装置、光ガイド、第2の反射装置、第2のダクトを順に
通過して、ロボットの前腕軸から内部光学系に入射し、
ロボットの手首軸を通って照射され、加工に供される。
[Function] In the present invention, laser light travels as shown in the schematic diagram of FIG. In FIG. 4, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. That is, the light passes through the first duct, the first reflection device, the light guide, the second reflection device, and the second duct in order, and enters the internal optical system from the forearm axis of the robot.
The light is irradiated through the robot's wrist axis and used for processing.

この場合、外部光学系は、第1の反射装置及び第2の反
射装置の回動、光ガイドの回動と伸縮により、ロボ・ン
トの前腕軸の動きに追従して動作し、常にレーザ光を前
腕軸の軸心に入射させる。
In this case, the external optical system operates to follow the movement of the forearm axis of the robot by the rotation of the first reflection device and the second reflection device and the rotation and expansion and contraction of the light guide, and the external optical system always emits laser light. is incident on the axis of the forearm axis.

[実施例] 第1図は、本発明の一実施例を示す構成図である。図に
おいて、(I)はロボット本体、(2)はロボット本体
(1)を所定の位置に静止、固定する基部、(3)は基
部(2)上に装架され駆動源(図示せず)により矢印A
方向に水平回動する旋回軸、(4)は旋回軸(3)の第
1支点(5)と連結し第1支点(5)を中心に矢印B方
向に揺動する上腕軸、(8)は上腕軸(4)の第2支点
(6)と連結し、リンク(7)の上下動に同期し、第2
支点(6)を中心に矢印C方向に揺動する中空の前腕輪
である。(20)は手首軸で、振り軸(9)とひねり(
10)から構成され、振り軸(9)は前腕輪(8)の一
端に軸心を同じくして連結されこの軸心を中心として矢
印り方向に回動し、ひねり軸(10)は振り軸(9)の
端部で振り軸(9)の回動軸心と垂直な軸心を中心とし
て矢印E方向に回動する。なお、本実施例では図示しな
かったが、ひねり軸(10)にはレーザ加工に固有の構
造のエンドエフェクタを固着する。
[Embodiment] FIG. 1 is a configuration diagram showing an embodiment of the present invention. In the figure, (I) is the robot body, (2) is the base that stops and fixes the robot body (1) in a predetermined position, and (3) is the drive source (not shown) mounted on the base (2). By arrow A
(4) is an upper arm shaft that is connected to the first fulcrum (5) of the rotation axis (3) and swings in the direction of arrow B about the first fulcrum (5); (8) is connected to the second fulcrum (6) of the upper arm shaft (4), synchronized with the vertical movement of the link (7), and
It is a hollow forearm ring that swings in the direction of arrow C around a fulcrum (6). (20) is the wrist axis, swing axis (9) and twist (
10), the swing shaft (9) is connected to one end of the forearm (8) with the same axis and rotates about this axis in the direction indicated by the arrow, and the twist shaft (10) is the swing shaft. The end of the swing shaft (9) rotates in the direction of arrow E about an axis perpendicular to the rotation axis of the swing shaft (9). Although not shown in this embodiment, an end effector having a structure specific to laser processing is fixed to the twist shaft (10).

(11)は振り軸(9)内に設けられた第3の反射鏡で
、前腕軸(8)から入射したレーザ光をひねり軸(10
)の回転軸心に反射する角度で配置しである。
(11) is a third reflecting mirror installed in the swing axis (9), which converts the laser beam incident from the forearm axis (8) into the twist axis (10).
) is placed at an angle that reflects the axis of rotation.

(12)はひねり軸(10)内に設けられた第4の反射
鏡で、入射したレーザ光をひねり軸(10)の回転軸心
と直交する方向に反射する角度に配置しである。
(12) is a fourth reflecting mirror provided in the twist shaft (10), and is arranged at an angle to reflect the incident laser light in a direction perpendicular to the rotation axis of the twist shaft (10).

(13)はひねり軸(10)内に設けられた第4の反射
鏡(12)からのレーザ光を集光するためのレンズ(1
3)である。
(13) is a lens (1
3).

(14)は発振器(図示せず)から出力されたレーザ光
を案内する第1のダクト、(15)は第1のダクト(1
4)の端部を固定支持する中空の支持台、(19)はロ
ボットの前腕軸(8)の他端に軸心を同一にして固着さ
れた第2のダクト、(16)は支持台(15)を介して
第1のダク) (14)に連結された第1の反射装置、
(18)は第2のダクト(19)に連結された第2の反
射装置、(17)は伸縮、回転が可能な光ガイドであり
、その両端は夫々第1の反射装置(16)、第2の反射
装置(18)に連結されている。
(14) is a first duct that guides a laser beam output from an oscillator (not shown), and (15) is a first duct (1
(19) is a second duct fixed to the other end of the robot's forearm shaft (8) with the same axis, and (16) is a hollow support base that fixedly supports the end of the robot (19). 15) a first reflector device connected to (14) via a first duct);
(18) is a second reflection device connected to the second duct (19), (17) is a light guide that can be expanded, contracted and rotated, and its both ends are connected to the first reflection device (16) and the second reflection device (19), respectively. 2 reflection device (18).

第2図は、第1の反射装置(16)及び第2の反射装置
(18)の−例を示す断面図である。図において、(2
0)はブロック、(21)はブロック(20)の軸心と
同一方向に、レーザ光を伝送する第1の反射鏡で鏡台(
22)に固定され、ブロック(20)に収納されている
。(23)はブロック(20)の軸心と直交する方向を
軸心とするように加工された第1の円筒部、(25)は
第1の円筒部(23)の外周に軸心を同一にして組み込
まれた第1のフランジである。(24)は第1の円筒部
(23)と第1のフランジ(25)の間に収納された複
数の第1の軸受である。(2B)はブロック(20)の
端部、(30)は第2の円筒部(28)と第2のフラン
ジ(29)から成る反射筒で、第2の円筒部(28)は
複数の第2の軸受(27)を介してブロックの端部(2
6)の内周に組込まれている。また、反射筒(30)は
中空で、第2の円筒部(28)の一端に、第1の反射鏡
と同一の第2の反射鏡、(21a)が鏡台(22a)に
固定され収納されている。従って、第1のフランジ(2
5)と第2のフランジ(29)を相互に見れば、2方向
に回動可能、すなわち2自由度の反射装置が構成されて
いる。
FIG. 2 is a sectional view showing an example of a first reflecting device (16) and a second reflecting device (18). In the figure, (2
0) is a block, and (21) is a mirror table (
22) and housed in the block (20). (23) is a first cylindrical portion machined so that its axis is perpendicular to the axis of the block (20), and (25) is a first cylindrical portion whose axis is aligned with the outer periphery of the first cylindrical portion (23). This is the first flange that is assembled into the first flange. (24) are a plurality of first bearings housed between the first cylindrical portion (23) and the first flange (25). (2B) is the end of the block (20), (30) is a reflector tube consisting of a second cylindrical part (28) and a second flange (29), and the second cylindrical part (28) has a plurality of The end of the block (2
6) is incorporated into the inner periphery. The reflecting tube (30) is hollow, and a second reflecting mirror (21a), which is the same as the first reflecting mirror, is fixed to and stored in the mirror stand (22a) at one end of the second cylindrical portion (28). ing. Therefore, the first flange (2
5) and the second flange (29), they constitute a reflecting device that is rotatable in two directions, that is, has two degrees of freedom.

第3図は、本発明を構成する光ガイド(17)の−例を
示す断面図である。図において、(31)は第1の円筒
で、その一端にはフランジ(25)、(29)のいずれ
かが装着可能な溝が加工され、他端には複数の第3の軸
受(33)が収納されている。(34)は第2の円筒で
、その一端は第3の軸受(33)の内側に回転のみ許容
されて組込まれている。(35)は第3の円筒で、その
一端はフランジ(25)、(29)のいずれかが装着可
能な溝が加工され、他端の内側には第3の円筒(35)
の直線運動のみ許容する複数の第4の軸受(37)を介
して、第2の円筒(34)が組込まれている。
FIG. 3 is a sectional view showing an example of a light guide (17) constituting the present invention. In the figure, (31) is a first cylinder, one end of which is machined with a groove into which either the flanges (25) or (29) can be attached, and the other end is provided with a plurality of third bearings (33). is stored. (34) is a second cylinder, one end of which is incorporated inside the third bearing (33) so that only rotation is allowed. (35) is a third cylinder, one end of which has a groove into which either the flange (25) or (29) can be attached, and the inside of the other end has a third cylinder (35).
The second cylinder (34) is incorporated through a plurality of fourth bearings (37) that allow only linear movement of the cylinder.

次に、第1図で示した実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

発振器から出力されたレーザ光は必要な経路を通って第
1のダクト(14)に入り、支持台(15)を介して第
1の反射装置(16)に入る。すなわち、第1のフラン
ジ(25)の軸心より入射し第1の反射鏡(21)によ
り屈折し、第2の反射鏡(21a)に伝送され、さらに
第2の反射鏡(21a)により屈折し、第2のフランジ
(29)の軸心を通って光ガイド(17)へと案内され
る。
The laser light output from the oscillator enters the first duct (14) through the necessary path and enters the first reflection device (16) via the support (15). That is, it enters from the axis of the first flange (25), is refracted by the first reflecting mirror (21), is transmitted to the second reflecting mirror (21a), and is further refracted by the second reflecting mirror (21a). and is guided into the light guide (17) through the axis of the second flange (29).

光ガイド(17)に入ったレーザ光は、第1の円筒(3
1)、第2の円筒(34)、第3の円筒(35)を通っ
て第2の反射装置(18)に入る。第2の反射装置(1
8)は第1の反射装置(16)と同一の構造のものであ
るが、ここでは、第2のフランジ(29)からレーザー
光を取り入れ、第1のフランジ(25)から第2のダク
ト(19)に案内する。そして、レーザ光は第2のダク
ト(19)からロボットの前腕軸(8)に入って行く。
The laser light entering the light guide (17) is directed to the first cylinder (3).
1), passes through the second cylinder (34) and the third cylinder (35) and enters the second reflection device (18). Second reflector (1
8) has the same structure as the first reflecting device (16), but here, the laser beam is taken in from the second flange (29), and the laser beam is passed from the first flange (25) to the second duct ( 19). The laser beam then enters the robot's forearm shaft (8) from the second duct (19).

前腕軸(8)に入射したレーザ光は手首軸(20)の第
3の反射鏡(11)及び第4の反射鏡(14)で夫々屈
折した後、レンズ(13)に集光されて照射され加工に
供される。
The laser beam incident on the forearm axis (8) is refracted by the third reflector (11) and fourth reflector (14) of the wrist axis (20), respectively, and then focused on the lens (13) and irradiated. and processed.

この場合の外部光学系は、第1及び第2の反射装置(1
6)、(18)が夫々2方向に回動でき、また光ガイド
(17)が伸縮と回転ができる6自由度を有しているの
で、ロボット本体(1)の任意の動きに対し、前腕輪(
8)に引かれて追従運動し、常にレーザ光を前腕輪(8
)の軸心に入射させる。
In this case, the external optical system includes the first and second reflection devices (1
6) and (18) can each rotate in two directions, and the light guide (17) has six degrees of freedom, allowing it to extend, contract, and rotate. Bangles (
8), and the laser beam is always directed towards the forearm (8).
).

[発明の効果] 本発明によれば、垂直多関節ロボットの外部にロボット
の前腕軸に追従して動く外部光学系を設け、レーザ光が
この外部光学系からロボットの内部光学系に入射するよ
うにしたので、ロボット内部に収納される反射鏡は、ロ
ボットの手首軸に2個、集光系光学部材(レンズ等)は
1個で済み、また、外部光学系の光路の調整は外部光学
系単独でできるので、レーザ光の光軸の調整か極めて簡
単になる。
[Effects of the Invention] According to the present invention, an external optical system that moves to follow the forearm axis of the robot is provided outside the vertically articulated robot, and a laser beam is made to enter the internal optical system of the robot from this external optical system. As a result, the number of reflectors stored inside the robot is two on the wrist axis of the robot, and only one condensing system optical member (lens, etc.) is required, and the optical path of the external optical system can be adjusted using the external optical system. Since it can be done independently, adjusting the optical axis of the laser beam becomes extremely simple.

しかも、外部光学系はロボットの前腕輪に引かれて追従
運動するので、これを動かすための動力は不要である。
Moreover, since the external optical system is pulled by the robot's forearm and follows the movement, no power is required to move it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明を構成する第1及び第2の反射装置の一例を示す断面
図、第3図は同じく本発明を構成する光ガイドの一例を
示す断面図、第4図は本発明の光路系を示す模式図、第
5図は従来のレーザ加工用多間接ロボットのレーザ光経
路を示す略式斜視図である。 図において、(1)はロボット本体、(3)は旋回軸、
(4)は上腕軸、(5)は第1支点、(6)は第2支点
、(8)は前腕軸、(11)は第3の反射鏡、(12)
は第4の反射鏡、(13)は集光レンズ、(14)は第
1のダクト、(16)は第1の反射装置、(17)は光
ガイド、(18)は第2の反射装置、(19)は第2の
ダクト、(20)は手首軸、(21)は第1の反射鏡、
(21a)は第2の反射鏡、(33)は第3の軸受、(
35)は第4の軸受である。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a sectional view showing an example of the first and second reflecting devices constituting the present invention, and FIG. FIG. 4 is a sectional view showing an example of a guide, FIG. 4 is a schematic diagram showing an optical path system of the present invention, and FIG. 5 is a schematic perspective view showing a laser beam path of a conventional multi-articulated laser processing robot. In the figure, (1) is the robot body, (3) is the rotation axis,
(4) is the upper arm axis, (5) is the first fulcrum, (6) is the second fulcrum, (8) is the forearm axis, (11) is the third reflector, (12)
is the fourth reflecting mirror, (13) is the condenser lens, (14) is the first duct, (16) is the first reflecting device, (17) is the light guide, and (18) is the second reflecting device. , (19) is the second duct, (20) is the wrist axis, (21) is the first reflector,
(21a) is the second reflecting mirror, (33) is the third bearing, (
35) is the fourth bearing. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 ロボットを回動する旋回軸、該旋回軸の支点に連結し揺
動する上腕軸、該上腕軸の他端支点に連結し揺動する前
腕軸、該前腕軸端部に連結し前腕軸と独立して回動自在
の手首軸を備えた垂直多関節ロボットと、 発振器で出力したレーザ光を案内する所定位置に固定し
た第1のダクト、ロボットの上記前腕軸に固着しレーザ
光をロボット内部へ案内する第2のダクト、一対の反射
鏡を対向して配置し入射光を屈折する第1の反射鏡によ
り屈折された光の中心と直交かつ回動可能に放射する第
2の反射鏡を収納し2自由度の回動を有した第1及び第
2の反射装置、一対の円筒構造体に直線摺動軸受と転が
り軸受を収納し回動と伸縮を可能とした光ガイドを備え
、上記第1のダクトと第1の反射装置、該第1の反射装
置と光ガイド、該光ガイドと第2の反射装置、該第2の
反射装置と第2のダクトとを夫々連結した外部光学系と
、 該外部光学系につながるロボットの内部光学系とから成
ることを特徴とするレーザ加工用多関節ロボット。
[Scope of Claims] A rotation axis for rotating the robot, an upper arm shaft that is connected to a fulcrum of the rotation axis and swings, a forearm shaft that is connected to the other end fulcrum of the upper arm shaft and swings, and an end of the forearm shaft that swings. A vertically articulated robot with a wrist axis that is connected and rotatable independently of the forearm axis; a first duct that is fixed at a predetermined position that guides a laser beam output from an oscillator; and a first duct that is fixed to the forearm axis of the robot. A second duct guides the laser beam into the robot, and a second duct that emits a pair of reflecting mirrors facing each other and rotatably perpendicular to the center of the light refracted by the first reflecting mirror that refracts the incident light. The first and second reflecting devices house two reflecting mirrors and have two degrees of freedom of rotation, and a pair of cylindrical structures house a linear sliding bearing and a rolling bearing to enable rotation and expansion/contraction. a guide, the first duct and the first reflecting device, the first reflecting device and the light guide, the light guide and the second reflecting device, and the second reflecting device and the second duct, respectively; An articulated robot for laser processing, comprising a connected external optical system and an internal optical system of the robot connected to the external optical system.
JP2224298A 1990-08-28 1990-08-28 Articulated robot for laser beam processing Pending JPH04105783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2224298A JPH04105783A (en) 1990-08-28 1990-08-28 Articulated robot for laser beam processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2224298A JPH04105783A (en) 1990-08-28 1990-08-28 Articulated robot for laser beam processing

Publications (1)

Publication Number Publication Date
JPH04105783A true JPH04105783A (en) 1992-04-07

Family

ID=16811583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2224298A Pending JPH04105783A (en) 1990-08-28 1990-08-28 Articulated robot for laser beam processing

Country Status (1)

Country Link
JP (1) JPH04105783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730210A1 (en) * 1995-03-03 1996-09-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730210A1 (en) * 1995-03-03 1996-09-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
EP1189125A1 (en) * 1995-03-03 2002-03-20 Faro Technologies Inc. Three dimensional coordinate measuring apparatus

Similar Documents

Publication Publication Date Title
US4174154A (en) Laser manipulator apparatus with double pivotal mirrors
KR950001096B1 (en) Work head device
US4563567A (en) Apparatus for transmitting a laser beam
JPS58148089A (en) Laser type pipe processing apparatus
US4144888A (en) Device for treatment by laser emission
US3797908A (en) Optical arrangements and apparatus
US3950079A (en) Steerable catoptric arrangements
JPS60200220A (en) Position corrector for laser beam introduced through a link optical system
JPH0352791A (en) Articulated arm type industrial laser robot
US4883348A (en) Wide field optical system
JPS592009B2 (en) optical device
US4675499A (en) Laser beam machining robot
US4667081A (en) Apparatus for changing the direction of a light beam passing through an articulated joint
JPH04105783A (en) Articulated robot for laser beam processing
JPS59223188A (en) Laser working device
JPS6227689B2 (en)
JP2662679B2 (en) Articulated laser machining robot
JPH04242706A (en) Device for supporting and adjusting mirror of laser robot and laser robot using said device
JPH02133188A (en) Laser beam machining robot
JP2858447B2 (en) Industrial articulated robot
JPH04361891A (en) Mirror supporting device for laser robot
JPH05228673A (en) Laser beam machine
JPS6324215A (en) Reference shape projector
JPS6127191A (en) Laser working machine
JPH01255816A (en) Laser light reflector