JPH04105645A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH04105645A
JPH04105645A JP2223333A JP22333390A JPH04105645A JP H04105645 A JPH04105645 A JP H04105645A JP 2223333 A JP2223333 A JP 2223333A JP 22333390 A JP22333390 A JP 22333390A JP H04105645 A JPH04105645 A JP H04105645A
Authority
JP
Japan
Prior art keywords
probe
doppler
vibrators
array
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2223333A
Other languages
Japanese (ja)
Inventor
Masaya Ota
雅也 太田
Hideo Sakurai
英夫 桜井
Seiji Kato
加藤 誠次
Masaharu Kawato
川戸 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP2223333A priority Critical patent/JPH04105645A/en
Publication of JPH04105645A publication Critical patent/JPH04105645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To suppress a false Doppler reception signal by a side robe by making an irradiation beam from a second probe cross at one point of a scan surface of a scan image scanned with a first probe. CONSTITUTION:First and second probes 3 and 4 are housed into a roughly rectangular casing 13 and made up of a plurality of vibrators 14, 14.... The vibrators 14, 14... are connected to a cable 15 through an electrode and then, to a transmitting/receiving circuit to form an electronic linear scanning or the like. Array-wise axes 16 of the vibrators 14, 14... of the first probe 3 correspond to a direction of undergoing an electronic linear scanning and coincide with a sectional scan surface 11. Moreover, the array-wise axes 17 of the vibrators 14, 14... of the second probe 4 correspond to a direction of undergoing the linear scanning likewise and coincides with a Doppler scan surface 12. The array-wise axis 16 of the first probe 3 and the array-wise axis 17 of the second probe 4 are so arrange to cross at a specified angle theta.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は超音波ドプラ血流計等に用いて好適な超音波探
触子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic probe suitable for use in ultrasonic Doppler blood flow meters and the like.

〔発明の概要〕[Summary of the invention]

本発明は超音波ドプラ血流計等に用いて好適な超音波探
触子に関し、被検体の断層等を探触する第1の探触子と
、ドプラビーム等を送受信するための第2の探触子とを
有する超音波探・触子に於いて、第1の探触子で走査し
た走査像の走査面の一点でのみ、第2の探触子からの照
射ビームが交叉することで、第2の探触子により生ずる
サイドローブによる偽の信号を抑圧させる様にしたもの
である。
The present invention relates to an ultrasonic probe suitable for use in an ultrasonic Doppler blood flow meter, etc., and includes a first probe for detecting a cross section of a subject, and a second probe for transmitting and receiving Doppler beams. In an ultrasonic probe/probe having a probe, the irradiation beam from the second probe crosses only at one point on the scanning surface of the scanned image scanned by the first probe. This is designed to suppress false signals due to side lobes generated by the second probe.

〔従来の技術〕[Conventional technology]

従来から生体内の血流速度の測定等にはドプラ法を用い
たものがあり、例えば第4図図示の様にパルスドプラ法
とよばれるものは探触子(1)から被検体の血管等の測
定部位に向けて超音波パルスを発射し、その反射波を受
信するとドプラ効果により、周波数は所定量偏移して戻
って来る。この偏移周波数fdは送信周波数をfoとし
、血流速度をV、ビームの入射角をθ、Cを音速とすれ
ばで求めることが出来る。
Conventionally, Doppler methods have been used to measure blood flow velocity in living bodies. For example, as shown in Figure 4, the pulsed Doppler method uses a probe (1) to measure blood vessels, etc. of a subject. When an ultrasonic pulse is emitted toward a measurement site and the reflected wave is received, the frequency shifts by a predetermined amount due to the Doppler effect and returns. This shift frequency fd can be determined by setting the transmission frequency to fo, the blood flow velocity to V, the incident angle of the beam to θ, and C to the sound speed.

この(1)式から解る様にfoが高(、θが零に近い程
、fdは大きな値になることに成る。
As can be seen from equation (1), the higher fo (and θ is closer to zero), the larger the value of fd will be.

上述の如きドプラ法を用いて、血流速度を計測する方法
として、デュプレックス法と呼ばれる血流計もよく知ら
れている。このデュプレックス法は断層像を形成するた
めの探触子とドプラビームを送受信する探触子とを有し
、これら両探触子を切換えて、血流測定を行なうもので
、超音波探触子としては基本的には2種類の方式が知ら
れている。第1の超音波探触子(5a)は第5図に示す
様に断層像を得るための第1の探触子(3)とドプラビ
ームを送受信するための第2の探触子(4)を別々に設
けて、断層用ビーム(6)及びドプラ用ビームを被検体
内に照射出来る構成であり、第2の超音波探触子(5b
)は第6図に示す様に断層用の探触子とドプラ用ビーム
を送受信する探触子を単一の探触子(8)で共用する様
にしたものである。
A blood flow meter called a duplex method is also well known as a method of measuring blood flow velocity using the above-mentioned Doppler method. This duplex method has a probe for forming tomographic images and a probe for transmitting and receiving Doppler beams, and these two probes are switched to measure blood flow, and can be used as an ultrasound probe. Basically, two types of methods are known. As shown in FIG. 5, the first ultrasound probe (5a) includes a first probe (3) for obtaining a tomographic image and a second probe (4) for transmitting and receiving Doppler beams. It is configured so that the tomographic beam (6) and the Doppler beam can be irradiated into the subject by separately providing the second ultrasonic probe (5b).
), as shown in FIG. 6, a single probe (8) is used in common as a tomographic probe and a probe for transmitting and receiving Doppler beams.

上述の様な超音波探触子を用いて、デュプレックス法に
よって血流測定を行なうには第1の探触子(3)又は第
1又は第2の探触子(8)で超音波の断層用ビーム(6
)を被検体内に送受信してBモードの断層像、例えば血
管(2)を第6図の様に得る。
To measure blood flow by the duplex method using an ultrasound probe such as the one described above, the first probe (3) or the first or second probe (8) is used to Beam (6
) is transmitted and received into the subject to obtain a B-mode tomographic image, for example, a blood vessel (2) as shown in FIG.

次に得られたこの断層像を基に、CRT上にマーカ等で
血流測定部位(9)を特定する。
Next, based on this obtained tomographic image, a blood flow measurement site (9) is specified using a marker or the like on the CRT.

次に特定された血流測定部位(9)に向って、第2の探
触子(4)又は第1及び第2の探触子(8)からドプラ
用ビーム(7)を送受信する。
Next, a Doppler beam (7) is transmitted and received from the second probe (4) or the first and second probes (8) toward the identified blood flow measurement site (9).

次に、受信したドプラ信号を抽出して、第4図で説明し
た方法等で偏移周波数fd等から血管(2)内の血流V
等が求められる様に成されている。
Next, the received Doppler signal is extracted and the blood flow V in the blood vessel (2) is calculated from the shift frequency fd etc. using the method explained in FIG.
etc. are made in a manner that is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来構成のデュプレックス方式の超音波探触子、
例えば、第6図示の様に第1及び第2の探触子(8)を
用いて、断層用ビーム(6)を被検体の血管(2)方向
に送受信し、BモードでCRT上に断層像を得た後に血
流測定部位(9)を指定して、同じ第1及び第2の探触
子(8)を用いてドプラ用ビーム(7)を被検体の血管
(2)方向に送受信したとする。これらの断層用ビーム
(6)及びドプラ用ビーム(7)はX。
A duplex ultrasonic probe with the above-mentioned conventional configuration,
For example, as shown in Figure 6, the tomographic beam (6) is transmitted and received in the direction of the subject's blood vessel (2) using the first and second probes (8), and the tomographic beam (6) is displayed on the CRT in B mode. After obtaining the image, specify the blood flow measurement site (9) and use the same first and second probes (8) to transmit and receive the Doppler beam (7) in the direction of the subject's blood vessel (2). Suppose we did. These tomographic beam (6) and Doppler beam (7) are X.

2面内に送受信される。この時、例えばドプラ用ビーム
(7)は血流測定部位(9)の方向にのみ送受信される
のでなく、サイドローブ(10)が発生することはよく
知られている。このサイドローブ(10)は超音波ビー
ムを形成する手法に依存するが、例えば第7図示の樺に
電子セクタ型の走査方式ではサイドローブ(10)は−
2dB程度に達する。この様なサイドローブ(10)は
第6図の様にCRT上の断面像上の、例えば、血管(2
)の叉状断面(横断面)内の血流測定部位(9)以外の
場所で血管(2)と交叉し、この交叉点からドプラ信号
は反射されて、第1又は第2の探触子(8)に帰投され
るので血流測定部位(9)に送受信されるドプラ信号と
区別することができなくなり、得られる血管(2)の血
流の測定データの信幀性を低下させる等の問題があった
Data is sent and received within two planes. At this time, it is well known that, for example, the Doppler beam (7) is not only transmitted and received in the direction of the blood flow measurement site (9), but also that a side lobe (10) is generated. This side lobe (10) depends on the method of forming the ultrasonic beam, but for example, in the electronic sector type scanning method shown in Fig. 7, the side lobe (10) is -
It reaches about 2dB. Such a side lobe (10) is, for example, a blood vessel (2) on a cross-sectional image on a CRT as shown in FIG.
) intersects with the blood vessel (2) at a location other than the blood flow measurement site (9) in the cross section (cross section), and the Doppler signal is reflected from this intersection and is transmitted to the first or second probe. (8), it becomes impossible to distinguish it from the Doppler signal transmitted and received at the blood flow measurement site (9), which reduces the reliability of the blood flow measurement data of the blood vessel (2) obtained. There was a problem.

本発明は取上の問題点に鑑み成されたもので、その目的
とするところは、ドプラビームが発生するサイドローブ
或はグレーティングローブ等が被検体の血管から外れる
様に走査してサイドローブによる偽ドプラ受信信号を抑
圧する様にしたものである。
The present invention was developed in view of the above-mentioned problems, and its purpose is to scan the Doppler beam in such a way that side lobes or grating lobes, etc., that are generated are removed from the blood vessels of the subject to eliminate false artifacts caused by side lobes. This is designed to suppress Doppler received signals.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の超音波探触子は第1図A、 Bに示されている
様に、被検体の断層等を探触する第1の探触子(3)と
、ドプラビーム等を送受信するための第2の探触子(4
)とを有する超音波探触子(5)に於いて、第1の探触
子(3)で走査した走査像の走査面(11)の−点での
み、第2の探触子(4)からの照射ビーム(7)が交叉
する様にして成るものである。
As shown in FIGS. 1A and 1B, the ultrasonic probe of the present invention includes a first probe (3) for detecting a tomographic area of a subject, and a probe (3) for transmitting and receiving Doppler beams, etc. Second probe (4
) in the ultrasonic probe (5), the second probe (4 ) are arranged so that the irradiation beams (7) from the two beams intersect with each other.

〔作用〕[Effect]

本発明の超音波探触子は第2の探触子(4)から送受信
されるビーム(7)は第1の探触子(3)で走査した走
査面の一点でのみ交叉する様に、第1及び第2の探触子
(3)又は(4)を配設する様にしたので、サイ、トロ
ープによる偽信号を受信しないものが得られる。
The ultrasonic probe of the present invention is configured such that the beam (7) transmitted and received from the second probe (4) intersects only at one point on the scanning surface scanned by the first probe (3). Since the first and second probes (3) or (4) are arranged, it is possible to obtain a device that does not receive false signals due to rhinoceros and tropes.

〔実施例〕〔Example〕

以下、本発明の超音波探触子の一実施例を第1図乃至第
3図について詳記する。
Hereinafter, one embodiment of the ultrasonic probe of the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図Aは本例の超音波探触子の側面図、第1図Bは正
面図である。第1図A及び已に於いて、第1の探触子(
3)及び第2の探触子(4)は略長方体状のケーシング
(13)内に収納され、第1及び第2の探触子(3)及
び(4)は複数の振動子(14) (14)・・・・よ
り構成されている。これら振動子(14) (14)・
・・・は電極を介してケーブル(15)4こ接続され、
送受信回路に接続され、例えば電子リニア走査等が成さ
れる。
FIG. 1A is a side view of the ultrasonic probe of this example, and FIG. 1B is a front view. In Figure 1A and Figure 1, the first probe (
3) and the second probe (4) are housed in a substantially rectangular casing (13), and the first and second probes (3) and (4) are housed in a plurality of transducers ( 14) It is composed of (14)... These oscillators (14) (14)
... are connected to four cables (15) via electrodes,
It is connected to a transmitting/receiving circuit, and performs, for example, electronic linear scanning.

上述のケーシング(13)内にはバッキング材及び第1
及び第2の整合層でサンドイッチ状に挟み込まれた短冊
型、或は棒状のチタン酸バリウム、PZT等の超音波の
振動子(14) (14)・・・・を有する。
Inside the above-mentioned casing (13) is a backing material and a first
and a rectangular or rod-shaped ultrasonic vibrator (14) made of barium titanate, PZT, etc. sandwiched between the second matching layer.

この振動子(14) (14)・・・・は1mm幅程度
のものが例えば、13cm中に128個程度並べて配置
される。更に電子スイッチ回路等も配設されている。第
1の探触子(3)の振動子(14) (14)・・・・
の配列方向軸(16)は電子リニア走査される方向であ
り、断層走査面(11)と一致している。更に第2の探
触子(4)の振動子(14) (14)・・・・の配列
方向軸(17)は同しくリニア走査される方向であり、
ドプラ走査面(12)と一致している。第1の探触子(
3ンの配列方向軸(16)と第2の探触子(4)の配列
方向軸(17)とは所定の角度θで交叉する様に配設さ
れる。この角度は好ましくは5°程度がよい。
For example, about 128 of these vibrators (14) each having a width of about 1 mm are arranged in a 13 cm area. Furthermore, electronic switch circuits and the like are also provided. Transducer (14) of the first probe (3) (14)...
The arrangement direction axis (16) is the direction of electronic linear scanning and coincides with the tomographic scanning plane (11). Furthermore, the arrangement direction axis (17) of the transducers (14) (14), etc. of the second probe (4) is also in the direction of linear scanning,
It coincides with the Doppler scan plane (12). The first probe (
The arrangement direction axis (16) of the third probe (4) and the arrangement direction axis (17) of the second probe (4) are arranged so as to intersect at a predetermined angle θ. This angle is preferably about 5°.

この様に配設した第1及び第2の探触子(3)によって
、例えば、第1の探触子(3)を電子リニア走査し、C
RT等の表示装置にBモードで断層像(16)を第2図
の様に血管(2)の矢状断面を映出させた時の断層用ビ
ーム(6)による断層走査面(11) (第1図A、B
参照)と、第2の探触子(4)で例えば、セクタ走査し
て、ドプラ用ビーム(7)によってドプラ走査面(12
) (第1図A、 B参照)を形成した時の面が交叉す
る様に成される。勿論、第1及び第2の探触子の走査方
式は電子リニア方式と電子セクタ方式に限定されるもの
ではなく、メカニカルセクタ方式、等との組合せて、適
宜選択可能であり、第2の探触子は走査方式は固定ビー
ム方式であってもよい。この様に超音波探触子(5)を
被検体表面上に動かして、第1の探触子(3)によって
得られる断層像(XZ面像)が血管(2)の矢状断面(
横断面)を描画する様に設定し、この断層像(16)上
で第2の探触子(4)から送受信されるドプラ用ビーム
(7)でドプラサンプリングポイント(18)を指定す
る。このドプラサンプリングポインl−(18)は第1
の探触子(3)の断層走査面(11)と第2の探触子(
4)のドプラ走査面(12)の交線とし、断層像(16
)上では線(19)上を移動する。ここで血管(2)中
の血流測定部位(9)にドプラサンプリングポイント(
18)を指定するには第2の探触子(4)の各振動子(
14) (14)・・・・に接続されている遅延素子の
遅延量(遅延時間)を所定値に設定することで血流測定
部位(9)にドプラ用ビーム(7)が発信され、且つ受
信の指向性も設定されることになる。この様にして血流
測定が行なわれるが、本例の如き、超音波探触子(5)
によってサイドローブ(10)が血管(2)に照射され
ないことを第3図の説明図で詳記する。第3図A、Bは
第2図と回状に第1の探触子(3)で得た血管(2)の
断層像(16)の血流測定部位(9)に第2の探触子(
4)によってドプラ用ビーム(7)を送受信した時のサ
イドローブ(10)を示すもので、第2の探触子(4)
から送受信されるサイドローブ(10)は第3図Bに示
す様にX7面内の断層断面(20)とは異なる方向に送
受信されるために血流を測定しようとする血管(2)と
は交叉することがなく、血管(2)からのドプラ用反射
波はなく、血流測定に悪影響を与えることはない。
With the first and second probes (3) arranged in this way, for example, the first probe (3) is electronically linearly scanned, and C
The tomographic scanning plane (11) by the tomographic beam (6) when the tomographic image (16) is displayed in B mode on a display device such as RT showing the sagittal section of the blood vessel (2) as shown in Figure 2. Figure 1 A, B
For example, by performing sector scanning with the second probe (4) and scanning the Doppler scanning plane (12) with the Doppler beam (7),
) (see Figures 1A and B) so that the faces intersect. Of course, the scanning methods of the first and second probes are not limited to the electronic linear method and the electronic sector method, but can be appropriately selected in combination with the mechanical sector method, etc. The scanning method of the tentacle may be a fixed beam method. By moving the ultrasound probe (5) over the surface of the subject in this way, the tomographic image (XZ plane image) obtained by the first probe (3) is the sagittal section (
A Doppler sampling point (18) is designated on this tomographic image (16) using the Doppler beam (7) transmitted and received from the second probe (4). This Doppler sampling point l-(18) is the first
The tomographic scanning plane (11) of the probe (3) and the second probe (
4) is the intersection line of the Doppler scan plane (12), and the tomographic image (16
) moves on line (19). Here, the Doppler sampling point (
18), each transducer (
14) By setting the delay amount (delay time) of the delay element connected to (14) to a predetermined value, the Doppler beam (7) is transmitted to the blood flow measurement site (9), and The reception directivity will also be set. Blood flow measurement is carried out in this way, using an ultrasonic probe (5) as in this example.
The fact that the side lobe (10) is not irradiated to the blood vessel (2) due to this is explained in detail in the explanatory diagram of FIG. Figures 3A and B are similar to Figure 2 in that the second probe is placed at the blood flow measurement site (9) of the tomographic image (16) of the blood vessel (2) obtained with the first probe (3). Child(
4) shows the side lobe (10) when the Doppler beam (7) is transmitted and received by the second probe (4).
The side lobe (10) transmitted and received from the blood vessel (2) whose blood flow is to be measured is transmitted and received in a direction different from the tomographic cross section (20) in the X7 plane as shown in Fig. 3B. There is no crossover, there is no Doppler reflected wave from the blood vessel (2), and there is no adverse effect on blood flow measurement.

尚、本発明の要旨を逸脱しない範囲で種々変更し得るこ
とは明らかである。
It is clear that various changes can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

本発明の超音波探触子によればドプラ用ビームから発生
するサイドローブやグレーティングローブ等が血流を計
測しようとする血管からはずれる様にしたので、偽のド
プラ反射信号を受信することなく正確な血流測定の行な
えるものが得られる。
According to the ultrasound probe of the present invention, the side lobes, grating lobes, etc. generated from the Doppler beam are removed from the blood vessel in which the blood flow is to be measured, so that the ultrasound probe does not receive false Doppler reflection signals and is accurate. This allows for accurate blood flow measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波探触子の側面及び正面図、第2
図はドプラサンプリングポイント設定の説明図、第3図
は超音波ビームのサイドローブと血管との関係説明図、
第4図は従来の血流測定の為のドプラ法の説明図、第5
”図は従来の分離型探触子の構成図、第6図は従来の単
一探触子の構成図、第7図はサイドローブの説明図であ
る。 (2)は血管、(3)は第1の探触子、(4)は第2の
探触子、(5) (5a) (5b)は超音波探触子、
(8)は第1及び第2の探触子、(10)はサイドロー
ブである。 代 理 人 松 隈 秀 盛 水金4のUI波智触子匁勿面及を正面図第1図 り血/l/12″願位 HブラテンデソングrインF設定θ説BfjEZJ第2
Figure 1 is a side and front view of the ultrasonic probe of the present invention, Figure 2 is a side view and front view of the ultrasonic probe of the present invention.
The figure is an explanatory diagram of Doppler sampling point setting, Figure 3 is an explanatory diagram of the relationship between the side lobe of the ultrasound beam and the blood vessel,
Figure 4 is an explanatory diagram of the conventional Doppler method for measuring blood flow, Figure 5
``Figure is a configuration diagram of a conventional separate type probe, Figure 6 is a configuration diagram of a conventional single probe, and Figure 7 is an explanatory diagram of side lobes. (2) is a blood vessel, (3) is the first probe, (4) is the second probe, (5) (5a) (5b) is the ultrasonic probe,
(8) are the first and second probes, and (10) are the side lobes. Agent Matsukuma Hidemori Water Gold 4 UI Hachi Tenshi Momemun and front view 1st drawing blood / l / 12'' wishing position H braten de song r in F setting θ theory BfjEZJ 2nd
figure

Claims (1)

【特許請求の範囲】 被検体の断層等を探触する第1の探触子と、ドプラビー
ム等を送受信するための第2の探触子とを有する超音波
探触子に於いて、 上記第1の探触子で走査した走査像の走査面の一点での
み、上記第2の探触子からの照射ビームが交叉する様に
して成ることを特徴とする超音波探触子。
[Scope of Claims] In an ultrasonic probe having a first probe for detecting a cross section of a subject, and a second probe for transmitting and receiving a Doppler beam, etc., the above-mentioned An ultrasonic probe characterized in that the irradiation beam from the second probe intersects only at one point on the scanning surface of the scanned image scanned by the first probe.
JP2223333A 1990-08-24 1990-08-24 Ultrasonic probe Pending JPH04105645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2223333A JPH04105645A (en) 1990-08-24 1990-08-24 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2223333A JPH04105645A (en) 1990-08-24 1990-08-24 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH04105645A true JPH04105645A (en) 1992-04-07

Family

ID=16796514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2223333A Pending JPH04105645A (en) 1990-08-24 1990-08-24 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH04105645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506693A (en) * 1999-08-09 2003-02-18 クロス マッチ テクノロジーズ, インコーポレイテッド Piezo film fingerprint scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506693A (en) * 1999-08-09 2003-02-18 クロス マッチ テクノロジーズ, インコーポレイテッド Piezo film fingerprint scanner

Similar Documents

Publication Publication Date Title
CA1130439A (en) Ultrasonic transducer array
CA1085040A (en) Ultrasonic transducer system and method
US7785259B2 (en) Detection of motion in vibro-acoustography
EP0119019A1 (en) Ultrasonic diagnosis system
EP0146073B1 (en) Ultrasonic diagnosing apparatus
JP3583789B2 (en) Continuous wave transmitting / receiving ultrasonic imaging apparatus and ultrasonic probe
JPH0380016B2 (en)
Kelsey et al. Applications of ultrasound in speech research
WO2004032747A1 (en) Ultrasonic diagnosing device
JP3180958B2 (en) Ultrasound diagnostic equipment
JPH04105645A (en) Ultrasonic probe
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPH0140619B2 (en)
JPH0368694B2 (en)
JPH0332652A (en) Ultrasonic probe
JPS61234697A (en) Ultrasonic probe
JP2742207B2 (en) Ultrasonic transducer
JPS624984B2 (en)
JPS61234355A (en) Ultrasonic measuring method and apparatus therefor
JPS60256441A (en) Ultrasonic diagnostic apparatus
JPH0440649Y2 (en)
JPH02167147A (en) Ultrasonic probe
JPS61290938A (en) Ultrasonic diagnostic apparatus
JPS5865144A (en) Ultrasonic diagnostic apparatus
JPH028733B2 (en)