JPH04105096A - Nuclear fusion reactor - Google Patents

Nuclear fusion reactor

Info

Publication number
JPH04105096A
JPH04105096A JP2223736A JP22373690A JPH04105096A JP H04105096 A JPH04105096 A JP H04105096A JP 2223736 A JP2223736 A JP 2223736A JP 22373690 A JP22373690 A JP 22373690A JP H04105096 A JPH04105096 A JP H04105096A
Authority
JP
Japan
Prior art keywords
diverter
nuclear fusion
fusion reactor
plasma
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2223736A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
武司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2223736A priority Critical patent/JPH04105096A/en
Publication of JPH04105096A publication Critical patent/JPH04105096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To improve safety of a nuclear fusion reactor through quick heat removal after nuclear fusion reaction stoppage, even if a diverter cannot be cooled due to an error in a cooling device or the like, by applying treatment at least to a part of the surface of the diverter for improving heat radiation. CONSTITUTION:A plasma 4 is formed within the vacuum vessel 1 of a nuclear fusion reactor enclosed with a shield body 2, and impurities contained in the plasma 4 are removed with a diverter 3. In this case, the diverter 3 is constituted with layers, for example, a W (tungsten) layer 11, a Cu (copper layer 12 and th like, and surface treatment for improving heat radiation is applied at least to a part of the layers, for example, to the surface 12a of the Cu layer 12. Even if the diverter 3 cannot be cooled due to an error in the cooling device thereof or the like, therefore, the decay heat of the diverter 3 after nuclear fusion reaction stoppage is transmitted from the Cu layer 12a to the shield body 2 via natural heat radiation, thereby removing heat quickly. According to the aforesaid construction, the diverter 3 can be protected against a loss of soundness due to thermal damage, and the safety of a nuclear fusion reactor can be enhanced.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、原子核の核融合反応のエネルギーを取り出し
て発電等に利用するための核融合炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Field of Industrial Application) The present invention relates to a nuclear fusion reactor for extracting the energy of a nuclear fusion reaction of atomic nuclei and utilizing it for power generation or the like.

(従来の技術) 従来から、原子核の核融合反応のエネルギーを取り出し
て利用する核融合炉としては、プラズマの閉じ込め方法
の相違によって幾つかの種類のものが提案されているが
、たとえばトカマク型核融合炉では、遮蔽体によって囲
繞された環状(ドーナツ状)の真空容器内に磁場により
環状にプラズマを閉じ込める。
(Prior Art) Several types of nuclear fusion reactors have been proposed that extract and utilize the energy of nuclear fusion reactions, depending on the method of confining the plasma. In a fusion reactor, a magnetic field confines plasma in an annular shape within an annular (doughnut-shaped) vacuum container surrounded by a shield.

また、一般にこのような核融合炉では、プラズマ内の不
純物を除去するために、ダイバータか設けられている。
Further, such a nuclear fusion reactor is generally provided with a diverter to remove impurities in the plasma.

このようなダイバータとしては、種々の材質および形状
のものが提案されているが、高温となるプラズマにさら
されるため、内部に冷却材を循環させて強制的に冷却を
行う冷却装置等を備えており、熱による装置の溶融を防
止するように構成されている。
Various materials and shapes have been proposed for such divertors, but since they are exposed to high-temperature plasma, they must be equipped with a cooling device that circulates a coolant inside for forced cooling. and is configured to prevent the device from melting due to heat.

(発明が解決しようとする課題) 上述したように、従来の核融合炉では、ダイバータに冷
却材を循環させて冷却を行う冷却装置等が設けられてお
り、ダイバータが熱により溶融することを防止し、安全
性を確保するよう構成されている。しかしながら、この
ような核融合炉においても、さらに安全性を向上させる
ことが望まれている。
(Problems to be Solved by the Invention) As mentioned above, conventional fusion reactors are equipped with a cooling device that cools the divertor by circulating a coolant to prevent the divertor from melting due to heat. and is configured to ensure safety. However, even in such a nuclear fusion reactor, it is desired to further improve safety.

本発明は、かかる従来の事情に対処してなされたもので
、万一冷却材喪失事故やダイバータを冷却するための冷
却装置等に異常が生じ、ダイバータの冷却を行えなくな
った場合であっても、核融合反応か停止した後の除熱が
速やかに行われ、ダイバータが崩壊熱により損傷を受け
て健全性か損われることを防止することかでき、従来に
較べて安全性の向上を図ることのできる核融合炉を提供
しようとするものである。
The present invention has been made in response to such conventional circumstances, and even in the event that the divertor cannot be cooled due to a loss of coolant accident or an abnormality in the cooling device for cooling the divertor, etc. , the heat is quickly removed after the fusion reaction has stopped, and it is possible to prevent the divertor from being damaged by decay heat and losing its integrity, improving safety compared to conventional methods. The aim is to provide a nuclear fusion reactor that can

[発明の構成コ (課題を解決するための手段) すなわち、本発明は、遮蔽体によって囲繞された真空容
器内にプラズマを形成する核融合炉であって、前記真空
容器内に前記プラズマ中の不純物を除去するためのダイ
バータを備えた核融合炉において、前記ダイバータの表
面の少なくとも一部に、熱輻射を向上さるための処理を
施したことを特徴とする。
[Configuration of the Invention (Means for Solving the Problems) That is, the present invention provides a nuclear fusion reactor that forms plasma in a vacuum container surrounded by a shield, and in which plasma in the plasma is formed in the vacuum container. A nuclear fusion reactor equipped with a diverter for removing impurities is characterized in that at least a portion of the surface of the diverter is treated to improve heat radiation.

(作 用) 上記構成の本発明の核融合炉では、遮蔽体によって囲繞
されたプラズマを形成するための真空容器内に設けられ
たダイバータの表面の少なくとも一部に、熱輻射を向上
さるための処理か施されているので、核融合反応か停止
した後のダイバータの崩壊熱を、自然現象である熱輻射
によって除去することかできる。
(Function) In the fusion reactor of the present invention having the above configuration, at least a portion of the surface of the diverter provided in the vacuum vessel for forming plasma surrounded by the shield is provided with a material for improving thermal radiation. After the fusion reaction has stopped, the decay heat of the divertor can be removed by thermal radiation, a natural phenomenon.

したかって、万一冷却材喪失事故やダイノ・−タを冷却
するための冷却装置等に異常か生じ、ダイバータの冷却
を行えなくなった場合であっても、核融合反応か停止し
た後の除熱が速やかに行われ、ダイバータか熱により損
傷を受けて健全性が損われることを防止することかでき
、従来に較べて安全性の向上を図ることができる。
Therefore, even if the divertor cannot be cooled due to a loss of coolant accident or an abnormality occurs in the cooling system used to cool the dyno, the heat removal after the fusion reaction has stopped will be effective. This can be done quickly, and the diverter can be prevented from being damaged by heat and losing its integrity, making it possible to improve safety compared to the conventional method.

(実施例) 以下、本発明の核融合炉の一実施例を図面を参照して説
明する。
(Example) Hereinafter, an example of a nuclear fusion reactor of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例のトカマク型核融合炉の要
部構成を示すもので、図において符号1は環状(ドーナ
ツ状)に形成された真空容器を示している(同図には半
部断面のみを示す)。
FIG. 1 shows the main structure of a tokamak-type fusion reactor according to an embodiment of the present invention. (shows only half cross section).

また、この真空容器1の周囲を囲繞するように、遮蔽体
2が設けられており、真空容器1内には、図示しない第
1壁等とともにその下部に板状に形成されたダイバータ
3が設けられている。そして、真空容器1の外側に設け
られた図示しないポロイダルコイルおよびトロイダルコ
イルにより、真空容器1内に磁場を形成し、ドーナツ状
のプラズマ4を形成するよう構成されている。
Further, a shielding body 2 is provided so as to surround the periphery of the vacuum container 1, and a diverter 3 formed in a plate shape is provided in the vacuum container 1 along with a first wall (not shown) and the like below. It is being A magnetic field is formed within the vacuum vessel 1 by a poloidal coil and a toroidal coil (not shown) provided outside the vacuum vessel 1, and a doughnut-shaped plasma 4 is formed.

また、ダイバータ3は、第2図に示すように、たとえば
タングステン(W)層11と銅(Cu)層12等から層
状に構成されており、その表面の少なくとも一部、たと
えばCu層表面12aには、熱輻射を高めるための表面
処理が施されている。
Further, as shown in FIG. 2, the diverter 3 is configured in a layered manner, for example, from a tungsten (W) layer 11 and a copper (Cu) layer 12, and has at least a portion of its surface, for example, a Cu layer surface 12a. has a surface treatment to increase heat radiation.

なお、熱輻射を高めるための表面処理としては、化学的
な処理、熱的な処理等どのような処理を行ってもよいが
、ダイバータ3はプラズマにさらされる厳しい条件下に
おかれるため、材質の劣化等を招くことのない表面処理
を選択する必要がある。
Note that any surface treatment to increase thermal radiation may be performed, such as chemical treatment or thermal treatment, but since the divertor 3 will be exposed to plasma under severe conditions, the material It is necessary to select a surface treatment that does not cause deterioration of the surface.

さらに、ダイバータ3の内部には、冷却材を循環させて
冷却を行う図示しない冷却装置が設けられており、通常
運転時は冷却材の循環による強制冷却が行われ、プラズ
マ4からの入熱を除去するよう構成されている。
Furthermore, inside the diverter 3, a cooling device (not shown) that circulates a coolant for cooling is provided. During normal operation, forced cooling is performed by circulating the coolant, and heat input from the plasma 4 is prevented. Configured to remove.

上記構成のこの実施例のトカマク型核融合炉では、核融
合炉停止後においても、通常は、ダイバタ3の冷却装置
が運転され、ダイバータ3内の熱がこの強制冷却によっ
て除熱される。しかしながら、たとえば冷却材喪失事故
などで核融合炉を停止させた場合には、この強制冷却に
よる熱除去は期待てきない。
In the tokamak-type fusion reactor of this embodiment having the above configuration, the cooling device for the diverter 3 is normally operated even after the fusion reactor is shut down, and the heat in the diverter 3 is removed by this forced cooling. However, if a fusion reactor is shut down due to a loss of coolant accident, for example, heat removal through forced cooling cannot be expected.

ところか、この実施例のトカマク型核融合炉では、ダイ
バータ3のCu層表面12aには、熱輻射を高めるため
の表面処理が施されているので、熱輻射によりダイバー
タのCu層表面12aからステンレス材等からなる遮蔽
体2に熱が伝達され、ダイバータ3の崩壊熱が除去され
る。
However, in the tokamak-type fusion reactor of this embodiment, the Cu layer surface 12a of the divertor 3 is subjected to surface treatment to increase thermal radiation, so that the stainless steel is removed from the Cu layer surface 12a of the divertor by thermal radiation. Heat is transferred to the shielding body 2 made of a material or the like, and the decay heat of the diverter 3 is removed.

第3図のグラフは、核融合実験炉の設計データに基づき
、ステンレス材からなる遮蔽体2の表面の熱輻射率を0
.1とした場合のダイバータ3の熱輻射効果を調べた結
果を示すものである。なお、同図において縦軸はCu層
12の最高温度、横軸はCu層表面12Hの熱輻射率で
あり、図中の点線はCuの溶融温度を示している。
The graph in Figure 3 shows the thermal emissivity of the surface of the shield 2 made of stainless steel material based on the design data of the experimental fusion reactor.
.. 1 shows the results of investigating the thermal radiation effect of the diverter 3 when the temperature is set to 1. In the figure, the vertical axis indicates the maximum temperature of the Cu layer 12, the horizontal axis indicates the thermal emissivity of the Cu layer surface 12H, and the dotted line in the figure indicates the melting temperature of Cu.

このグラフに示されるように、ダイバータ3のCu層表
面12Bの輻射率を高めることにより、最も溶融温度の
低いCu層12の最高温度をCuの溶融温度以下に抑え
ることかできる。
As shown in this graph, by increasing the emissivity of the Cu layer surface 12B of the diverter 3, the maximum temperature of the Cu layer 12, which has the lowest melting temperature, can be suppressed to below the melting temperature of Cu.

したかって、冷却材喪失事故などで核融合炉を停止させ
た場合でも、核融合反応か停止した後のダイバータ3の
除熱か速やかに行われ、ダイバタ3が崩壊熱により損傷
を受けて健全性が損われることを防止することができ、
従来に較べて安全性の向上を図ることができる。
Therefore, even if the fusion reactor is shut down due to a loss of coolant accident, heat removal from the divertor 3 is carried out immediately after the fusion reaction has stopped, and the diverter 3 is damaged by decay heat and its integrity is compromised. can be prevented from being damaged,
It is possible to improve safety compared to the conventional method.

[発明の効果] 以上説明したように、本発明の核融合炉によれば、万一
冷却材喪失事故やダイバータを冷却するための冷却装置
等に異常が生じ、ダイバータの冷却を行えなくなった場
合であっても、核融合反応が停止した後の除熱が速やか
に行われる。しだがって、ダイバータが崩壊熱により損
傷を受けて健全性か損われることを防止することかでき
、従来に較べて安全性の向上を図ることかできる。
[Effects of the Invention] As explained above, according to the fusion reactor of the present invention, in the event that a loss of coolant accident or an abnormality occurs in the cooling device for cooling the divertor, etc., and the divertor cannot be cooled, Even in this case, heat removal is carried out quickly after the nuclear fusion reaction has stopped. Therefore, it is possible to prevent the divertor from being damaged by decay heat and its integrity to be impaired, and it is possible to improve safety compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のトカマク型核融合炉の要部
構成を示す図、第2図は第1図に示すトカマク型核融合
炉の要部を拡大して示す図、第3図は第1図に示すトカ
マク型核融合炉におけるダイバータの熱輻射率と温度と
の関係を示す図である。 1・・・・・・・・・・真空容器 2・・・・・・・・・・・・遮蔽体 3・・・・・・・・・・・ダイバータ 4・・・・・・・・・・・プラズマ 出願人      株式会社 東芝
FIG. 1 is a diagram showing the main part configuration of a tokamak-type fusion reactor according to an embodiment of the present invention, FIG. 2 is an enlarged view of the main part of the tokamak-type fusion reactor shown in FIG. 1, and FIG. The figure is a diagram showing the relationship between the thermal emissivity and temperature of the divertor in the tokamak-type fusion reactor shown in FIG. 1. 1...Vacuum container 2...Shield 3...Diverter 4... ...Plasma applicant Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)遮蔽体によって囲繞された真空容器内にプラズマ
を形成する核融合炉であって、前記真空容器内に前記プ
ラズマ中の不純物を除去するためのダイバータを備えた
核融合炉において、 前記ダイバータの表面の少なくとも一部に、熱輻射を向
上さるための処理を施したことを特徴とする核融合炉。
(1) A nuclear fusion reactor that forms plasma in a vacuum vessel surrounded by a shield, and includes a diverter in the vacuum vessel for removing impurities in the plasma, the divertor A nuclear fusion reactor characterized in that at least a portion of the surface of the nuclear fusion reactor is treated to improve heat radiation.
JP2223736A 1990-08-24 1990-08-24 Nuclear fusion reactor Pending JPH04105096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2223736A JPH04105096A (en) 1990-08-24 1990-08-24 Nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2223736A JPH04105096A (en) 1990-08-24 1990-08-24 Nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPH04105096A true JPH04105096A (en) 1992-04-07

Family

ID=16802888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2223736A Pending JPH04105096A (en) 1990-08-24 1990-08-24 Nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPH04105096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261648B1 (en) * 1994-02-15 2001-07-17 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261648B1 (en) * 1994-02-15 2001-07-17 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials
US6610375B2 (en) 1994-02-15 2003-08-26 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials

Similar Documents

Publication Publication Date Title
Slugen Safety of VVER-440 reactors: barriers against fission products release
US11688523B2 (en) System for confining and cooling melt from the core of a water-moderated nuclear reactor
CZ285357B6 (en) Fuel element
US4113560A (en) Core catcher for nuclear reactor core meltdown containment
JPH04105096A (en) Nuclear fusion reactor
Bartels et al. ITER reference accidents
Cheung et al. Observation of the dynamic behavior of the two-phase boundary layers in the SBLB experiments
JPH073474B2 (en) Radioactive waste extinction treatment method
JP2001133590A (en) Cask
US20030198313A1 (en) Thermal shunts and method for dry storage of spent nuclear fuel
Someya et al. Development of water-cooled cylindrical blanket in JA DEMO
Kambe et al. Innovative fast breeder reactor concept ‘RAPID’for improvement of reactor performance and proliferation resistance
Fraas Materials problems in the design of magnetically confined plasma fusion reactors
RU2084544C1 (en) Method of restoring physico-mechanical properties of metal of reactor casings
Frank et al. Laser-fusion reactor materials problems resulting from fusion microexplosion emissions
Bouilly et al. SUPERPHENIX Dismantling-Status and lessons learned
Woolstenhulme The Transient Reactor Test Facility (TREAT)
JP2004233259A (en) Device and method for protecting reactor pressure vessel
JP3358932B2 (en) Vacuum container for fusion device
JPH0638119B2 (en) Radioactive waste extinction processing device and extinction processing method
Sawan et al. Nuclear considerations for FIRE
Gan Microstructure evolution in proton-irradiated austenitic Fe-Cr-Ni alloys under LWR core conditions
JPS6363877B2 (en)
Cheung et al. Boundary layer boiling on the external bottom surface of a hemispherical vessel
JPH01321396A (en) Tritium breeding blanket