JPH04105025A - Fluorescence measuring device - Google Patents

Fluorescence measuring device

Info

Publication number
JPH04105025A
JPH04105025A JP22379890A JP22379890A JPH04105025A JP H04105025 A JPH04105025 A JP H04105025A JP 22379890 A JP22379890 A JP 22379890A JP 22379890 A JP22379890 A JP 22379890A JP H04105025 A JPH04105025 A JP H04105025A
Authority
JP
Japan
Prior art keywords
light
fluorescence
wave
fluorescent
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22379890A
Other languages
Japanese (ja)
Inventor
Hideaki Oraku
大楽 英昭
Kahei Shiraishi
白石 嘉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Naka Seiki Ltd
Original Assignee
Hitachi Naka Seiki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Naka Seiki Ltd filed Critical Hitachi Naka Seiki Ltd
Priority to JP22379890A priority Critical patent/JPH04105025A/en
Publication of JPH04105025A publication Critical patent/JPH04105025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To provide precise fluorescence measurability at all times by furnishing a color temp. correction filter between a light source and an opening of an integrating sphere on which a specimen to be measured has been installed, and setting the radiation illuminance ratio of the specimen in the energizing wave-length range to in the fluorescent wave-length range to a specified value. CONSTITUTION:The projection beam of light from a light source 2 stabilized in a constant voltage power supply 1 penetrates a color temp. correcting filter 25 to be projected into an integrating sphere 3. Dispersive beams of light from a reference white plate 15 and a specimen 14 to be fluorescent measured in the integrating sphere 3 are passed through a light chopper 17, triangular mirror 20, and diffraction lattice 21 to be separated into monochromic beams. These beams are passed through a slit 19, and each of the beams is given a specific wave-length, received by a light sensor 10, converted into an electric signal, which undergoes a computational process by a signal processing circuit 4 and a memory circuit 5. To set the energizing wave-length band, a grating 21 is driven by a cam 22 and a motor 23, and white light is separated into monochormic beams, and the projecting direction is controlled, and the radiation illuminance in the energizing wave-length band is determined. To set the fluorescent wave-length band, the white light is separated in the same manner into specified wave-lengths, and the radiation illuminance is determined, and the specified spectral power ratio is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は蛍光材料の蛍光測定装置に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a fluorescence measuring device for fluorescent materials.

[従来の技術] 従来、蛍光材料の白色光照射方式と単色光照射方式によ
る蛍光測定装置において、光源の種類は規定しても、そ
の光路長、光軸が同じではなく、また、必ずしも照射光
の分光パワーを厳密に規定するものではながった〔フレ
ッド W ビルメイヤー他:カラー リサーチ アンド
 アップリケイション:第5巻、第3号(Fred W
 Billmeyer :C0LORRe5earch
 and Application : vol、 5
 、 No。
[Prior Art] Conventionally, in fluorescence measuring devices using white light irradiation method and monochromatic light irradiation method for fluorescent materials, even if the type of light source is specified, the optical path length and optical axis are not always the same, and the irradiation light is not always the same. [Fred W. Billmeyer et al.: Color Research and Applications: Volume 5, No. 3]
Billmeyer:C0LORRe5earch
and Application: vol, 5
, No.

3)〕。3)].

[発明が解決しようとする課題] 蛍光の強さは、測定試料に入射する励起波長域の照射光
の分光パワーにより変化するが、蛍光波長域で完全拡散
反射体により反射される放射バヮ−に比較して評価され
る。特に、蛍光増白剤等は近紫外光で励起されたときの
可視域に出射する蛍光の強さで評価されるので、測定試
料に照射される励起光の放射パワーとの比が重要である
[Problems to be Solved by the Invention] The intensity of fluorescence changes depending on the spectral power of the irradiation light in the excitation wavelength range that enters the measurement sample, but the intensity of the radiation reflected by a perfectly diffuse reflector in the fluorescence wavelength range varies. will be evaluated in comparison to In particular, fluorescent brighteners and the like are evaluated by the intensity of fluorescence emitted in the visible range when excited with near-ultraviolet light, so the ratio to the radiation power of the excitation light irradiated to the measurement sample is important. .

前記従来技術においては、蛍光を含む反射光の測定の際
、光源からの照射光の分光パワー分布、分光透過率およ
び積分球の分光反射率などに影響される近紫外部の波長
を有する光の放射照度、あるいは、単色光照明方式と白
色光照明方式との測定装置の違いによる光路長と光軸の
違い等について十分に配慮されていなかった。そのため
、測定装置間の機差、または測定試料の経時変化等が測
定値に影響を及ぼすと云う問題があった。
In the above-described conventional technology, when measuring reflected light including fluorescence, light having a wavelength in the near ultraviolet region is affected by the spectral power distribution of the irradiated light from the light source, the spectral transmittance, and the spectral reflectance of the integrating sphere. Sufficient consideration was not given to irradiance or differences in optical path length and optical axis due to differences in measuring devices between monochromatic light illumination methods and white light illumination methods. Therefore, there is a problem in that machine differences between measuring devices or changes over time in the measurement sample affect the measured values.

本発明の目的は、白色光照明方式と単色光照明方式とに
よる蛍光測定装置において、測定装置間または経時変化
による測定値の差が少ない蛍光材料の蛍光測定装置を提
供するにある。
An object of the present invention is to provide a fluorescence measuring device for fluorescent materials that uses a white light illumination method and a monochromatic light illumination method and has little difference in measured values between measuring devices or due to changes over time.

[課題を解決するための手段] 前記目的を達成する本発明の要旨は、次のとおりである
[Means for Solving the Problems] The gist of the present invention for achieving the above object is as follows.

(1)白色光照明方式と単色光照明方式とで蛍光材料の
蛍光を測定する蛍光測定装置において、分光器に対し光
源と受光器のそれぞれを等距離に設置し、 前記光源と、測定試料が取付けられた積分球の開口部と
の間に色温度補正フィルタを配置し、前記測定試料の励
起波長域における放射照度と蛍光波長域における放射照
度の比を所定の値に設定できる光源の照度制御手段を備
えたことを特徴とする蛍光測定装置。
(1) In a fluorescence measurement device that measures the fluorescence of a fluorescent material using a white light illumination method and a monochromatic light illumination method, a light source and a light receiver are installed at equal distances from the spectrometer, and the light source and the measurement sample are Illuminance control of a light source that can set a ratio of irradiance in the excitation wavelength range and irradiance in the fluorescence wavelength range of the measurement sample to a predetermined value by disposing a color temperature correction filter between the aperture of the attached integrating sphere. A fluorescence measuring device characterized by comprising means.

(2)前記測定試料が蛍光増白剤であり、前記励起波長
域を350〜400nmの近紫外部に、前記蛍光波長域
を430〜450nmに設定したことを特徴とする前記
(1)記載の蛍光測定装置。
(2) The method described in (1) above, wherein the measurement sample is a fluorescent whitening agent, the excitation wavelength range is set to the near ultraviolet region of 350 to 400 nm, and the fluorescence wavelength range is set to 430 to 450 nm. Fluorescence measuring device.

(3)前記測定試料が蛍光有彩色試料であり、前記励起
波長域を500nm付近に、前記蛍光波長域を600n
m付近に設定したことを特徴とする前記(1)記載の蛍
光測定装置。
(3) The measurement sample is a fluorescent chromatic sample, the excitation wavelength range is around 500nm, and the fluorescence wavelength range is around 600nm.
The fluorescence measurement device according to (1) above, characterized in that the fluorescence measurement device is set at around m.

本発明においては、蛍光増白剤試料の測定には、前記の
ように350〜400nmを励起波長域に、430〜4
50nmを蛍光波長域として選択することにある。
In the present invention, the excitation wavelength range is 350 to 400 nm, and the excitation wavelength range is 430 to 4 nm, as described above, for the measurement of the fluorescent brightener sample.
The purpose is to select 50 nm as the fluorescence wavelength range.

また、蛍光有彩色試料の測定には、500nm付近を励
起波長域に、600nm付近を蛍光波長域として選択す
る。
Furthermore, for measurement of fluorescent chromatic samples, the excitation wavelength range is selected around 500 nm, and the fluorescence wavelength range is selected around 600 nm.

こうした条件下で、光源から照射された白色光を拡散照
射光として前記色温度補正フィルタを通して測定試料に
照射し、反射光を光電子倍増管で受光して光電流に変換
する。同様にして、励起波長帯を設定した場合について
も前記色温度補正フィルタを通して光電子倍増管で受光
し光電流に変換する。
Under these conditions, the white light emitted from the light source is used as diffuse illumination light to irradiate the measurement sample through the color temperature correction filter, and the reflected light is received by the photomultiplier tube and converted into photocurrent. Similarly, even when an excitation wavelength band is set, light is received by a photomultiplier tube through the color temperature correction filter and converted into a photocurrent.

前記2つ拡散照射光の強度の比から試料照射光の分光パ
ワー分布を規定する。これによって、測定器間の差ある
いは測定の経時変化による差のない測定値を得ることが
できる。
The spectral power distribution of the sample irradiation light is defined from the ratio of the intensities of the two diffused irradiation lights. This makes it possible to obtain measured values that are free from differences between measuring instruments or due to changes in measurement over time.

[作用コ 本発明が、常に高精度な蛍光測定を行うことができるの
は、試料の励起波長帯と蛍光波長帯を設定し、これに蛍
光測定装置の波長を設定し、光源の照射照度を制御して
放射光の分光パワー分布を規定したことにある。
[Operations] The reason why the present invention can always perform highly accurate fluorescence measurement is that the excitation wavelength band and fluorescence wavelength band of the sample are set, the wavelength of the fluorescence measurement device is set to these, and the irradiation intensity of the light source is adjusted. The reason lies in the fact that the spectral power distribution of synchrotron radiation is defined through control.

[実施例] 本発明を第1〜5図を用いて具体的に説明する。[Example] The present invention will be specifically explained using FIGS. 1 to 5.

第1図は本発明の蛍光測定装置の一実施例を説明する模
式図である。
FIG. 1 is a schematic diagram illustrating an embodiment of the fluorescence measuring device of the present invention.

定電圧電源部1で安定化され、所定の照度が得られるよ
う制御された電圧により点灯された光源2から発せられ
る照射光は、色温度補正フィルタ25を透過し、積分球
3内に照射される。該積分球3の内壁面は硫酸バリウム
等の白色拡散コーティングが施されている。
The irradiation light emitted from the light source 2, which is stabilized by the constant voltage power supply section 1 and turned on with a voltage controlled to obtain a predetermined illuminance, passes through the color temperature correction filter 25 and is irradiated into the integrating sphere 3. Ru. The inner wall surface of the integrating sphere 3 is coated with a white diffusion coating of barium sulfate or the like.

前記積分球3内の所定の位置に取付けた蛍光測定試料1
4と参照白色板15からの拡散反射光は、光チヨツパミ
ラー17により分割され、三角ミラー20、回折格子2
1により単色光に分光される。
Fluorescence measurement sample 1 attached to a predetermined position within the integrating sphere 3
4 and the reference white plate 15 are split by an optical chopper mirror 17, then passed through a triangular mirror 20 and a diffraction grating 2.
1, it is split into monochromatic light.

該単色光は所定のスリット19によって所定波長の単色
光とし、光検知器10に受光してその強度が測定される
。該光検知器10で電気信号に変換された信号は、信号
処理回路4およびメモリ回路5により演算される。
The monochromatic light is made into monochromatic light of a predetermined wavelength by a predetermined slit 19, and is received by a photodetector 10 and its intensity is measured. The signal converted into an electrical signal by the photodetector 10 is processed by a signal processing circuit 4 and a memory circuit 5.

なお、前記信号処理回路4およびメモリ回路5は、変換
された電気信号の増幅、デジタル化、メモリ、光源のプ
ログラム制御、出力表示またはプリンタ(図示せず)へ
のプ7ノントアウト等の処理も含むものである。
The signal processing circuit 4 and the memory circuit 5 also include processing such as amplification of the converted electrical signal, digitization, memory, program control of the light source, output display, or printing to a printer (not shown). It is something that

ところで、前記積分球3の開口部には1分光パワー比測
定の際、照射光の長波長側の影響を取り除くために色温
度補正フィルタ25がフィルタ保持部材26によってス
ライド可能に取付けられている。該フィルタ保持部材2
6をスライド式に取付けることにより分光器の防塵化を
図ることができる。
Incidentally, a color temperature correction filter 25 is slidably attached to the opening of the integrating sphere 3 by a filter holding member 26 in order to remove the influence of the longer wavelength side of the irradiated light when measuring the 1-minute optical power ratio. The filter holding member 2
6 can be installed in a sliding manner to make the spectrometer dustproof.

前記積分球3の開口部は、測定試料】4および参照白色
板15の各表面の法線と小さな角度、例えば約8度で反
射される反射光が入射できる位置に般けられている。
The opening of the integrating sphere 3 is located at a position where reflected light reflected at a small angle, for example about 8 degrees, with respect to the normal to each surface of the measurement sample 4 and reference white plate 15 can be incident.

次に、励起波長帯の設定はグレーティング21をカム2
2とモータ23により駆動し、白色光を分光して単色光
とし、照射方向を制御して、励起波長帯での放射照度を
求める。
Next, to set the excitation wavelength band, move the grating 21 to the cam 2.
2 and a motor 23, the white light is separated into monochromatic light, the irradiation direction is controlled, and the irradiance in the excitation wavelength band is determined.

次に同様にして、蛍光波長帯を設定するため白色光を所
定波長に分光して放射照度を求め、所定の分光パワー比
を求める。
Next, in the same manner, in order to set a fluorescence wavelength band, white light is separated into predetermined wavelengths to obtain irradiance, and a predetermined spectral power ratio is obtained.

なお、光源2は光源部ケース6内に収納されており、移
動可能な光源ケーブル9により定電圧電源1と接続され
ている。光検知器】0は受光部ケース7内に収納されて
おり、これも移動可能な信号ケーブル8により信号処理
回路4に接続されている。
The light source 2 is housed in a light source case 6 and is connected to the constant voltage power source 1 via a movable light source cable 9. The photodetector 0 is housed in a light receiving case 7, and is also connected to the signal processing circuit 4 by a movable signal cable 8.

前記光源部ケース6、受光部ケース7は積分球3および
分光器部18を固定する共通案内部材13.13′によ
り光軸上のずれがないように固定されている。
The light source part case 6 and the light receiving part case 7 are fixed by a common guide member 13, 13' which fixes the integrating sphere 3 and the spectrometer part 18 so that there is no deviation on the optical axis.

前記において、共通案内部材13の端面から光検知器1
0の光電管面までの距離と、共通案内部材13゛の端面
から光源2の発光点までの距離を等距離とすることによ
り、第1図の白色光照明方式と第2図に示すように単色
光照明方式との入れ替えが容易になり、また、光路長が
異なったり、あるいは光軸にずれを生じたりすることが
ない。
In the above, the photodetector 1 is connected from the end surface of the common guide member 13.
By making the distance to the photocell surface of 0 and the distance from the end surface of the common guide member 13' to the light emitting point of the light source 2 equal, the white light illumination method shown in FIG. 1 and the monochrome illumination method shown in FIG. It is easy to replace the optical illumination method, and there is no difference in optical path length or deviation in the optical axis.

なお、本実施例においては、積分球3、光チヨツパ部1
6、分光器部18および波長駆動系24で測定装置の光
学系を構成しているが、簡易型として複数の干渉フィル
タから構成された光学系を用いることもできる。
In addition, in this embodiment, the integrating sphere 3 and the optical chopper section 1 are
6. Although the spectrometer section 18 and the wavelength drive system 24 constitute the optical system of the measuring device, it is also possible to use an optical system composed of a plurality of interference filters as a simple type.

第2図に本発明の単色光照明方式を説明する模式図であ
る。
FIG. 2 is a schematic diagram illustrating the monochromatic light illumination method of the present invention.

これは、第1図に示す測定器の光源部と受光部を入れ替
えたものである。既述のように、共通案内部材13の端
面から光検知器10の光電管面までの距離と、共通案内
部材13′の端面から光源2の発光点までの距離が等し
いので、それを入れ替えたものである。
This is the measuring instrument shown in FIG. 1, with the light source section and light receiving section replaced. As mentioned above, the distance from the end face of the common guide member 13 to the photocell surface of the photodetector 10 is equal to the distance from the end face of the common guide member 13' to the light emitting point of the light source 2, so they are replaced. It is.

白色光照明方式により蛍光試料を測定する場合の、光源
2より発する分光エネルギー分布の補正は、第3図に例
示するように補正することができる。
When measuring a fluorescent sample using the white light illumination method, the spectral energy distribution emitted from the light source 2 can be corrected as illustrated in FIG. 3.

これは、光源2の分光エネルギーを短波長λ1(例えば
360nm)における光のパワーをal、bl、長波長
λ2(例えば430nm)における光のパワーをa2、
b2とすると、その比b+/a+およびb2/azによ
り規定することができる。
This means that the spectral energy of the light source 2 is the power of light at a short wavelength λ1 (for example, 360 nm) as al, bl, and the power of light at a long wavelength λ2 (for example, 430 nm) as a2,
If b2, it can be defined by the ratios b+/a+ and b2/az.

また、第4図に示すように蛍光試料の励起波長λ、と、
蛍光波長^4との比を求め補正することができる。
In addition, as shown in FIG. 4, the excitation wavelength λ of the fluorescent sample is
It can be corrected by finding the ratio with the fluorescence wavelength ^4.

更にまた、第1,2図の光学系を用いることによって、
同一の蛍光測定試料で白色光照明方式および単色光照明
方式の測定を容易に行うことができる。
Furthermore, by using the optical system shown in Figures 1 and 2,
Measurements using the white light illumination method and monochromatic light illumination method can be easily performed using the same fluorescence measurement sample.

第5図は蛍光増白剤試料を、前記2つの光照明方式で測
定した結果を例示するものである。
FIG. 5 illustrates the results of measuring a fluorescent brightener sample using the two illumination methods described above.

なお、上記蛍光増白剤は430〜450nmで蛍光を発
する。また、蛍光有彩色試料は600nm付近で蛍光を
発する。従って、前記試料がいずれに該当するかを識別
し、前者の場合は励起波長域を350〜450nmの近
紫外部に、蛍光波長域を430〜450 nmに設定す
る。同様に後者の場合には励起波長域を500nm付近
に、蛍光波長域を600nm付近に設定する。
In addition, the said fluorescent whitening agent emits fluorescence at 430-450 nm. Further, a fluorescent chromatic sample emits fluorescence at around 600 nm. Therefore, it is determined which category the sample falls under, and in the case of the former, the excitation wavelength range is set to the near ultraviolet range of 350 to 450 nm, and the fluorescence wavelength range is set to 430 to 450 nm. Similarly, in the latter case, the excitation wavelength range is set to around 500 nm and the fluorescence wavelength range is set to around 600 nm.

こうして測定した分光反射率の単色光照明方式の場合を
曲線a、また、白色光照明方式の場合を曲線すに示した
The spectral reflectance measured in this manner is shown in curve a for the case of the monochromatic light illumination method, and curve A for the case of the white light illumination method.

本実施例によれば、励起波長帯と蛍光波長帯を交互に設
定して測定することができるので、経時変化の影響が少
なく、再現性のよい測定値が得られる。
According to this embodiment, since the excitation wavelength band and the fluorescence wavelength band can be alternately set and measured, measurement values with good reproducibility can be obtained with little influence of changes over time.

[発明の効果コ 本発明によれば、蛍光試料の蛍光測定に際し、単色光照
明方式による測定値と、白色光照明方式による測定値の
比較が容易にできる。
[Effects of the Invention] According to the present invention, when measuring the fluorescence of a fluorescent sample, it is possible to easily compare the measured values with the monochromatic light illumination method and the measured values with the white light illumination method.

また、可視域で蛍光を発する波長での測定値と励起波長
域で蛍光を発する波長での測定値の比から、光源の照射
パワーの変動を補正することができるので精度の高い測
定値を再現性よく得ることができる。
In addition, fluctuations in the irradiation power of the light source can be corrected based on the ratio of the measured value at a wavelength that emits fluorescence in the visible range and the measured value at a wavelength that emits fluorescence in the excitation wavelength range, so highly accurate measured values can be reproduced. You can get it easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の詳細な説明する模式図、
第3図は光エネルギーと波長との関係を示すグラフ、第
4図は励起波長帯と蛍光波長帯の分光反射率の分布を示
すグラフ、第5図は単色光照射方式と白色光照射方式の
分光反射率の分布を示すグラフである。 1・・・定電圧電源部、2・・光源、3・・・積分球、
4信号処理回路、5・・・メモリ回路、6・・・光源部
ケース、7・・・受光部ケース、8・・・信号ケーブル
、9・・光源ケーブル、10・・・光検知器、11・・
共通取り付は部材、12・・・共通固定部材、13・・
共通案内部材、14・・・蛍光測定試料、15・・・参
照白色板、16・・・光チヨツパ部、17・・・光チヨ
ツパミラー18・・・分光器部、19・・・スリット、
20・・ミラー21・・・グレーティング、22・・・
カム、23・・・モータ、24・・・波長駆動系、25
・・・色温度補正フィルタ、26・・・フィルタ保持部
材、a・・・単色光照明方式、b・・・白色光照明方式
。 第1図 第2図 夕保持部材。
FIG. 1 and FIG. 2 are schematic diagrams explaining the present invention in detail;
Figure 3 is a graph showing the relationship between light energy and wavelength, Figure 4 is a graph showing the distribution of spectral reflectance in the excitation wavelength band and fluorescence wavelength band, and Figure 5 is a graph showing the relationship between the monochromatic light irradiation method and the white light irradiation method. It is a graph showing distribution of spectral reflectance. 1... constant voltage power supply section, 2... light source, 3... integrating sphere,
4 signal processing circuit, 5... memory circuit, 6... light source part case, 7... light receiving part case, 8... signal cable, 9... light source cable, 10... photodetector, 11・・・
Common mounting member, 12... Common fixing member, 13...
Common guide member, 14... Fluorescence measurement sample, 15... Reference white plate, 16... Optical chopper section, 17... Optical chopper mirror 18... Spectrometer section, 19... Slit,
20...Mirror 21...Grating, 22...
Cam, 23... Motor, 24... Wavelength drive system, 25
...Color temperature correction filter, 26... Filter holding member, a... Monochromatic light illumination method, b... White light illumination method. Figure 1 Figure 2 Holding member.

Claims (1)

【特許請求の範囲】 1、白色光照明方式と単色光照明方式とで蛍光材料の蛍
光を測定する蛍光測定装置において、分光器に対し光源
と受光器のそれぞれを等距離に設置し、 前記光源と、測定試料が取付けられた積分球の開口部と
の間に色温度補正フィルタを配置し、前記測定試料の励
起波長域における放射照度と蛍光波長域における放射照
度の比を所定の値に設定できる光源の照度制御手段を備
えたことを特徴とする蛍光測定装置。 2、前記測定試料が蛍光増白剤であり、前記励起波長域
を350〜400nmの近紫外部に、前記蛍光波長域を
430〜450nmに設定したことを特徴とする請求項
第1項記載の蛍光測定装置。 3、前記測定試料が蛍光有彩色試料であり、前記励起波
長域を500nm付近に、前記蛍光波長域を600nm
付近に設定したことを特徴とする請求項第1項記載の蛍
光測定装置。
[Claims] 1. In a fluorescence measuring device that measures the fluorescence of a fluorescent material using a white light illumination method and a monochromatic light illumination method, a light source and a light receiver are each installed at an equal distance from a spectrometer, and the light source and the opening of the integrating sphere to which the measurement sample is attached, and the ratio of the irradiance in the excitation wavelength range to the irradiance in the fluorescence wavelength range of the measurement sample is set to a predetermined value. 1. A fluorescence measuring device characterized by comprising means for controlling illuminance of a light source. 2. The measurement sample is a fluorescent whitening agent, and the excitation wavelength range is set in the near ultraviolet region of 350 to 400 nm, and the fluorescence wavelength range is set to 430 to 450 nm. Fluorescence measuring device. 3. The measurement sample is a fluorescent chromatic sample, and the excitation wavelength range is around 500 nm and the fluorescence wavelength range is around 600 nm.
2. The fluorescence measuring device according to claim 1, wherein the fluorescence measuring device is set in the vicinity of the fluorescence measuring device.
JP22379890A 1990-08-25 1990-08-25 Fluorescence measuring device Pending JPH04105025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22379890A JPH04105025A (en) 1990-08-25 1990-08-25 Fluorescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22379890A JPH04105025A (en) 1990-08-25 1990-08-25 Fluorescence measuring device

Publications (1)

Publication Number Publication Date
JPH04105025A true JPH04105025A (en) 1992-04-07

Family

ID=16803888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22379890A Pending JPH04105025A (en) 1990-08-25 1990-08-25 Fluorescence measuring device

Country Status (1)

Country Link
JP (1) JPH04105025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103807A1 (en) * 2009-03-11 2010-09-16 コニカミノルタセンシング株式会社 Optical characteristic measuring device, optical characteristic measuring method, and dual spectral emissivity factor measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103807A1 (en) * 2009-03-11 2010-09-16 コニカミノルタセンシング株式会社 Optical characteristic measuring device, optical characteristic measuring method, and dual spectral emissivity factor measuring method
JPWO2010103807A1 (en) * 2009-03-11 2012-09-13 コニカミノルタオプティクス株式会社 Optical characteristic measuring apparatus, optical characteristic measuring method, and dual spectral emissivity coefficient measuring method

Similar Documents

Publication Publication Date Title
US5040889A (en) Spectrometer with combined visible and ultraviolet sample illumination
US4076421A (en) Spectrophotometer with parallel sensing
WO2012036213A1 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
JPH0580615B2 (en)
JPH0663841B2 (en) Device and method for measuring fluorescence characteristics of sample
JPS6116010B2 (en)
US2823577A (en) Multiple slit spectrograph for direct reading spectrographic analysis
JPH09119887A (en) Method and device for measuring optical characteristic of transparence-reflectivity and/or reflective object
JPS628729B2 (en)
JPS60259918A (en) Multiple wavelength excitation photometer
WO2020075548A1 (en) Microspectroscopy device, and microspectroscopy method
EP1111333A1 (en) Light source device, spectroscope comprising the light source device, and film thickness sensor
US3817633A (en) Spectroradiometric apparatus and method for measuring radiation
US6005661A (en) Optical system with wide measuring ranges
EP0296259A1 (en) Spectrometer with combined visible and ultraviolet sample illumination
US3825762A (en) Apparatus for measuring luminescent radiation
JP2015052531A (en) Wavelength calibration method for spectrometer
KR20050016248A (en) Improved real-time goniospectrophotometer
US5243401A (en) Fluorescent image densitometer of flying spot system
US10760968B2 (en) Spectrometric measuring device
JPH11241948A (en) Spectrometric apparatus
JPH04105025A (en) Fluorescence measuring device
JP3921889B2 (en) Fluorescence spectrophotometer
GB2180064A (en) Atomic absorption spectrometer
US3502890A (en) Rotating sphere radiometer