JPH04104967A - Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepreg - Google Patents
Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepregInfo
- Publication number
- JPH04104967A JPH04104967A JP2217057A JP21705790A JPH04104967A JP H04104967 A JPH04104967 A JP H04104967A JP 2217057 A JP2217057 A JP 2217057A JP 21705790 A JP21705790 A JP 21705790A JP H04104967 A JPH04104967 A JP H04104967A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- prepreg laminate
- prepreg
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000002759 woven fabric Substances 0.000 title abstract description 7
- 229910010293 ceramic material Inorganic materials 0.000 title abstract description 4
- 239000003733 fiber-reinforced composite Substances 0.000 title abstract description 3
- 238000003475 lamination Methods 0.000 title description 2
- 239000000843 powder Substances 0.000 claims abstract description 44
- 239000000919 ceramic Substances 0.000 claims abstract description 41
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 31
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 29
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052863 mullite Inorganic materials 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000012298 atmosphere Substances 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 5
- 239000011147 inorganic material Substances 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 44
- 229920001709 polysilazane Polymers 0.000 claims description 33
- 239000011226 reinforced ceramic Substances 0.000 claims description 22
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000004917 carbon fiber Substances 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 125000005103 alkyl silyl group Chemical group 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 238000005470 impregnation Methods 0.000 abstract description 6
- 239000011159 matrix material Substances 0.000 description 51
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- 238000004804 winding Methods 0.000 description 21
- 238000007598 dipping method Methods 0.000 description 17
- 239000002904 solvent Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- -1 alicyclic hydrocarbons Chemical class 0.000 description 14
- 238000005452 bending Methods 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000005245 sintering Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000005979 thermal decomposition reaction Methods 0.000 description 8
- 239000008096 xylene Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 235000008429 bread Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920003203 poly(dimethylsilylene-co-phenylmethyl- silylene) polymer Polymers 0.000 description 2
- 229920003257 polycarbosilane Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920005573 silicon-containing polymer Polymers 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 description 1
- AWBIJARKDOFDAN-UHFFFAOYSA-N 2,5-dimethyl-1,4-dioxane Chemical compound CC1COC(C)CO1 AWBIJARKDOFDAN-UHFFFAOYSA-N 0.000 description 1
- HFGHRUCCKVYFKL-UHFFFAOYSA-N 4-ethoxy-2-piperazin-1-yl-7-pyridin-4-yl-5h-pyrimido[5,4-b]indole Chemical compound C1=C2NC=3C(OCC)=NC(N4CCNCC4)=NC=3C2=CC=C1C1=CC=NC=C1 HFGHRUCCKVYFKL-UHFFFAOYSA-N 0.000 description 1
- FZLSDZZNPXXBBB-KDURUIRLSA-N 5-chloro-N-[3-cyclopropyl-5-[[(3R,5S)-3,5-dimethylpiperazin-1-yl]methyl]phenyl]-4-(6-methyl-1H-indol-3-yl)pyrimidin-2-amine Chemical compound C[C@H]1CN(Cc2cc(Nc3ncc(Cl)c(n3)-c3c[nH]c4cc(C)ccc34)cc(c2)C2CC2)C[C@@H](C)N1 FZLSDZZNPXXBBB-KDURUIRLSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 101100474383 Escherichia coli (strain K12) rpsO gene Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical class CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- WDENQIQQYWYTPO-IBGZPJMESA-N acalabrutinib Chemical compound CC#CC(=O)N1CCC[C@H]1C1=NC(C=2C=CC(=CC=2)C(=O)NC=2N=CC=CC=2)=C2N1C=CN=C2N WDENQIQQYWYTPO-IBGZPJMESA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920006240 drawn fiber Polymers 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する技術分野]
構造材料としてセラミックスが注目されており、特に耐
熱材料としての高温構造材料への応用が積極的に進めら
れている。しかし、モノリシックセラミックス(単味焼
結体)では曲げ強度は金属材料に相当する程度まで向上
しているか、破壊靭性値(K、c)あるいは破壊仕事(
r )等はνOr
はるかに劣るため両者の向上こそが急務である。[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] Ceramics are attracting attention as structural materials, and their application to high-temperature structural materials as heat-resistant materials is being actively promoted. However, in monolithic ceramics (single sintered bodies), the bending strength has improved to the extent equivalent to that of metal materials, or the fracture toughness value (K, c) or the fracture work (
r) etc. are far inferior to νOr, so there is an urgent need to improve both.
マトリックス相を繊維相で補強する考え方はPRM (
Fiber Re1nforced Metal)、
FRP (FiberRejnf’orced Pla
stics)等で応用されている。特に近年、優秀な特
性を有する繊維(カーボン繊維。The idea of reinforcing the matrix phase with the fiber phase is PRM (
Fiber Reinforced Metal),
FRP (FiberRejnf'orced Pla
stics), etc. Especially in recent years, fibers (carbon fibers) have excellent properties.
ボロン繊維、炭化珪素繊維、窒化珪素繊維、チラノ繊維
、ガラス繊維等)が開発されるに至り、繊維強化セラミ
ック複合材への応用が研究されている。Boron fibers, silicon carbide fibers, silicon nitride fibers, tyranno fibers, glass fibers, etc.) have been developed, and their application to fiber-reinforced ceramic composites is being studied.
本発明は、上記の考えに基づくものであり。The present invention is based on the above idea.
シート・ワインディング(S/W)成形法、溶液含浸法
により、セラミックスをマトリックス相にしてプリプレ
グを作成し、そのシートを、任意の繊維配向組織になる
様に積層してなる繊維強化セラミック複合材の製造法に
関するものである。A fiber-reinforced ceramic composite material is created by creating a prepreg using ceramic as a matrix phase using the sheet winding (S/W) molding method and solution impregnation method, and then laminating the sheets so that the fibers are oriented in a desired manner. It concerns the manufacturing method.
[従来技術及び課題]
セラミック材料は耐熱性、耐反応性、耐摩耗性等機械物
性が非常に優秀な材料である。周知の様にディーゼルエ
ンジン用の副燃焼室、又は、エンジン補益としてのター
ボチャージャー等に応用され、又、近い将来には、ガス
タービンエンジンにも応用されるのではないかと予想さ
れている。[Prior Art and Problems] Ceramic materials have excellent mechanical properties such as heat resistance, reaction resistance, and wear resistance. As is well known, it is applied to sub-combustion chambers for diesel engines, turbochargers, etc. as an engine supplement, and it is expected that it will also be applied to gas turbine engines in the near future.
ただし、金属の中でも比較的脆いとされるアルミ合金と
比較してもセラミックの破壊靭性値は低く脆性材料とい
われるゆえんである。この様なモノリシックセラミック
スでは9組織制御等を行っても飛躍的な破壊靭性向上は
不可能であり、繊維による強化複合材に対する要求が大
きい。However, even compared to aluminum alloy, which is considered to be relatively brittle among metals, ceramic has a low fracture toughness value, which is why it is said to be a brittle material. In such monolithic ceramics, it is impossible to dramatically improve the fracture toughness even if nine-structure control is performed, and there is a strong demand for fiber-reinforced composite materials.
繊維強化セラミック複合材についての出願としては、ス
ピネル(MgO・Al!zOa)に炭化珪素。Applications regarding fiber-reinforced ceramic composites include spinel (MgO・Al!zOa) and silicon carbide.
短繊維を混ぜた焼結体(特開昭62−119175)
。Sintered body mixed with short fibers (JP-A-62-119175)
.
アルミナに炭化珪素、短繊維を混ぜた焼結体(特開昭6
2−119174) 、炭素連続繊維強化SIC複合体
(特開昭6l−247H3) 、金属酸化物あるいは同
炭化物に炭素繊維を添加して、加圧と同時に焼結するセ
ラミック複合材(特開昭5O−13HO6) 、炭化珪
素、繊維強化セラミックス複合材(特公昭623599
B) 、及び繊維強化サイアロン複合材(特開平1−1
31074) 、粒子分散強化した繊維強化セラミック
ス複合材およびその製造方法(特開平2−2[1g7B
、同2−28877) 、粒子分散強化した繊維強化ム
ライト複合材及びその製造方法(特開平2− 1838
4)等であるが1本発明の属する長繊維を使用した複合
材については、−次元配向の繊維組織(以下rlDID
繊維組織もいう)が主であり、このID繊維組織の複合
材では層間剪断強度が低く(例えば特開平2−2887
6、特開平2−26877、特開平2−18364での
複合材の場合主応力の115〜1110程度)、又、当
然破壊仕事についても著しい方向性を持つ材料である。A sintered body made of alumina mixed with silicon carbide and short fibers (Unexamined Japanese Patent Publication No. 6)
2-119174), carbon continuous fiber reinforced SIC composite (Japanese Patent Laid-Open No. 61-247H3), ceramic composite material in which carbon fibers are added to metal oxides or carbides and sintered at the same time as pressure is applied (Japanese Patent Laid-open No. -13HO6), silicon carbide, fiber-reinforced ceramic composite (Special Publication No. 623599
B), and fiber-reinforced sialon composite material (JP-A-1-1
31074), Fiber-reinforced ceramic composite material reinforced by particle dispersion and its manufacturing method (JP-A-2-2 [1g7B
, 2-28877), Fiber-reinforced mullite composite material reinforced by particle dispersion and method for producing the same (JP-A-2-1838)
4) etc. However, for composite materials using long fibers to which the present invention belongs, -dimensionally oriented fiber structure (rlDID hereinafter)
(also referred to as fibrous structure), and composite materials with this ID fibrous structure have low interlaminar shear strength (for example, JP-A-2-2887
6, JP-A-2-2-26877 and JP-A-2-18364, the composite material has a principal stress of about 115 to 1110), and of course, it is a material that has a remarkable directionality in terms of work of fracture.
そのため。Therefore.
こうした複合材を複雑な応力が発生する用途に使用した
場合、繊維の伸び方向に対し直交方向で破壊仕事が著し
く低く2層間剪断によって剥離ないしは破壊を生ずる。When such a composite material is used in applications where complex stress is generated, the work of fracture in the direction perpendicular to the direction of fiber elongation is extremely low, causing peeling or fracture due to shear between the two layers.
[課題の解決手段]
そこで本発明では長繊維をマトリックス相としてのセラ
ミックスに均一に分散し、かつ珪素及び窒素を必須成分
とするプレセラミックスポリマー特に無機ポリシラザン
の熱分解を利用し、しかも二次元配向の繊維組織(以下
r2D繊維組織」ともいう)を有するプリプレグ積層体
として成形することにより、繊維強化セラミック複合材
の破壊靭性値ないしは破壊仕事の飛躍的な向上を図り。[Means for Solving the Problems] Therefore, in the present invention, long fibers are uniformly dispersed in ceramics as a matrix phase, and by utilizing thermal decomposition of a preceramic polymer, especially an inorganic polysilazane, containing silicon and nitrogen as essential components, and two-dimensionally oriented. By molding it as a prepreg laminate having a fiber structure (hereinafter also referred to as "r2D fiber structure"), we aim to dramatically improve the fracture toughness value or work of fracture of the fiber-reinforced ceramic composite material.
特に複雑な応力が発生する用途においてもその使用を可
能にしたものである。即ち、上記課題を下記解決手段に
よって解決した。This makes it possible to use it even in applications where particularly complex stress is generated. That is, the above problem was solved by the following solution.
(1)珪素及び窒素を必須成分とし無機質又は主繰返し
単位の合計炭素原子数が7以下のプレセラミックスポリ
マーからなる溶液に、ムライト、アルミナ及び窒化珪素
よりなる群から選択されるセラミック粉末一種以上を配
合した含浸液を調整する工程。(1) One or more ceramic powders selected from the group consisting of mullite, alumina, and silicon nitride are added to a solution consisting of a preceramic polymer containing silicon and nitrogen as essential components and having an inorganic material or a total number of carbon atoms in the main repeating unit of 7 or less. The process of adjusting the blended impregnating liquid.
繊維の織物連続シートを含浸液に通過させて二次元配向
の繊維組織を有するプリプレグ積層体を得る工程、及び
プリプレグ積層体を不活性ガス又は窒素ガス雰囲気中に
て400〜700℃で一次熱処理し、その後同雰囲気中
にて1500〜1800℃で常圧又は加圧下二次熱処理
する工程。A step of passing a woven continuous sheet of fibers through an impregnating liquid to obtain a prepreg laminate having a two-dimensionally oriented fiber structure, and a primary heat treatment of the prepreg laminate at 400 to 700°C in an inert gas or nitrogen gas atmosphere. , followed by a step of secondary heat treatment in the same atmosphere at 1500 to 1800°C under normal pressure or pressure.
からなることを特徴とする繊維強化セラミック複合材の
製造方法。A method for producing a fiber-reinforced ceramic composite material, characterized by comprising:
(2)珪素及び窒素を必須成分とし無機質又は主繰返し
単位の合計炭素原子数が7以下のプレセラミックスポリ
マーからなる溶液に、ムライト、アルミナ及び窒化珪素
よりなる群から選択されるセラミック粉末一種以上を配
合した含浸液を調整する工程。(2) One or more ceramic powders selected from the group consisting of mullite, alumina, and silicon nitride are added to a solution consisting of a preceramic polymer containing silicon and nitrogen as essential components and having an inorganic material or a total number of carbon atoms in the main repeating unit of 7 or less. The process of adjusting the blended impregnating liquid.
繊維の織物単位シートを含浸液に浸漬させて二次元配向
の繊維組織を有するプリプレグシートを得る工程。A step of immersing a textile unit sheet of fibers in an impregnating liquid to obtain a prepreg sheet having a two-dimensionally oriented fiber structure.
プリプレグシートをその繊維の配向方向を互いに交叉さ
せて順次積層し任意形状のプリプレグ積層体に成形する
工程、及び
プリプレグ積層体を不活性ガス又は窒素ガス雰囲気中に
て400〜700℃で一次熱処理し、その後同雰囲気中
にて1500〜1800℃で常圧又は加圧下二次熱処理
する工程。A process of sequentially stacking prepreg sheets with the orientation directions of their fibers crossing each other to form a prepreg laminate of an arbitrary shape, and a primary heat treatment of the prepreg laminate at 400 to 700°C in an inert gas or nitrogen gas atmosphere. , followed by a step of secondary heat treatment in the same atmosphere at 1500 to 1800°C under normal pressure or pressure.
からなることを特徴とする繊維強化セラミック複合材の
製造方法。A method for producing a fiber-reinforced ceramic composite material, characterized by comprising:
ここで、プレセラミックスポリマーとしては主繰返し単
位−+5iHzNH+−のペルヒドロポリシラザン、主
繰返し単位−+5i−NHk (Rは炭素原子数7責
以下のアルキル基、アルケニル基、アリール基、シクロ
アルキル基、アルキルシリル基、アルキルアミノ基又は
アルコキシ基を表わす)のポリシラザン、又繊維として
は炭素繊維が最適である。Here, as the preceramic polymer, perhydropolysilazane with main repeating unit -+5iHzNH+-, main repeating unit -+5i-NHk (R is an alkyl group, alkenyl group, aryl group, cycloalkyl group, alkyl group having 7 or less carbon atoms) Polysilazane (representing a silyl group, alkylamino group or alkoxy group), and carbon fibers are most suitable as the fibers.
本発明が目的とした破壊靭性値あるいは破壊仕事の著し
い向上には2分散相をいかに均一にマトリックス相に分
布させ、繊維−マトリックス界面にいかに応力を発生さ
せ、繊維−マトリックス界面がいかに破壊して繊維が引
き抜かれるかが重要である。In order to significantly improve the fracture toughness value or the work of fracture, which is the objective of the present invention, it is important to know how to uniformly distribute the two dispersed phases in the matrix phase, how to generate stress at the fiber-matrix interface, and how to fracture the fiber-matrix interface. What is important is how the fibers are pulled out.
界面応力発生については
σ:織繊維平行方向に発生する応力
Δα:マトリックスと繊維との熱膨張率の差ΔT:焼結
温度と使用温度の差
シ:ポアソン比
a:繊維半径
r:繊維中心からの距離
Em:マトリックスのヤング率
で表わされる応力発生によりクラック進展方向の不均一
化(クラックディフレクション)を誘起し、破壊仕事で
増大する。Regarding the generation of interfacial stress, σ: Stress generated in the parallel direction of the woven fibers Δα: Difference in thermal expansion coefficient between the matrix and fibers ΔT: Difference between sintering temperature and operating temperature S: Poisson's ratio a: Fiber radius r: From the center of the fiber Distance Em: The generation of stress expressed by the Young's modulus of the matrix induces non-uniformity in the direction of crack propagation (crack deflection), which increases with the work of fracture.
又、繊維−マトリックスの界面仕事についてはW:繊維
がマトリックスに対して行う仕事d:繊維径
i:繊維長さ
Δオニ引き抜き距離
σ:繊維断面に働く応力
により引き抜き時に界面に散逸されるエネルギーにより
破壊仕事が増大する。Regarding the fiber-matrix interface work, W: Work done by the fiber on the matrix d: Fiber diameter i: Fiber length Δ Oni pull-out distance σ: Due to the energy dissipated at the interface during pull-out due to the stress acting on the fiber cross section. Destructive work increases.
破壊靭性値の向上については。Regarding improvement of fracture toughness value.
K −−」と (K )2+VrrR2Ec
・−■IC−c Em IC−mK
:複合材の破壊靭性値
IC−c
K :マトリックスの破壊靭性値
IC拳里n
EC:複合材の弾性係数
Em:マトリックスの弾性係数
V:繊維の体積分率
τ:繊維−マトリックスの界面強度
r:織繊維半径
R:引き抜かれた繊維のアスペクト比
により総合的(線型域及び非線型域)に破壊靭性値が向
上する。K −-” and (K )2+VrrR2Ec
・-■IC-c Em IC-mK
: Fracture toughness value of composite material IC-c K : Fracture toughness value of matrix IC Kenrin EC: Elastic modulus of composite material Em: Elastic modulus of matrix V: Volume fraction of fiber τ: Fiber-matrix interface strength r : Woven fiber radius R: The fracture toughness value improves comprehensively (linear region and non-linear region) depending on the aspect ratio of the drawn fibers.
■及び■により、複合材の破壊仕事が総合的(線型域及
び非線型域)に向上し、準安定もしくは安定破壊を起す
様になる。特に重要な点は、複合材料は非線型材料であ
り2弾性変形以外の非線型変位域が非常に重要である。By (1) and (2), the fracture work of the composite improves comprehensively (in the linear region and nonlinear region), and metastable or stable fracture occurs. A particularly important point is that composite materials are nonlinear materials, and the nonlinear displacement range other than the two elastic deformations is very important.
■、■式は界面に働く応力(強度)の制御の重要性を示
すものであり2本発明によればその界面応力の効果的な
制御を可能とし、破壊靭性値あるいは破壊仕事の著しい
向上、その方向性の解消をなし得たものである。この場
合、所定のブレセラミ・ソクスポリマー特に無機ポリシ
ラザンの熱分解による生成物が繊維とセラミックマトリ
ックスの界面において靭性強化にとって有用な中間層を
形成させたり、セラミックマトリックス自体を強靭化さ
せるなど重要な機能を果たしているものと考えられる。Equations (1) and (2) indicate the importance of controlling the stress (strength) acting on the interface.2 According to the present invention, the interfacial stress can be effectively controlled, and the fracture toughness value or work of fracture can be significantly improved. We were able to resolve this direction. In this case, the products of thermal decomposition of certain Brecerami-Sox polymers, especially inorganic polysilazane, may perform important functions such as forming an intermediate layer useful for toughening at the interface between the fiber and the ceramic matrix, or toughening the ceramic matrix itself. It is thought that it is fulfilling its role.
特に。especially.
原料としてのセラミック粉末としてムライト、アルミナ
を使用した場合、珪素及び窒素を必須成分とするプレセ
ラミックスポリマーの熱分解によって生じる窒化珪素と
ムライト、アルミナとがさらに反応しマトリックスにつ
いて全体的に又は部分的にサイアロンを生成せしめる。When mullite or alumina is used as a ceramic powder as a raw material, the silicon nitride produced by thermal decomposition of a preceramic polymer containing silicon and nitrogen as essential components further reacts with the mullite or alumina, and the matrix is completely or partially Generates Sialon.
このことも2本発明によって得られる繊維強化セラミ・
ンク複合材が破壊靭性値を著しく壜加している要因であ
り。This also shows that the fiber-reinforced ceramic obtained by the present invention
This is because the composite material significantly increases the fracture toughness value.
又サイアロンの生成によって反応・焼結が充分(こ進行
していると推定され、この点からも高強度及び靭性向上
に寄与しているものと考えられる。It is also assumed that the reaction and sintering are sufficiently progressed due to the formation of sialon, and this is also considered to contribute to the improvement of high strength and toughness.
又、セラミック粉末として窒化珪素を用いた場合には、
マトリックス自体がより強靭なものであるため、特に無
機ポリシラザンの熱分解による界面応力の制御と相俟っ
てさらに一層強靭化された繊維強化セラミック複合材を
提供できる。In addition, when silicon nitride is used as the ceramic powder,
Since the matrix itself is stronger, in combination with interfacial stress control through thermal decomposition of inorganic polysilazane, it is possible to provide a fiber-reinforced ceramic composite material that is even stronger.
なお他の物性、すなわち曲げ強度、耐摩耗性。In addition, other physical properties such as bending strength and abrasion resistance.
表面硬度1等の材料力学的指標と9本発明による複合材
の示す破壊靭性値、破壊仕事とは基本的な考えにおいて
差異がある。即ち、こうした他の物性においては、焼結
を完全に行い気孔を少くできれば高強度、高硬度、高耐
摩耗を達成できる。しかし9本発明による様な複合材で
は、あくまでも式■、■及び■により表わされる繊維と
平行方向の応力、繊維−マトリックス間の界面仕事、及
び破壊靭性値を効果的に発現する様に焼結を制御する必
要があるのである。There is a fundamental difference between the material mechanical index such as surface hardness 1 and the fracture toughness value and work of fracture exhibited by the composite material according to the present invention. That is, in terms of these other physical properties, high strength, high hardness, and high wear resistance can be achieved if sintering is completed and pores are reduced. However, in composite materials such as those according to the present invention, the stress in the direction parallel to the fibers, the interfacial work between the fibers and the matrix, and the fracture toughness values expressed by the formulas It is necessary to control the
プレセラミックスポリマーから合成される窒化珪素と反
応をし、サイアロンを合成できるのはアルミナ及びムラ
イトである。耐熱構造材としては一般にβ−サイアロン
(Sis−2Aj!z Ol Ns−zz−1,2,3
,4あるいは1以下の場合もある)が有効である。しか
し9本発明で得られるサイアロン相はこのβ−サイアロ
ンの他、低温にて結晶相を合成できるため低温型サイア
ロン(Si]2A121s Owe Ns )が生成さ
れ、非常に有効である。Alumina and mullite can react with silicon nitride synthesized from preceramic polymers to synthesize sialon. As a heat-resistant structural material, β-sialon (Sis-2Aj!z Ol Ns-zz-1,2,3
, 4 or even less than 1) is valid. However, in addition to this β-sialon, the sialon phase obtained in the present invention can synthesize a crystalline phase at a low temperature, so that a low-temperature type sialon (Si]2A121s Owe Ns) is produced, which is very effective.
又、プレセラミックスポリマーから合成される窒化珪素
と反応することなく窒化珪素相のみのマトリックスとす
るため、セラミック原料粉末としてそれ自体強靭な窒化
珪素を用いてもよく、プレセラミックスポリマーの熱分
解による繊維とマトリックスとの界面制御により充分な
強靭化を達成できる。従って、この場合アルミナ、ムラ
イト等を使用しなくてもよい。尚、こうしたセラミック
ス粉末を混合して使用してもよいことは勿論であり1強
靭化に悪影響を及ぼさない限り、他のセラミックス粉末
例えば窒化アルミニウム、シリカなどを粉末に対してe
owt%以下の量で併用しても差支えない。In addition, in order to form a matrix of only silicon nitride phase without reacting with silicon nitride synthesized from the preceramic polymer, silicon nitride, which is strong itself, may be used as the ceramic raw material powder, and fibers produced by thermal decomposition of the preceramic polymer may be used. Sufficient toughness can be achieved by controlling the interface between the steel and the matrix. Therefore, in this case, it is not necessary to use alumina, mullite, etc. It goes without saying that these ceramic powders may be mixed and used, and other ceramic powders such as aluminum nitride, silica, etc. may be added to the powder as long as it does not adversely affect the toughness.
There is no problem even if they are used together in an amount of owt% or less.
プレセラミックスポリマー特に無機ポリシラザンとして
は、主たる繰返し単位が一+5iH2N)l+−で表わ
される約100〜50.000の範囲内の分子量を有す
るベルヒドロポリシラザンが挙げられる。このべルヒド
ロポリシラザンは1重合度の程度により。Preceramic polymers, particularly inorganic polysilazane, include perhydropolysilazane having a molecular weight in the range of about 100 to 50,000 in which the predominant repeating unit is expressed as 1+5iH2N)l+-. This perhydropolysilazane is 1 depending on the degree of polymerization.
オイル状物質あるいは粉末として得ることができる。そ
して、いずれの場合にも、キシレン等の溶剤に容易に可
溶である。したがって、このような溶剤中に、アルミナ
粉末等と無機ポリシラザンとを添加し、混合することに
よって、容易に均一に分布させることが可能である。こ
こで、無機ポリシラザンは、解二う剤(分散剤)として
も作用するため2本スラリーは造粒用あるいはスラリー
成形用に適した均質なスラリーとなる。このスラリーを
含浸させた繊維から得られたプリプレグを熱処理すると
、無機ポリシラザンは、熱分解し、水素が揮散し、活性
度の高いSl及びNがバインダーとして作用し1粒子間
を強固に結合すると共に、セラミック粒子がアルミナ、
ムライトの場合にはこれらと高活性の81. Nとが相
互に反応してサイアロンを生成する。ここで、この結合
力は、熱分解収率の高いプレセラミックスポリマーを用
いる程、さらに結合に関与しない過剰の炭素を残存させ
ないプレセラミックスポリマーを用いる程強固であり、
しかも有機基が存在するとサイアロンが生成しにくくな
る。従って1本質的に有機基を有することなく、熱分解
後、高純度な5i3N4組成となる無機ポリシラザンは
、適したプレセラミックスポリマーと言える。また、こ
の熱分解後の(中間物質としての) Si、N、の形態
は。It can be obtained as an oil or powder. In either case, it is easily soluble in a solvent such as xylene. Therefore, by adding alumina powder or the like and inorganic polysilazane to such a solvent and mixing them, it is possible to easily and uniformly distribute the alumina powder and the like. Here, since the inorganic polysilazane also acts as a deflocculating agent (dispersing agent), the two-tube slurry becomes a homogeneous slurry suitable for granulation or slurry molding. When the prepreg obtained from the fibers impregnated with this slurry is heat-treated, the inorganic polysilazane is thermally decomposed, hydrogen is volatilized, highly active Sl and N act as binders, and the particles are strongly bound together. , ceramic particles are alumina,
In the case of mullite, these and highly active 81. N reacts with each other to generate sialon. Here, this bonding force is stronger as a preceramic polymer with a higher pyrolysis yield is used, and a preceramic polymer that does not leave excess carbon that does not participate in bonding,
Furthermore, the presence of organic groups makes it difficult to form sialons. Therefore, inorganic polysilazane, which essentially has no organic groups and has a highly pure 5i3N4 composition after pyrolysis, can be said to be a suitable preceramic polymer. Also, the forms of Si and N (as intermediate substances) after this thermal decomposition are as follows.
通常、非晶買あるいは1000Å以下という極めて小さ
な結晶粒子という形でセラミックス粒子間を充てんする
とともに、アルミナ粒子等との反応性も極めて高い。Usually, it fills the spaces between ceramic particles in the form of amorphous particles or extremely small crystal particles of 1000 Å or less, and is also highly reactive with alumina particles and the like.
以上の反応は、約400℃より始まり、約1500℃で
完了する。本発明によれば1500〜1800℃程度で
2次熱処理を行うためサイアロンが生成し、かつ焼結が
進行し、靭性等の機械的特性に優れたサイアロンセラミ
ックス成形焼結体が得られる。The above reaction starts at about 400°C and is completed at about 1500°C. According to the present invention, since the secondary heat treatment is performed at about 1500 to 1800° C., sialon is generated, sintering progresses, and a shaped sintered body of sialon ceramics having excellent mechanical properties such as toughness can be obtained.
また、無機ポリシラザンの添加量は、目的とする複合材
の特性1例えば9強度、密度、加工性などに応じ、制限
なく増減することが可能である。Further, the amount of the inorganic polysilazane added can be increased or decreased without restriction depending on the properties of the target composite material, such as strength, density, workability, etc.
これは、従来のプレセラミックスポリマーと異なり1重
合度を上昇することにより、融解の度合いを低減し、多
量添加時においても成形体の軟化を防止することができ
るためである。然しながら。This is because, unlike conventional preceramic polymers, by increasing the degree of polymerization, the degree of melting can be reduced and softening of the molded body can be prevented even when a large amount is added. However.
1次成形助剤及びマトリックス反応への寄与を最大限に
引出すためにはセラミック粉末の使用量を85〜50v
of%好ましくは75vof%程度にする必要がある。In order to maximize the contribution to the primary forming aid and matrix reaction, the amount of ceramic powder used should be 85 to 50v.
of% preferably needs to be about 75vof%.
本発明で用いる無機ポリシラザンは側鎖に有機基を本質
的に有しないポリシラザンであって、好ましくは分子量
(重合度)が約100〜50,0f)0 (約2〜10
00)の範囲内にあるポリシラザンである。The inorganic polysilazane used in the present invention is a polysilazane that essentially does not have an organic group in its side chain, and preferably has a molecular weight (degree of polymerization) of about 100 to 50,0 f)0 (about 2 to 10
It is a polysilazane within the range of 00).
このような無機ポリシラザンは9例えば、ジハロシラン
と塩基を反応させてジハロシランのアダクツを生成させ
た後、このアダクツとアンモニアを反応させて製造する
ことができる(特開昭60−145903号公報参照)
。Such an inorganic polysilazane can be produced by, for example, reacting a dihalosilane with a base to produce a dihalosilane adduct, and then reacting this adduct with ammonia (see JP-A-60-145903).
.
本発明で用いる無機ポリシラザンの分子量が100より
小さいと溶剤と一緒に蒸発するためバインダーとしての
効果が薄れる傾向があり、 50.000より大きいと
溶剤に不要のため混合が不均一となり、セラミックス複
合材の強度が低下する傾向がある。If the molecular weight of the inorganic polysilazane used in the present invention is less than 100, it will evaporate together with the solvent, and its effectiveness as a binder will tend to be weakened. If it is greater than 50,000, it will not be needed as a solvent, resulting in non-uniform mixing, resulting in poor ceramic composite materials. strength tends to decrease.
このような無機ポリシラザンを用いてセラミックスを成
形するには、前記の如く、溶剤中にセラミックス粉末と
無機ポリシラザンを添加し混合してスラリーを作成して
スラリーを成形する。To mold ceramics using such inorganic polysilazane, as described above, ceramic powder and inorganic polysilazane are added and mixed in a solvent to create a slurry, and the slurry is molded.
溶剤としては、脂肪族炭化水素、脂環式炭化水素、芳香
族炭化水素の炭化水素溶媒、ハロゲン化メタン、ハロゲ
ン化エタン、ハロゲン化ベンゼン等のハロゲン化炭化水
素、脂肪族エーテル、脂環式エーテル等のエーテル類な
どが使用できる。Examples of solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene, aliphatic ethers, and alicyclic ethers. Ethers such as can be used.
好ましい溶媒は、塩化メチレン、クロロホルム。Preferred solvents are methylene chloride and chloroform.
四塩化炭素、ブロモホルム、塩化エチレン、塩化エチリ
デン、トリクロロエタン、テトラクロロエタン等のハロ
ゲン化炭化水素、エチルエーテル。Halogenated hydrocarbons such as carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, tetrachloroethane, and ethyl ether.
イソプロピルエーテル、エチルブチルエーテル。Isopropyl ether, ethyl butyl ether.
ブチルエーテル、1.2−ジオキシエタン、ジオキサン
、ジメチルジオキサン、テトラヒドロフラン、テトラヒ
ドロピラン等のエーテル類、ペンタン、ヘキサン、イソ
へ牛サン、メチルペンタン。Ethers such as butyl ether, 1,2-dioxyethane, dioxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentane, hexane, isohexane, methylpentane.
ヘプタン、イソへブタン、オクタン、イソオクタン、シ
クロペンタン、メチルシクロペンタン。Heptane, isohbutane, octane, isooctane, cyclopentane, methylcyclopentane.
シクロヘキサン、メチルシクロヘキサン、ベンゼン、ト
ルエン、キシレン、エチルベンゼン等の炭化水素等であ
る。These include hydrocarbons such as cyclohexane, methylcyclohexane, benzene, toluene, xylene, and ethylbenzene.
更に、無機ポリシラザン(ベルヒドロポリシラザン)以
外に、ムライト及び/又はアルミナとの反応によってサ
イアロンに熱的に変換可能なプレセラミックスポリマー
としては、有機系ポリシラザンとしてのポリシラザン及
びポリオルガノヒドロシラザンがある。In addition to inorganic polysilazane (perhydropolysilazane), other preceramic polymers that can be thermally converted into sialon by reaction with mullite and/or alumina include polysilazane and polyorganohydrosilazane as organic polysilazane.
このうち、ポリシラザンとしては、特開昭60−228
890に開示されている主繰返し単位が−fS1−NH
+−(Rは炭素原子数7以下のアルキル基等である)で
あるものが挙げられる。又、ポリオルガノヒドロシラザ
ンとしては2例えばポリオルガノヒドロジハロシランと
ルイス塩との錯体に乾燥アンモニアを反応させ製造され
るものが挙げられる(特開昭81−89230.同62
−156135.米国特許4,859.1i50明細書
)。又、ポリシラザンと金属アルコキシド(金属はアル
ミニウム又はイツトリウム等)との反応生成物であるポ
リメタロシラザン(例えば特開昭63−191832.
同83−88221)であっても、サイアロンに熱的に
変換可能である限り、使用できる。Among these, as polysilazane, JP-A-60-228
The main repeating unit disclosed in 890 is -fS1-NH
Examples include +- (R is an alkyl group having 7 or less carbon atoms, etc.). Examples of polyorganohydrosilazane include those produced by reacting dry ammonia with a complex of a polyorganohydrodihalosilane and a Lewis salt (Japanese Patent Application Laid-open No. 89230/1983, No. 62).
-156135. U.S. Pat. No. 4,859.1i50). Also, polymetallosilazanes, which are reaction products of polysilazane and metal alkoxides (the metal is aluminum, yttrium, etc.) (for example, JP-A-63-191832.
83-88221) can be used as long as it can be thermally converted into Sialon.
但し、いずれの有機系ポリシラザンでありてもrRJの
合計炭素原子数が7以下、より好ましくは炭素原子数1
〜2のアルキル基等であることを必要とする。合計炭素
原子数が増加すると、遊離炭素が生成したりセラミック
(特に窒化珪素)への転化率が極めて低くなるためであ
る。However, no matter which organic polysilazane is used, the total number of carbon atoms in rRJ is 7 or less, more preferably 1 carbon atom.
~2 alkyl groups, etc. This is because as the total number of carbon atoms increases, free carbon is generated and the conversion rate to ceramics (particularly silicon nitride) becomes extremely low.
又9本発明の複合材製造においてはこれら有機系ポリシ
ラザンよりもベルヒドロポリシラザン(無機ポリシラザ
ン)の方が好ましい。rRJの存在によって熱分解後に
多少なりとも炭素(C)原子が残存し、しかもその炭素
は非晶質として存在する。そのため、脱炭による気孔発
生等、緻密化に支障をきたす。特に1強度・靭性との関
係についても、常温ではさして影響ないが、高温下(5
00−800℃以上)では非晶質C原子の存在によって
強度・靭性の低下をもたらすおそれがある。Furthermore, in the production of the composite material of the present invention, perhydropolysilazane (inorganic polysilazane) is preferable to these organic polysilazane. Due to the presence of rRJ, some carbon (C) atoms remain after thermal decomposition, and moreover, the carbon exists in an amorphous state. Therefore, densification is hindered, such as the generation of pores due to decarburization. In particular, the relationship between 1 strength and toughness has no significant effect at room temperature, but at high temperature (5
(00-800°C or higher), the presence of amorphous C atoms may cause a decrease in strength and toughness.
尚、他の珪素含有高分子1例えばシロキサザン、ポリシ
ラスチレン及びポリカルボシラン等は好ましくない。シ
ロキサザンはサイアロンの生成可能性はあるが、バイン
ダー効果に劣り、又ポリシラスチレン及びポリカルボシ
ランは熱分解により主として炭化珪素を生成してしまう
からである。但し、これらの珪素含有高分子であっても
改質して骨格中に窒素原子を入れる等、何らかの改良を
加えれば使用可能性はある。Note that other silicon-containing polymers 1 such as siloxazane, polysilastyrene, and polycarbosilane are not preferred. This is because, although siloxasan has the possibility of producing sialon, it has an inferior binder effect, and polysilastyrene and polycarbosilane mainly produce silicon carbide through thermal decomposition. However, even these silicon-containing polymers can be used if they are modified in some way, such as by introducing nitrogen atoms into their skeletons.
プレセラミックスポリマーは一次成形助剤及びマトリッ
クス反応への寄与の2つの役目を持っている。助剤とし
ての役目あるいはマトリックス化過程での諸挙動のため
セラミック粉末の使用量をプレセラミックスポリマー及
びセラミック粉末の合計量に対して85vo1%〜50
voffi%に、好ましくは75voR%(プレセラミ
ックスポリマーを窒化珪素化する場合)程度にする必要
がある。The preceramic polymer has the dual role of being a primary forming aid and contributing to matrix reactions. Due to its role as an auxiliary agent or various behaviors in the matrix forming process, the amount of ceramic powder used is 85vo1% to 50% based on the total amount of preceramic polymer and ceramic powder.
voffi%, preferably about 75voR% (when converting a preceramic polymer into silicon nitride).
例として75voffi%程度セラミック粉末を使用し
た場合プレセラミックスポリマーからの窒化珪素の反応
により生成する結晶相を実測のデータ(X線回折により
同定)を使用し考察すると。As an example, when a ceramic powder of about 75 voffi% is used, the crystalline phase generated by the reaction of silicon nitride from a preceramic polymer will be considered using actual measurement data (identified by X-ray diffraction).
(1)アルミナの場合、生成結晶相はSil□A171
g0HN、及び、V2O,。(1) In the case of alumina, the crystal phase produced is Sil□A171
g0HN, and V2O,.
(2)ムライトの場合、生成結晶相ハ8112 Aj!
1s OasNll及び3 AI!20g ” 28
102゜又、ムライトのSIO□については+ N2雰
囲気中にて窒化珪素になり、同様な反応に寄与する。(2) In the case of mullite, the crystal phase formed is 8112 Aj!
1s OasNll and 3 AI! 20g ” 28
102°Also, SIO□ of mullite becomes silicon nitride in a +N2 atmosphere and contributes to a similar reaction.
即ち、ともにセラミックス粉末が多い系であるので、該
粉末に基づく未反応のセラミック相(AJ’ 20 s
又は3Ai1203・2s1o2)を含み、がっプレセ
ラミックスポリマーの熱分解にょるSi3N4 とセラ
ミック粉末との反応によって低温型サイアロン(S11
2Al!+s Os@Ns )相が生成していることを
定性的に確認できる。That is, since both systems contain a large amount of ceramic powder, an unreacted ceramic phase (AJ' 20 s
or 3Ai1203・2s1o2), low-temperature sialon (S11
2Al! It can be qualitatively confirmed that +sOs@Ns) phase is generated.
又、マトリックスの平均結晶粒径は、繊維の半径に応じ
て異なり2例えば8趨の繊維を使用した場合、好ましく
は6ua以下(より好ましくは31以下)であり、又1
0趨の繊維を使用した場合、好ましくは7.5−以下(
より好ましくは3.58以下)である。又、開気孔率が
5%以下であることが望ましい。In addition, the average crystal grain size of the matrix varies depending on the radius of the fibers2. For example, when 8 fibers are used, it is preferably 6 ua or less (more preferably 31 ua or less), and 1
When using 0 fibers, preferably 7.5- or less (
more preferably 3.58 or less). Further, it is desirable that the open porosity is 5% or less.
窒化珪素とアルミナもしくはムライトとを反応させてサ
イアロンを生成させるためには、使用される。又は生成
された個々のセラミック粉末は出来る限り、微細である
ことが望ましい。このためアルミナもしくはムライトは
1−以下の原料を使用し、窒化珪素はプレセラミックス
ポリマーより熱反応で合成する手法をとった。そのため
プレセラミックスポリマーを溶剤(トルエン、キシレン
等)に溶解させその中にもう一方のマトリックス構成要
素になるセラミック粉末を分散させ、この液をシート・
ワインディング成形法(S/W成形法)あるいはシート
積層法に使用する含浸液とする。It is used to react silicon nitride with alumina or mullite to form sialon. Alternatively, it is desirable that the individual ceramic powders produced be as fine as possible. For this reason, alumina or mullite was used as a raw material of 1- or less, and silicon nitride was synthesized using a thermal reaction from a preceramic polymer. Therefore, the preceramic polymer is dissolved in a solvent (toluene, xylene, etc.) and the ceramic powder, which will become the other matrix component, is dispersed therein.
This is an impregnating liquid used in winding molding method (S/W molding method) or sheet lamination method.
繊維強化のために、使用する長繊維はカーボン繊維(パ
ン系、ピッチ系)、耐酸化性を向上させるためアルミナ
、炭化珪素等セラミック薄膜がコーティングされたカー
ボン繊維(パン系、ピッチ系)、タングステンに代表さ
れる様な耐熱性金属がメツキされたカーボン繊維(パン
系、ピッチ系)、タングステン、モリブデン、タンタル
に代表される様な超耐熱金属繊維1表面がホウ素、炭化
珪素、炭化ホウ素で処理されたタングステン繊維、さら
にアルミナ繊維、炭化珪素繊維、窒化珪素繊維、チラノ
繊維等で代表される様なセラミック繊維である。特にマ
トリックスとの反応及び耐熱性のためカーボン繊維が好
ましい。マトリックス中に分散される繊維の量は、含浸
液の粘度および繊維の通過速度により調節することがで
きるが、マトリックスに対して容量%で35〜60%程
度が最も好ましい。For fiber reinforcement, the long fibers used are carbon fibers (bread-based, pitch-based), carbon fibers coated with ceramic thin films such as alumina and silicon carbide to improve oxidation resistance (bread-based, pitch-based), and tungsten. Carbon fiber (bread-based, pitch-based) plated with heat-resistant metals such as those typified by ultra-heat-resistant metal fibers such as tungsten, molybdenum, and tantalum 1 whose surface is treated with boron, silicon carbide, and boron carbide tungsten fibers, as well as ceramic fibers such as alumina fibers, silicon carbide fibers, silicon nitride fibers, and tyranno fibers. Carbon fiber is particularly preferred because of its reaction with the matrix and its heat resistance. The amount of fibers dispersed in the matrix can be adjusted by the viscosity of the impregnating liquid and the fiber passage speed, but it is most preferably about 35 to 60% by volume relative to the matrix.
これらの長繊維は、二次元配向の繊維組織を有するプリ
プレグを作成するため、予め織物(手織、バイアス織、
朱子織)の連続シート又は織物の単位シートとされる。These long fibers are pre-woven (hand-woven, bias-woven,
It is a continuous sheet of satin weave) or a unit sheet of woven fabric.
マトリックス中に繊維ないしはその織物を均一に分布さ
せるため、シート・ワインディング法(S/W法)又は
シート浸漬法を採用した。A sheet winding method (S/W method) or a sheet dipping method was employed to uniformly distribute the fibers or their fabrics in the matrix.
即ち、Sハ成形法の場合、供給される長繊維の織物連続
シートは基本的にストランドを織物シートに変化させた
ものであり、このシートを前記含浸液に連続的に通過さ
せ機械的に巻き取ることにより二次元配向の繊維組織を
有するプリプレグを作成する(第2図)。第2図におい
て、10はスプール、 +2は(長)繊維の織物、14
は含浸液槽。That is, in the case of the S-molding method, the supplied continuous woven sheet of long fibers is basically a strand that has been changed into a woven sheet, and this sheet is continuously passed through the impregnating liquid and mechanically wound. By removing the fibers, a prepreg having a two-dimensionally oriented fiber structure is created (FIG. 2). In Figure 2, 10 is a spool, +2 is a (long) fiber woven fabric, 14
is the impregnation liquid tank.
1Bは含浸液、 18は巻取りドラム、20はローラ
を夫々示す。又、シート浸漬法の場合、織物の単位シー
ト12を、1枚ずつ前記含浸液につけ、二次元配向の繊
維組織を有するプリプレグシートを作成し、このプリプ
レグシートを繊維について交叉角ないしは位相角(0く
θ≦90@、好ましくは25≦θ≦90” 、より好ま
しくは25≦θ≦75°)をもって順次積層することに
より任意形状のプリプレグ積層体を作成する(第3図、
第4図)。1B is an impregnating liquid, 18 is a winding drum, and 20 is a roller. In addition, in the case of the sheet dipping method, unit sheets 12 of the fabric are immersed one by one in the impregnating liquid to create a prepreg sheet having a two-dimensionally oriented fiber structure, and this prepreg sheet is adjusted to have a cross angle or a phase angle (0) of the fibers. A prepreg laminate of an arbitrary shape is created by sequentially laminating the layers at θ≦90@, preferably 25≦θ≦90”, more preferably 25≦θ≦75° (Fig. 3,
Figure 4).
尚、 S/W成形法の場合、プリプレグが所定の厚みに
なるまで織物連続シートを含浸液に通過させればよい。In the case of the S/W molding method, the continuous woven fabric sheet may be passed through an impregnating liquid until the prepreg reaches a predetermined thickness.
得られたプリプレグ(積層体)を2軸加圧プレス又は冷
間もしくは熱間等方圧プレス(CIP又はVIP)にて
加圧成形後、オーブン中で完全に脱溶剤させる。そして
、窒素ガス又はアルゴンガス。The obtained prepreg (laminate) is pressure-molded using a biaxial pressure press or a cold or hot isostatic press (CIP or VIP), and then the solvent is completely removed in an oven. and nitrogen gas or argon gas.
あるいは窒素ガスとアンモニア混合ガス気流中でプレセ
ラミックスポリマーを熱分解(400〜700℃)する
。この際、プレセラミックスポリマーは不溶不融化し窒
化珪素組成の非晶物質になる。Alternatively, the preceramic polymer is thermally decomposed (400 to 700°C) in a nitrogen gas and ammonia mixed gas stream. At this time, the preceramic polymer becomes insoluble and infusible and becomes an amorphous material having a silicon nitride composition.
焼結に際しては、アルゴンガスあるいは窒素ガス加圧下
(〜9.8)cg / cd )あるいは常圧ガス(気
流)下において1500〜1800℃、より好ましくは
1700℃以下で焼結する場合もあるし、又、繊維が充
填されることによりマトリックスの焼結が進行しにくく
なるため、成形品表面を窒化硼素でマスキングした後、
カーボン等耐熱素材型中に入れホットプレス(例えば〜
350kg / cd )焼結を行うことも好ましい。When sintering, sintering may be carried out under argon gas or nitrogen gas pressure (~9.8 cg/cd) or under normal pressure gas (airflow) at a temperature of 1500 to 1800 °C, more preferably 1700 °C or less. Also, since sintering of the matrix becomes difficult to proceed due to filling with fibers, after masking the surface of the molded product with boron nitride,
Place carbon or other heat-resistant material into the mold and hot press (for example ~
It is also preferable to carry out sintering (350 kg/cd).
複合材の特性比較のため行った評価方法とじては
■ X−線回折によるマトリックスの結晶相の定性的同
定
■ 5ENB法による破壊靭性値
(サンプル 5 mm X g am X 80+u。The evaluation methods used to compare the properties of composite materials are: ■ Qualitative identification of the crystalline phase of the matrix by X-ray diffraction ■ Fracture toughness value by 5ENB method (sample 5 mm x g am x 80+u.
a / w −0,5)
SENB法試験片による破壊仕事
rwof 2S
S:破断面積
E:加重−変位曲線からの破壊エネルギー■ 曲げ強度
(サンプル 3龍X 4 mm X 4hm)等である
。a/w -0,5) Work of fracture by SENB method test piece rwof 2S S: Fracture area E: Fracture energy from load-displacement curve ■ Bending strength (sample 3×4 mm×4 hm), etc.
[実施例] (実施例−1) まずマトリックス作成用の含浸液を作成する。[Example] (Example-1) First, create an impregnating solution for creating a matrix.
Mn−1818,My −8347,81/ N −1
,22のベルヒドロポリシラザン溶液(東燃■製、その
製法については特願昭62−202765参照 キシレ
ン溶液38.2%含有品)152gを内容積500cc
のポリエチレン製ポットに入れ9次にムライト粉末(秩
父セメント製MP−20)98gを入れる。最後に直径
12 、51ullのシリンダー型高アルミナ質玉石を
300g入れ、ポットのフタを閉じる。ムライト粉末は
調合前に70〜80℃で48)Irs以上乾燥後冷却し
たものを使用する。Mn-1818, My-8347,81/N-1
, 22 perhydropolysilazane solution (manufactured by Tonen ■, see Japanese Patent Application No. 62-202765 for the manufacturing method, xylene solution containing 38.2%) 152 g with an internal volume of 500 cc.
Place in a polyethylene pot and add 98 g of mullite powder (MP-20 manufactured by Chichibu Cement). Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12 mm and 51 ul, and close the lid of the pot. The mullite powder is dried at 70 to 80° C. above 48) Irs and cooled before blending.
ポットを5Orpmにて16時間混合し、ポットより取
り出し含浸液とする。含浸液を含浸槽に流し込み、つい
でカーボン繊維を使用した織物シート(平織り)(東燃
■製ピッチ系HM−50(ZFグレード)、ellベト
カビピッチHM−50,あるいは東邦レーヨン■製パン
系IM−400)をスプール台に取りつける。巻き取り
速度を3〜5 cm / seCにセットし巻き取り用
マンドレルに巻き取るが、繊維の均一分散のため、ロー
ルにて開繊を行いながら含浸する様に巻き取りテンショ
ンをコントロールする。The pot was mixed at 5 rpm for 16 hours, and the mixture was taken out from the pot and used as an impregnating solution. Pour the impregnating liquid into the impregnating tank, and then prepare a woven fabric sheet (plain weave) using carbon fiber (Tonen Pitch HM-50 (ZF grade), ELL Mold Mold Pitch HM-50, or Toho Rayon Bread Making IM-400). Attach it to the spool stand. The winding speed is set to 3 to 5 cm/secC, and the fiber is wound onto a winding mandrel. In order to uniformly disperse the fibers, the winding tension is controlled so that the fibers are opened with a roll and impregnated.
巻き取りスプールに巻き取る前に、含浸処理直後のスト
ランドに40〜50℃の熱風を供給し、溶剤を一部揮発
させポリシラザンに接着性を持たせた状態でマンドレル
に巻き取る。巻き取り厚みは約10關とするが、マンド
レルには接着性の有る材料が巻き取られるためシリコー
ンコートされたポリエステルフィルムを使用したり、あ
るいはフッ素処理等を施しておくと良い。マンドレルよ
り取り外したプリプレグを lOhmX 100+n
に切断した(第1図(a))。一方シート浸漬法では、
厚み0.25mmの織物シートを直径100 amに切
断後。Before winding onto a take-up spool, hot air at 40 to 50° C. is supplied to the strand immediately after impregnation to partially volatilize the solvent and wind it onto a mandrel in a state where the polysilazane has adhesive properties. The winding thickness is about 10 mm, but since an adhesive material is wound around the mandrel, it is preferable to use a silicone-coated polyester film or to perform fluorine treatment. Prepreg removed from mandrel 1OhmX 100+n
(Fig. 1(a)). On the other hand, in the sheet dipping method,
After cutting a fabric sheet with a thickness of 0.25 mm into a diameter of 100 am.
含浸液に浸漬し、浸漬液槽より取り出し、1枚ずつ基準
繊維について交叉角ないしは位相角(θ−45’ )を
もってずらし積層し厚み13鰭とした。The fibers were immersed in an impregnating solution, taken out from the immersion solution tank, and laminated one by one with the reference fibers shifted at an intersection angle or a phase angle (θ-45') to obtain a thickness of 13 fins.
その後プリプレグ積層体は任意の形状に切断後2軸加圧
プレス又は冷間あるいは熱間等方圧プレス(CIP又は
wIP)にて成形加圧後50℃に保持されているオーブ
ン中に入れ24時間乾燥させる。Thereafter, the prepreg laminate is cut into any shape, molded using a biaxial pressure press or cold or hot isostatic press (CIP or wIP), and then placed in an oven maintained at 50°C for 24 hours. dry.
ベルヒドロポリシラザンの不溶不融化のための熱処理は
、3.5℃/Hrの温度勾配のもとN2ガス加圧下(〜
5 kg f / cd G )にて700℃まで処理
をし完全に終了させる。The heat treatment for making perhydropolysilazane insoluble and infusible was carried out under N2 gas pressure (~
The treatment is completed at 700° C. at 5 kg f/cd G).
焼結に当っては熱処理された成形品表面に窒化ホウ素の
微粉をコーティングしマスキングを施す。その物を黒鉛
製加圧焼結型中に入れアルゴン気流中600℃/Hrの
温度勾配のもと焼結を行った。During sintering, the surface of the heat-treated molded product is coated with boron nitride fine powder and masked. The product was placed in a pressure sintering mold made of graphite and sintered under a temperature gradient of 600° C./Hr in an argon stream.
焼結晶を以下に示す様にダイヤモンドカッターで切り出
し2曲げ強度、破壊靭性値、破壊仕事等を測定した。そ
の結果を第1表に示す。The fired crystals were cut out using a diamond cutter as shown below, and their bending strength, fracture toughness, fracture work, etc. were measured. The results are shown in Table 1.
尚、測定用棒状サンプルとしては、実施例に係る2D織
繊維織のプリプレグについて、棒状サンプルの長手方向
が−の繊維の配向に対して平行になるように切り出した
ものを使用した(第1図参照)。この場合、シート浸漬
法に基づき各シートを位相角ないしは交叉角θ−456
をもって積層させてなるプリプレグ(r2D45°」で
示す)について、「繊維の配向」とは第−層のものを指
す。As the rod-shaped sample for measurement, a 2D woven fiber woven prepreg according to the example was used, which was cut out so that the longitudinal direction of the rod-shaped sample was parallel to the - fiber orientation (Fig. 1). reference). In this case, each sheet is immersed at a phase angle or intersection angle of θ-456 based on the sheet dipping method.
Regarding the prepreg (indicated by r2D45°) formed by laminating the fibers, the "fiber orientation" refers to the -th layer.
(以下余白)
X−線回折によるマトリックスの結晶相はSil□Af
f、s Oss N8. 3 At!203 ・25
i02であった2、(実施例−2)
まずマトリックス作成用の含浸液を作成する。(Left below) The crystalline phase of the matrix determined by X-ray diffraction is Sil□Af
f,s Oss N8. 3 At! 203 ・25
2, which was i02 (Example-2) First, an impregnating liquid for matrix preparation is prepared.
トルエン(溶剤) 87.4g中にチッソ#@製ポリシ
ラザン(品名NCP−・ 200. トルエン溶液6
5%′8何品) 64.8gを溶解させる。この戒を別
に用意(7た内容積500ccのポリエチレン製ポット
中に入れ。Chisso #@ polysilazane (product name NCP-・200) in 87.4 g of toluene (solvent). Toluene solution 6
5%'8) Dissolve 64.8g. Prepare this precept separately (7) and place it in a polyethylene pot with an internal volume of 500cc.
ムライト粉末(秩父セメント′?J月ρ−20) 98
gを入れる。最後に直径12.5 mmのシリンダー型
高アルミナ質玉石を300g入れ、ポットのフタを閉じ
る。Mullite powder (Chichibu cement'?J month rho-20) 98
Enter g. Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12.5 mm and close the lid of the pot.
ムライト粉末は調合前に70〜80℃で48Hrs以上
乾燥後冷却したものを使用する。The mullite powder used is one that has been dried at 70 to 80° C. for 48 hours or more and then cooled before blending.
以下、実施例1と同様にし、てシート・ワインディング
(S/W)法又はシート浸4責法により繊維強化セラミ
ック複合材を製造し、 曲げ強度、破壊靭性値及び破壊
仕事を測定し、その結果を第2表に示す。Hereinafter, in the same manner as in Example 1, fiber-reinforced ceramic composites were manufactured by the sheet winding (S/W) method or the sheet dipping method, and the bending strength, fracture toughness value, and fracture work were measured. are shown in Table 2.
(以下余白)
X−線回折によるマトリックスの結晶相は5i12 A
e 】s Oas N m・ 3A+!203 ・2
5j02であった替(実施例−3)
マトリックス作成用の含浸液を作成する。ベルヒドロポ
リシラザン溶液(東燃■製、キシレン溶液38.2%含
有品) 152gを内容積500ccのポリエチレン
製ポットに入れ1次にアルミナ粉末(大間化学製タイミ
クロンTMD ) 122.5gを入れる。最後に直
径12.5關のシリンダー型高アルミナ質玉石300g
を入れ、ポットのフタを閉じる。アルミナ粉末は70〜
80℃で48Hrs以上乾燥後冷却したものを使用する
。(Left below) The crystalline phase of the matrix according to X-ray diffraction is 5i12A
e】s Oas N m・3A+! 203 ・2
5j02 (Example-3) An impregnating liquid for matrix preparation was prepared. 152 g of perhydropolysilazane solution (manufactured by Tonen ■, containing 38.2% xylene solution) was placed in a polyethylene pot with an internal volume of 500 cc, and 122.5 g of alumina powder (Taimicron TMD, manufactured by Ohma Chemical Co., Ltd.) was first added. Finally, 300g of cylindrical high alumina boulders with a diameter of 12.5 cm.
and close the lid of the pot. Alumina powder is 70~
Use the product that has been dried at 80° C. for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造し9曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第3表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were manufactured by the S/W) method or the sheet dipping method, and the bending strength, fracture toughness, and fracture work were measured, and the results are shown in Table 3.
(以下余白)
X−線回折によるマトリックスの結晶相は5i12 A
i! 1603. N B・ 3Al!203 ・2
5i02であったO(実施例−4)
まずマトリックス作成用の含浸液を作成する。(Left below) The crystalline phase of the matrix according to X-ray diffraction is 5i12A
i! 1603. NB・3Al! 203 ・2
5i02 (Example-4) First, an impregnating liquid for matrix preparation is prepared.
トルエン(溶剤) 87.4g中にチッソ■製ポリシラ
ザン(品名NCP −200,トルエン溶成65%含有
品> 84.6gを溶解させる。この戒を別に用意した
内容積500ccのポリエチレン製ポット中に入れ。Dissolve 84.6 g of polysilazane manufactured by Chisso ■ (product name NCP-200, containing 65% toluene dissolved) in 87.4 g of toluene (solvent).Put this precept into a separately prepared polyethylene pot with an internal volume of 500 cc. .
アルミナ粉末(大間化学■製タイミクロンTMD )1
22.5gを入れる。最後に直径12.5mmのシリン
ダー型高アルミナ質玉石を300g入れ、ポットのフタ
を閉じる。アルミナ粉末は70〜80℃で48Hrs以
上乾燥後冷却したものを使用する。Alumina powder (Taimicron TMD manufactured by Ohma Chemical Co., Ltd.) 1
Add 22.5g. Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12.5 mm and close the lid of the pot. The alumina powder used is one that has been dried at 70 to 80°C for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
Sew)法又はシート浸漬法により繊維強化セラミック
複合材を製造し9曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第4表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were manufactured by the Sew method or the sheet dipping method, and the bending strength, fracture toughness value, and fracture work were measured, and the results are shown in Table 4.
(以下余白)
X−線回折によるマトリックスの結晶相はSit□Ae
xs Owe Ns + At7203であった。(Left below) The crystalline phase of the matrix determined by X-ray diffraction is Sit□Ae
It was xs Owe Ns + At7203.
(実施例−5)
マトリックス作成用の含浸液を作成する。ベルヒドロポ
リシラザン溶液(東燃■製、キシレン溶液38.2%含
有品) 152.を内容積500ccのポリエチレン
製ポットに入れ1次に窒化珪素粉末(宇部興産製E −
10) 21.5g 、及びアルミナ粉末(大間化学製
タイミクロンTMD ) 93.1gを入れる。最後に
直径12 、5 amのシリンダー型高アルミナ質玉石
300gを入れ、ポットのフタを閉じる。個々のセラミ
ック粉末は70〜80℃で48Hrs以上乾燥後、冷却
したものを使用する。(Example-5) An impregnating liquid for matrix preparation is prepared. Verhydropolysilazane solution (manufactured by Tonen ■, containing 38.2% xylene solution) 152. First, silicon nitride powder (manufactured by Ube Industries, Ltd. E-
10) Add 21.5 g and 93.1 g of alumina powder (Taimicron TMD manufactured by Ohma Chemical). Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12.5 am and close the lid of the pot. Each ceramic powder is used after being dried at 70 to 80°C for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
Sew)法又はシート浸漬法により繊維強化セラミック
複合材を製造し1曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第5表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were produced by the Sew method or the sheet dipping method, and the bending strength, fracture toughness, and work of fracture were measured, and the results are shown in Table 5.
(以下余白)
X−線回折によれば、マトリックスの結晶相はほぼ5i
12Aj! ts Os、N sであった。(Left below) According to X-ray diffraction, the crystalline phase of the matrix is approximately 5i.
12Aj! It was tsOs, Ns.
(実施例−6)
マトリックス作成用の含浸液を作成する。トルエン(溶
剤) 87.4g−中にチッソ■製ポリシラザン(品名
NCP −200,トルエン溶液65%含有品)[i4
.8gを溶解させる。この液を別に用意した内容積50
0ccのポリエチレン製ポット中に入れ、窒化珪素粉末
(宇部興産製E −10) 21.5g及びアルミナ粉
末(大関化学製タイミクロンTMD ) 93.3gを
入れる。(Example-6) An impregnating liquid for matrix preparation is prepared. Toluene (solvent) 87.4g - polysilazane made by Chisso ■ (product name NCP-200, product containing 65% toluene solution) [i4
.. Dissolve 8g. Internal volume of this liquid prepared separately: 50
It is placed in a 0 cc polyethylene pot, and 21.5 g of silicon nitride powder (E-10 manufactured by Ube Industries) and 93.3 g of alumina powder (Taimicron TMD manufactured by Ozeki Chemical) are placed therein.
最後に直径12.5鰭のシリンダー型高アルミナ質玉石
を300g入れ、ポットのフタを閉じる。個々のセラミ
ック粉末は70〜80℃で48Hrs以上乾燥後、冷却
したものを使用する。Finally, add 300g of cylindrical high alumina cobblestones with a diameter of 12.5 fins and close the lid of the pot. Each ceramic powder is used after being dried at 70 to 80°C for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造し2曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第6表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were produced by the S/W method or the sheet dipping method, and the bending strength, fracture toughness, and fracture work were measured, and the results are shown in Table 6.
X−線回折によるマトリックスの結晶相はほぼSi+2
At! ts 08o N sであった〇(実施例−7
)
マトリックス作成用の含浸液を作成する。ベルヒドロポ
リシラザン溶液(東燃■製、キシレン溶液38.2%含
有品) 152gを内容積500ccのポリエチレン
製ポットに入れ2次に窒化珪素粉末(宇部興産製E −
10) 78.5g 、及びアルミナ粉末(大関化学製
タイミクロンTMD ) 24.0gを入れる。最後に
直径12.5++sのシリンダー型高アルミナ質玉石3
00gを入れ、ポットのフタを閉じる。個々のセラミッ
ク粉末は70〜80℃で48Hrs以上乾燥後、冷却し
たものを使用する。The crystalline phase of the matrix determined by X-ray diffraction is approximately Si+2
At! ts 08o Ns〇(Example-7
) Create an impregnating solution for matrix creation. 152 g of perhydropolysilazane solution (manufactured by Tonen ■, containing 38.2% xylene solution) was placed in a polyethylene pot with an internal volume of 500 cc, and then silicon nitride powder (manufactured by Ube Industries, Ltd. E-
10) Add 78.5 g and 24.0 g of alumina powder (Taimicron TMD manufactured by Ozeki Chemical Co., Ltd.). Finally, cylindrical high alumina cobblestone 3 with a diameter of 12.5++s
Add 00g and close the lid of the pot. Each ceramic powder is used after being dried at 70 to 80°C for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造し9曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第7表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were produced by the S/W method or the sheet dipping method, and the bending strength, fracture toughness, and fracture work were measured, and the results are shown in Table 7.
(以下余白)
X−線回折によればマトリックスの結晶相は1700℃
の場合β−サイアロン(z−1)、a−窒化珪素、アル
ミナであった。1800℃の場合はぼβ−サイアロンで
あった。(Left below) According to X-ray diffraction, the crystal phase of the matrix is 1700℃
In this case, β-sialon (z-1), a-silicon nitride, and alumina were used. At 1800°C, it was almost β-sialon.
(実施例−8) マトリックス作成用の含浸液を作成する。(Example-8) Create an impregnating solution for matrix creation.
トルエン(溶剤) 87.4g中に、チッソ■製ポリシ
ラザン(品名NCP −200,)ルエン溶液65%含
有品) B4.Bgを溶解させる。この液を別に用意し
た内容積500ccのポリエチレン製ポットに入れ1次
に、窒化珪素粉末(宇部興産型E −10) 7G、5
g 。Toluene (solvent) 87.4g contains 65% toluene solution of polysilazane manufactured by Chisso (product name NCP-200) B4. Dissolve Bg. This liquid was poured into a separately prepared polyethylene pot with an internal volume of 500 cc, and then silicon nitride powder (Ube Industries type E-10) was added to the pot.
g.
及び、アルミナ粉末(大間化学製タイミクロンTMD
) 24.0gを入れる。最後に直径12.5mmのシ
リンダー型高アルミナ質玉石を300g入れ、ポットの
フタを閉じる。個々のセラミック粉末は70〜80℃で
48Hrs以上乾燥後、冷却したものを使用する。and alumina powder (Taimicron TMD manufactured by Ohma Chemical Co., Ltd.
) Add 24.0g. Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12.5 mm and close the lid of the pot. Each ceramic powder is used after being dried at 70 to 80°C for 48 hours or more and then cooled.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造し1曲げ強度、破壊靭性値及び破壊仕事を
測定し、その結果を第8表に示す。Hereinafter, sheet winding (
Fiber-reinforced ceramic composites were produced by the S/W method or the sheet dipping method, and the bending strength, fracture toughness, and fracture work were measured, and the results are shown in Table 8.
第
表
(以下余白)
X−線回折によればマトリックスの結晶相は1700℃
の場合β−サイアロン(z−1)、α−窒化珪素、アル
ミナであった。1800℃の場合はぼβ−サイアロンで
あった。Table (blank below) According to X-ray diffraction, the crystal phase of the matrix is 1700℃
In this case, β-sialon (z-1), α-silicon nitride, and alumina were used. At 1800°C, it was almost β-sialon.
(実施例−9)
まずマトリックス作成用の含浸液を作る。ベルヒドロポ
リシラザン溶液(東燃■製、キシレン溶液38.2%含
有品) 152gを内容積500ccのポリエチレン
製ポットに入れ9次に窒化珪素粉末(宇部興産■製CC
−0A)98を入れる。最後に直径12.5關のシリン
ダー型高アルミナ質玉石300gを入れ、ポットのフタ
を閉じる。(Example 9) First, an impregnating liquid for matrix preparation is prepared. 152 g of perhydropolysilazane solution (manufactured by Tonen ■, containing 38.2% xylene solution) was placed in a polyethylene pot with an internal volume of 500 cc.
-0A) Insert 98. Finally, add 300 g of cylindrical high alumina cobblestones with a diameter of 12.5 mm and close the lid of the pot.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造しく但し、焼結温度はlB50℃)9曲げ
強度、破壊靭性値及び破壊仕事を測定し、その結果を第
9表に示す。Hereinafter, sheet winding (
A fiber-reinforced ceramic composite material was produced by the S/W method or the sheet dipping method. However, the sintering temperature was 1B50° C.)9 The bending strength, fracture toughness value, and fracture work were measured, and the results are shown in Table 9.
(以下余白)
第 9
表
X−線回折によれば、マトリックスの結晶相はβ−窒化
珪素、α−窒化珪素(一部酸窒化珪素)であった。(The following is a blank space) Table 9 According to X-ray diffraction, the crystal phases of the matrix were β-silicon nitride and α-silicon nitride (partially silicon oxynitride).
(実施例−10)
まずマトリックス作成用の含浸液を作る。トルエン(溶
剤) 87.4g中に、ポリシラザン(チッソ■製NC
P −200トルエン溶液65%含有品> 84.8g
を溶解させる。この液を別に用意した内容積500CC
のポリエチレン製ポットに入れ、窒化珪素粉末(宇部興
産製CC−0A)98を入れる。最後に直径12 、5
amのシリンダー型高アルミナ質玉石を300g入れ
、ポットのフタを閉じる。(Example 10) First, an impregnating liquid for matrix preparation is prepared. Polysilazane (NC made by Chisso) was added to 87.4 g of toluene (solvent).
P-200 containing 65% toluene solution > 84.8g
dissolve. This liquid was prepared separately with an internal volume of 500 cc.
into a polyethylene pot, and silicon nitride powder (CC-0A manufactured by Ube Industries, Ltd.) 98 is added thereto. Finally, diameter 12,5
Add 300g of am's cylindrical high alumina cobblestone and close the lid of the pot.
以下、実施例1と同様にしてシート・ワインディング(
S/W)法又はシート浸漬法により繊維強化セラミック
複合材を製造しく但し、焼結温度は1650℃)1曲げ
強度、破壊靭性値及び破壊仕事を測定し、その結果を第
10表に示す。Hereinafter, sheet winding (
A fiber-reinforced ceramic composite material was produced by the S/W method or the sheet dipping method (sintering temperature was 1650° C.).1 The bending strength, fracture toughness value, and fracture work were measured, and the results are shown in Table 10.
(以下余白)
第 10 表
X−線回折によればマトリックスの結晶相はβ−窒化珪
素、α−窒化珪素(一部酸窒化珪素)であった。(The following is a blank space) Table 10 According to X-ray diffraction, the crystal phases of the matrix were β-silicon nitride and α-silicon nitride (partially silicon oxynitride).
総括としては、2D織繊維織の織物を使用してシート・
ワインディング(S/W)成形法あるいはシート浸漬法
により均質な複合材を製造することが可能である。従っ
て、x−y方向の異方性が全くなく、破壊靭性値、破壊
仕事等が安定した繊維強化セラミック複合材を提供でき
る。As a general summary, sheets and
It is possible to manufacture a homogeneous composite material by a winding (S/W) molding method or a sheet dipping method. Therefore, it is possible to provide a fiber-reinforced ceramic composite material that has no anisotropy in the x-y directions and has stable fracture toughness, fracture work, etc.
特に、シート浸漬法により作成された各プリプレグを位
相角ないしは交叉角θ−45aずつズラして積層するこ
とにより得られる複合材はより方向性が低減され、より
一層破壊靭性等の諸物性が高められたものとなる。In particular, the composite material obtained by stacking each prepreg made by the sheet dipping method with a phase angle or intersection angle of θ-45a has further reduced directionality and improved physical properties such as fracture toughness. It becomes what is given.
[発明の効果] セラミック材料の欠点と言われていた脆性を。[Effect of the invention] Brittleness, which was said to be a drawback of ceramic materials.
平面において等方向に長繊維強化することでモノリシッ
ク素材の破壊靭性値を2〜4倍、破壊仕事を約1000
倍改良でき、かつ、複合材物体の異方性を著しく低下さ
せることができる。By reinforcing long fibers in the same direction in a plane, the fracture toughness value of monolithic material can be increased by 2 to 4 times, and the work of fracture can be increased by approximately 1000.
This can be improved by a factor of two, and the anisotropy of the composite object can be significantly reduced.
これらの事より得られた複合材料の応用用途はレシプロ
エンジン、ガスタービンエンジン、航空宇宙機体材料、
航空宇宙エンジン材料、ブレーキ材料等、従来モノリシ
ック材料では不可能といわれていた分野への応用が可能
となった。Applications of composite materials obtained from these things include reciprocating engines, gas turbine engines, aerospace aircraft materials,
It has become possible to apply it to fields that were previously considered impossible with monolithic materials, such as aerospace engine materials and brake materials.
なお、所定のプレセラミックスポリマーを使用した副次
的効果として、使用する繊維に81が拡散し3例えばカ
ーボン繊維の場合2表面を炭化珪素化することができ、
耐酸化性を向上できる。Incidentally, as a side effect of using a predetermined preceramic polymer, 81 can be diffused into the fibers used, and for example, in the case of carbon fibers, the surface can be made into silicon carbide.
Oxidation resistance can be improved.
第1図は実施例に係る2D織繊維織及び2D 繊維組
織を有する物性測定用サンプルについて、繊維の配向方
向とプリプレグの切り出し方向との関係を示した平面図
。
第2図は本発明に係る製造プロセスの一工程であるシー
ト・ワインディング法(Sへ法)を示した模式図。
第3図は同じく本発明に係る製造プロセスの一工程であ
るシート浸漬法を示した模式図、及び第4図は前記シー
ト浸漬法で得られたプリプレグシートの積層方法を示す
平面図。
を夫々表わす。
出願人 株式会社ノリタケカンパニーリミテド(外1
名)
代理人 弁理士 加 藤 朝 道第1図
(ゆ1定用捧状ナンプルり切出し一層)第2図
21”)
j1蒼の配肉FIG. 1 is a plan view showing the relationship between the fiber orientation direction and the prepreg cut-out direction for a physical property measurement sample having a 2D woven fiber texture and a 2D fiber structure according to an example. FIG. 2 is a schematic diagram showing a sheet winding method (S-winding method), which is one step of the manufacturing process according to the present invention. FIG. 3 is a schematic diagram showing a sheet dipping method, which is one step of the manufacturing process according to the present invention, and FIG. 4 is a plan view showing a method of laminating prepreg sheets obtained by the sheet dipping method. respectively. Applicant Noritake Co., Ltd.
Name) Agent Patent Attorney Kato Asa Michi Figure 1 (Yu1 regular offering letter cut out one layer) Figure 2 21'') j1 Ao's meat arrangement
Claims (6)
単位の合計炭素原子数が7以下のプレセラミックスポリ
マーからなる溶液に,ムライト,アルミナ及び窒化珪素
よりなる群から選択されるセラミック粉末一種以上を配
合した含浸液を調整する工程, 繊維の織物連続シートを含浸液に通過させて二次元配向
の繊維組織を有するプリプレグ積層体を得る工程,及び プリプレグ積層体を不活性ガス又は窒素ガス雰囲気中に
て400〜700℃で一次熱処理し,その後同雰囲気中
にて1500〜1800℃で常圧又は加圧下二次熱処理
する工程, からなることを特徴とする繊維強化セラミック複合材の
製造方法。(1) One or more ceramic powders selected from the group consisting of mullite, alumina, and silicon nitride are added to a solution consisting of a preceramic polymer containing silicon and nitrogen as essential components and having an inorganic material or a total number of carbon atoms in the main repeating unit of 7 or less. A step of adjusting the blended impregnating liquid, a step of passing a continuous sheet of woven fibers through the impregnating liquid to obtain a prepreg laminate having a two-dimensionally oriented fiber structure, and a step of placing the prepreg laminate in an inert gas or nitrogen gas atmosphere. A method for producing a fiber-reinforced ceramic composite material, comprising the steps of: primary heat treatment at 400 to 700°C in the same atmosphere, and then secondary heat treatment at 1500 to 1800°C in the same atmosphere under normal pressure or pressure.
単位の合計炭素原子数が7以下のプレセラミックスポリ
マーからなる溶液に,ムライト,アルミナ及び窒化珪素
よりなる群から選択されるセラミック粉末一種以上を配
合した含浸液を調整する工程, 繊維の織物単位シートを含浸液に浸漬させて二次元配向
の繊維組織を有するプリプレグシートを得る工程, プリプレグシートをその繊維の配向方向を互いに交叉さ
せて順次積層し任意形状のプリプレグ積層体に成形する
工程,及び プリプレグ積層体を不活性ガス又は窒素ガス雰囲気中に
て400〜700℃で一次熱処理し,その後同雰囲気中
にて1500〜1800℃で常圧又は加圧下二次熱処理
する工程, からなることを特徴とする繊維強化セラミツク複合材の
製造方法。(2) One or more ceramic powders selected from the group consisting of mullite, alumina, and silicon nitride are added to a solution consisting of a preceramic polymer containing silicon and nitrogen as essential components and having an inorganic material or a total number of carbon atoms in the main repeating unit of 7 or less. A process of adjusting the blended impregnating liquid, A process of immersing a fabric unit sheet of fibers in an impregnating liquid to obtain a prepreg sheet having a two-dimensionally oriented fiber structure, A process of sequentially stacking the prepreg sheets with their fiber orientation directions crossing each other. A step of forming the prepreg laminate into a prepreg laminate of any shape, and a primary heat treatment of the prepreg laminate at 400 to 700°C in an inert gas or nitrogen gas atmosphere, followed by heating at 1500 to 1800°C in the same atmosphere at normal pressure or A method for producing a fiber-reinforced ceramic composite material, comprising the steps of performing secondary heat treatment under pressure.
向方向の交叉角θが0<θ<90゜である請求項2に記
載された製造方法。(3) The manufacturing method according to claim 2, wherein in the step of forming the prepreg laminate, the intersection angle θ of the orientation direction of the fibers satisfies 0<θ<90°.
、化学式、表等があります▼のペルヒドロポリシラザン
である請求項1又は2に記載された製造方法。(4) The manufacturing method according to claim 1 or 2, wherein the preceramic polymer is a perhydropolysilazane having a main repeating unit ▲ which has a mathematical formula, chemical formula, table, etc. ▼.
、化学式、表等があります▼(Rは炭素原子数7以下の
アルキル 基,アルケニル基,アリール基,シクロアルキル基,ア
ルキルシリル基,アルキルアミノ基又はアルコキシ基を
表わす)のポリシラザンである請求項1又は2に記載さ
れた製造方法。(5) Preceramic polymer is the main repeating unit ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R is an alkyl group with 7 or less carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an alkylsilyl group, an alkylamino group, or The manufacturing method according to claim 1 or 2, wherein the polysilazane is a polysilazane (representing an alkoxy group).
た製造方法。(6) The manufacturing method according to claim 1 or 2, wherein the fibers are carbon fibers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2217057A JPH04104967A (en) | 1990-08-20 | 1990-08-20 | Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepreg |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2217057A JPH04104967A (en) | 1990-08-20 | 1990-08-20 | Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepreg |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04104967A true JPH04104967A (en) | 1992-04-07 |
Family
ID=16698155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2217057A Pending JPH04104967A (en) | 1990-08-20 | 1990-08-20 | Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepreg |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04104967A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011190169A (en) * | 2010-02-18 | 2011-09-29 | Hitachi Chem Co Ltd | Carbon fiber composite material, and break member, structural member for semiconductors, heat-resistant panel and heat sink using the carbon fiber composite material |
-
1990
- 1990-08-20 JP JP2217057A patent/JPH04104967A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011190169A (en) * | 2010-02-18 | 2011-09-29 | Hitachi Chem Co Ltd | Carbon fiber composite material, and break member, structural member for semiconductors, heat-resistant panel and heat sink using the carbon fiber composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chawla et al. | Ceramic matrix composites | |
US6979490B2 (en) | Fiber-reinforced ceramic composite material comprising a matrix with a nanolayered microstructure | |
CA2275130C (en) | Composite material with ceramic matrix and sic fiber reinforcement, method for making same | |
KR100230621B1 (en) | Carbon fiber reinforced silicon nitride based nanocomposite material and method for preparing same | |
US5077243A (en) | Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same | |
US5558907A (en) | Pseudo-porous fiber coating for toughened ceramic composite materials and method of producing same | |
Phillips | Fiber-Reinforced Ceramics | |
Yoshida et al. | Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation | |
Chawla et al. | Ceramic matrix composites | |
JPH1135376A (en) | Silicon-silicon carbide material with silicon concentration gradient and silicon carbide fiber reinforced silicon-silicon carbide composite material with silicon concentration gradient and their production | |
Yang et al. | Interface and mechanical behavior of MoSi2-based composites | |
Yang et al. | Mechanical behaviour of chemical vapour infiltration-processed two-and three-dimensional nicalon/SiC composites | |
Maury et al. | Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers | |
Perevislov et al. | Mechanical properties of SiC-fiber-reinforced reaction-bonded silicon carbide | |
JPH04104967A (en) | Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by lamination of impregnated woven fabric prepreg | |
EP0351113B1 (en) | Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same | |
JPH04104968A (en) | Production of fiber-reinforced composite ceramic material having 2d fiber texture formed by laminating impregnated prepreg having 1d fiber texture | |
JP2898314B2 (en) | Fiber reinforced sialon composite material and its manufacturing method | |
Tanimoto | Continuous-fibre CMC fabrication using pre-impregnated sheets | |
JPH0687657A (en) | Silicon carbide based inorganic fiber reinforced ceramic composite material | |
Bhatt | Silicon carbide fiber-reinforced silicon nitride composites | |
LEHMAN | Ceramic matrix fiber composites | |
Amateau | Ceramic composites | |
JPH0582344B2 (en) | ||
Nejhad et al. | Processing and performance of SiC/Blackglas™ CFCCs using filament winding |