JPH04104434A - Electron gun for in-line type color picture tube - Google Patents

Electron gun for in-line type color picture tube

Info

Publication number
JPH04104434A
JPH04104434A JP22152990A JP22152990A JPH04104434A JP H04104434 A JPH04104434 A JP H04104434A JP 22152990 A JP22152990 A JP 22152990A JP 22152990 A JP22152990 A JP 22152990A JP H04104434 A JPH04104434 A JP H04104434A
Authority
JP
Japan
Prior art keywords
focusing electrode
electron beam
electrode
electron
color picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22152990A
Other languages
Japanese (ja)
Other versions
JP3057733B2 (en
Inventor
Hiroaki Doke
道家 裕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2221529A priority Critical patent/JP3057733B2/en
Publication of JPH04104434A publication Critical patent/JPH04104434A/en
Application granted granted Critical
Publication of JP3057733B2 publication Critical patent/JP3057733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To restrict deflection of convergence to the minimum and improve the focus characteristic by providing protruding edges for compensation of an electric field to concentrate A beam at a tube shaft at specified passage holes for both outer electron beams at specified end surfaces of a first and second focus electrodes. CONSTITUTION:For obtaining predetermined focus characteristics, a dynamic voltage applied to a second focus electrode 15 is increased, where concentration of both outer electron beams 17R, B become insufficient at a main electron lens part between the electrode 15 and a final acceleration electrode 16, but a refraction effect is increased by an inclined potential formed by flat protruding edges 142R, B at outer electron beam passage holes 141R, B of a first focus electrode 14 at a quadruple lens part. The refraction effects of both outer electron beams thus act to offset each other in the main electron lens part and the quadruple lens part for fluctuation of the dynamic voltage, and deflection of convergence can be restricted to the minimum, and thereby deterioration of resolution can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インライン型カラー受像管用電子銃に関し、
特に電子ビームのスボッ1へ形状の劣化を改善し、かつ
、優れたコンバージェンス特性を有するインライン型カ
ラー受像管用電子銃に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an in-line color picture tube electron gun,
In particular, the present invention relates to an in-line type color picture tube electron gun that improves the deterioration of the shape of the electron beam slit 1 and has excellent convergence characteristics.

〔従来の技術〕[Conventional technology]

カラー受像管の解像度を上げるためには、電子ビームの
スポット径を小さくすることおよび3本の電子ビームの
スポットを画面全域に亘って1点に集中させることが必
要であり、このどちらかが劣化しても解像度を悪化させ
画質を劣化させてしまうことになる。
In order to increase the resolution of a color picture tube, it is necessary to reduce the spot diameter of the electron beam and to concentrate the three electron beam spots to one point over the entire screen, and if either of these is the cause of deterioration. Even if you do so, the resolution will deteriorate and the image quality will deteriorate.

3本の電子ビーム放出部を水平方向の同一平面内に並べ
て配置されているインライン型電子銃を備えた一般的な
カラー受像管では、第5図<a)に示すように水平偏向
磁界分布1をビンクツション状に、そして、第5図(b
)に示すように垂直偏向磁界分布2をバレル状に歪ませ
た偏向磁界を組み合せることにより、画面上の任意の点
で3本の電子ビーム1.7B、17G、17Rを集中さ
ぜることがてきる。いわゆるセルフコンバージェンス方
式を採用している。
In a general color picture tube equipped with an in-line electron gun in which three electron beam emitting sections are arranged side by side in the same horizontal plane, the horizontal deflection magnetic field distribution 1 is as shown in Fig. 5<a). 5 (b
), three electron beams 1.7B, 17G, and 17R can be concentrated at any point on the screen by combining the deflection magnetic field in which the vertical deflection magnetic field distribution 2 is distorted into a barrel shape. It's coming. It uses a so-called self-convergence method.

しかしながら、上記のセルフコンバージェンス偏向磁界
の中を電子ビームが通過すると、その磁界歪みの影響を
受は偏向を受けない画面中央では円形状であった電子ビ
ームスポットが、画面周辺部に偏向された場合には、第
6図に示すような横長のビームコア3とビームコア3の
上下に放射上のハロー4を伴なう歪んだ電子ビーム形状
となってしまう。すなわち、画面中央において径小にし
てかつ真円の電子ビームスポットが得られる最適フォー
カス電圧に保つと、画面周辺部では水平方向に比べて垂
直方向ではオーバーフォーカスとなるため、上下方向に
ハローがでやすくなる。従って、画面周辺部の歪んだ電
子ビームは画面中央での円形状電子ビームよりその径が
大きくなるため、画面周辺部での解像度を著しく劣化さ
せてしまう。
However, when an electron beam passes through the above-mentioned self-convergence deflection magnetic field, it is not affected by the distortion of the magnetic field and is not deflected.If the electron beam spot, which was circular at the center of the screen, is deflected to the periphery of the screen. This results in a distorted electron beam shape with a horizontally elongated beam core 3 and radial halos 4 above and below the beam core 3, as shown in FIG. In other words, if the diameter is made small at the center of the screen and the focus voltage is maintained at the optimum level to obtain a perfectly circular electron beam spot, the periphery of the screen will be overfocused in the vertical direction compared to the horizontal direction, resulting in a halo in the vertical direction. It becomes easier. Therefore, the diameter of the distorted electron beam at the periphery of the screen is larger than that of the circular electron beam at the center of the screen, which significantly degrades the resolution at the periphery of the screen.

前述したセルフコンバージェンス偏向磁界による画面周
辺での電子ビーム形状を改善する方法として、種々の提
案がなされている。例えは、特開昭61−99249に
は、第7図に示すように三本の電子ビームを放出する三
個の陰極11R11G11、B、制御電極12、加速電
極13゜第1集束電極24.第2集束電1ji15.最
終加速電極16から成り、第1集束電極24の第2集束
電f!15側の端面には縦長の電子ビーム通過孔241
R,241G、241Bを、そして、第2集束電極15
の第1集束電極24側の端面には横長の電子ビーム通過
孔151を設け、第1集束電極24には一定の第1フオ
ーカス電圧を印加し、第2集束電極15には電子ビーム
の偏向角の増大に伴ない第8図に示すような水平偏向、
垂直偏向に同期した例えばパラボラ波形のダイナミック
電圧を印加することにより、第1集束電極24と第2集
束電極15との間に第9図に示すような四重径レンズ5
を構成し、電子ビーム17に垂直方向には発散の力を加
え、逆に水平方向には集束の力を加えてセルフコンバー
ジェンス磁界による電子ビームの歪みを相殺し、画面全
体で−様な小さなビームスポット径を得る方法が提案さ
れている。
Various proposals have been made as methods for improving the shape of the electron beam around the screen using the self-convergence deflection magnetic field described above. For example, Japanese Patent Application Laid-open No. 61-99249 discloses three cathodes 11R11G11, B, a control electrode 12, an accelerating electrode 13, a first focusing electrode 24, which emit three electron beams, as shown in FIG. Second focused electric current 1ji15. It consists of a final accelerating electrode 16 and a second focusing electrode f! of the first focusing electrode 24. There is a vertically elongated electron beam passage hole 241 on the end face on the 15 side.
R, 241G, 241B, and the second focusing electrode 15
A horizontally elongated electron beam passing hole 151 is provided in the end face on the first focusing electrode 24 side, a constant first focus voltage is applied to the first focusing electrode 24, and a deflection angle of the electron beam is applied to the second focusing electrode 15. With the increase in horizontal deflection as shown in Figure 8,
By applying a dynamic voltage of, for example, a parabolic waveform synchronized with vertical deflection, a quadruple diameter lens 5 as shown in FIG. 9 is formed between the first focusing electrode 24 and the second focusing electrode 15.
A diverging force is applied to the electron beam 17 in the vertical direction, and a converging force is applied in the horizontal direction to offset the distortion of the electron beam caused by the self-convergence magnetic field. A method for obtaining the spot diameter has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

3本の電子ビーム放出部を水平方向の同一平面内に並べ
て配置されているインライン型電子銃を備えた一般的な
カラー受像管では、放出された3本の電子ビームを画面
中央で一点に集中させるため、両外側電子ビームを集束
する主電子レンズを形成する集束電極とそれに対向して
配置される最終加速電極の両外側電子ビーム通過孔にお
いて、最終加速電極側の両外側電子ビーム通過孔の中心
軸を集束電極側の中心軸に対して管軸から離れる外側の
方向に偏心させることにより、非軸対称な主電子レンズ
を形成し両外側電子ビームを管軸方向に屈折させている
In a typical color picture tube equipped with an in-line electron gun, in which three electron beam emitters are arranged side by side in the same horizontal plane, the three emitted electron beams are focused on one point at the center of the screen. In order to By decentering the central axis in an outward direction away from the tube axis with respect to the central axis on the focusing electrode side, a non-axisymmetric main electron lens is formed and both outer electron beams are refracted in the tube axis direction.

ところで前述した第7図に示すようなセルフコンバージ
ェンス偏向磁界による電子ビーム形状の歪みを相殺させ
る特開昭61−99249に記載されているカラー受像
管用電子銃は、最終加速型fi16に対向する第2集束
電極]5にダイナミック電圧を印加して所定のフォーカ
ス特性を得ようとするものであるが、第2集束電極15
に印加する電圧を高くすると、第2集束電極15と最終
加速型′$fi16間の電位差が小さくなるため主電子
レンズの強度は弱くなる。従って、両件側電子ビームを
管軸方向に屈折させる力か弱くなり、両件側電子ビーム
の集中か不足する。このため画面上において、画面中央
では3本の電子ビームのコンバージェンスは合っている
ものの画面中央から離れるに従って分離してしまうパタ
ーンとなる。3本の電子ビームを画面全体に亘って1点
に集中させることかできないときには色スレとなり、解
像度を劣化させるとともに画像品質を極めて劣化させて
しまうことになる。
By the way, the color picture tube electron gun described in Japanese Patent Application Laid-Open No. 61-99249, which cancels out the distortion of the electron beam shape due to the self-convergence deflection magnetic field as shown in FIG. The second focusing electrode 15 is intended to obtain a predetermined focusing characteristic by applying a dynamic voltage to the second focusing electrode 15.
When the voltage applied to the main electron lens is increased, the potential difference between the second focusing electrode 15 and the final acceleration type '$fi 16 becomes smaller, so that the strength of the main electron lens becomes weaker. Therefore, the force for refracting the electron beams on both sides in the direction of the tube axis is weakened, and the concentration of the electron beams on both sides becomes insufficient. Therefore, on the screen, there is a pattern in which the convergence of the three electron beams is consistent at the center of the screen, but they become separated as they move away from the center of the screen. If the three electron beams cannot be focused on one point over the entire screen, color streaks will occur, which will degrade the resolution and extremely degrade the image quality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のインライン型カラー受像管用電子銃は、少なく
とも、管軸方向にほぼ垂直に一直線上に配列さぜな中央
電子ビームと両外側電子ビームを放出する陰極、制御電
極、加速電極、第1集束電極および第2集束電極、最終
加速電極から成り、前記第1.集束電極の第2集束電極
側の端面に縦長の電子ピー13通過孔を設け、そして、
前記第2集束電極の第1集束電極側の端面には前記電子
ビーム通過孔に対向するように横長もしくは円形の電子
ビーム通過孔を設け、前記第1集束電極には一定の集束
電圧を印加し、前記第2集束電極には偏向磁界による電
子ビームの歪みを相殺させるようなダイナミック電圧を
印加して駆動するインライン型カラー受像管用電子銃に
於いて、前記第1集束電極の第2集束電極側の端面およ
び前記第2集束電極の第1集束電極側の端面に設けられ
、かつ、両件側電子ビームか通過する電子ビーム通過孔
のうち、対向する少なくとも一方の電子ビーム通過孔に
は両外側電子ビームを管軸側へ集中さぜるための電界補
正用の突状縁を設けるものである。
The in-line color picture tube electron gun of the present invention comprises at least a cathode for emitting a central electron beam and both outer electron beams arranged in a straight line almost perpendicular to the tube axis direction, a control electrode, an accelerating electrode, and a first focusing electrode. electrode, a second focusing electrode, and a final acceleration electrode; A vertically elongated electron beam 13 passage hole is provided on the end face of the focusing electrode on the second focusing electrode side, and
A horizontally elongated or circular electron beam passing hole is provided on the end surface of the second focusing electrode on the first focusing electrode side so as to face the electron beam passing hole, and a constant focusing voltage is applied to the first focusing electrode. , in an in-line color picture tube electron gun which is driven by applying a dynamic voltage to the second focusing electrode to cancel the distortion of the electron beam due to the deflection magnetic field, the second focusing electrode side of the first focusing electrode; Of the electron beam passing holes provided on the end face of the second focusing electrode and the end face of the second focusing electrode on the first focusing electrode side, and through which the electron beams on both sides pass, at least one opposing electron beam passing hole has both outer sides. A protruding edge for electric field correction is provided to concentrate the electron beam toward the tube axis.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1図
は、本発明のインライン型カラー受像管用電子銃の第1
の実施例の斜視図である。なお、説明の簡略化のため前
出と同一のものには以下の説明では同一の符号を付けて
いる。第1集束電極14の第2集束電極15側の端面に
は縦長の電子ビーム通過孔141R,1,41、G、1
.41Bが設けられており、そのうちの両外側電子ビー
ムが通過する両外側電子ビーム通過孔1 ’1: 1、
 R141Bの管軸から離れる外側には電界補正用の平
板状突状縁142R,142Bか設けられている。
Next, the present invention will be explained with reference to the drawings. FIG. 1 shows the first part of the in-line color picture tube electron gun of the present invention.
1 is a perspective view of an embodiment of the invention. In order to simplify the explanation, the same parts as those described above are given the same reference numerals in the following explanation. The end surface of the first focusing electrode 14 on the second focusing electrode 15 side has vertically elongated electron beam passing holes 141R, 1, 41, G, 1.
.. 41B, of which both outer electron beam passing holes 1'1: 1, through which both outer electron beams pass.
On the outside of R141B away from the tube axis, flat projecting edges 142R and 142B for electric field correction are provided.

第2図は、本実施例において、第1集束電極14には一
定の第1フオーカス電圧か、そして第2集束電極15に
は第1−フォーカス電圧よりも高いダイナミック電圧が
印加されている状態の等電位分布を表わした主要部の水
平方向断面図である。第1集束電極]4の中央電子ビー
ム通過孔]4]Gに形成される等電位線201は水平方
向に関して対称であるのに対し、両外側電子ビーム通過
孔1、4.1、R,141Bに形成される等電位線20
2は、平板状突状縁1、42R,,1、42Bの部分に
おいて第2集束電極15からの高電位の挿入を抑える働
きか強いため、第2図に示すような斜めに傾斜した形状
を成す。このため陰極1.1 Gより放出された中央電
子ビーム17Gは、第1集束電極14の中央電子ビーム
通過孔141Gにおいて直進するのに対し、陰極11R
,IIBから放出された両件側電子ビーム1、7R,1
7Bは、両件側電子ビーム通過孔141R,1,4,1
Bにおいて管軸方向に屈折する力を受(つ集中する。
FIG. 2 shows a state in which, in this embodiment, a constant first focus voltage is applied to the first focusing electrode 14, and a dynamic voltage higher than the first focus voltage is applied to the second focusing electrode 15. FIG. 3 is a horizontal cross-sectional view of the main part showing the equipotential distribution. The equipotential lines 201 formed in the central electron beam passing hole of the first focusing electrode]4]G are symmetrical with respect to the horizontal direction, while the outer electron beam passing holes 1, 4.1, R, 141B are symmetrical in the horizontal direction. Equipotential lines 20 formed in
2 has a strong function of suppressing the insertion of high potential from the second focusing electrode 15 in the portions of the flat protruding edges 1, 42R, , 1, 42B, so the shape is obliquely inclined as shown in FIG. I will do it. Therefore, the central electron beam 17G emitted from the cathode 1.1G travels straight through the central electron beam passage hole 141G of the first focusing electrode 14, whereas the central electron beam 17G emitted from the cathode 1.1G
, both side electron beams 1, 7R, 1 emitted from IIB
7B is the electron beam passage hole 141R, 1, 4, 1 on both sides.
It receives (and concentrates) a bending force in the direction of the tube axis at B.

従って前述のように、第2集束電極15に印加するダイ
ナミック電圧を高くすると、第1集束電極15と最終加
速電極16の間の主電子レンス部では管軸方向への屈折
作用が弱まり両外側電子ビーム17R,1,7Bの集中
が不足となるが、四重様レンス部の第1集束電極14の
両外側電子ビーム通過孔141、R,1、41、Bては
平板状突状縁142R,142Bによって形成される傾
斜電位によって屈折作用か強くなり両外側電子ビーム1
.7R,17Bの集中か増す。このため、ダイナミック
電圧を変動に対し主電子レンス部と四重様レンス部にお
ける両件側電子ビームの屈折作用がお互いに反対方向に
打ち消し合う形で働くため、結局、ダイナミック電圧を
印加した時のコンパ−ジェンスのズレを極めて少なくす
ることができ、解像度を著しく劣化させることもない。
Therefore, as described above, when the dynamic voltage applied to the second focusing electrode 15 is increased, the refraction effect in the tube axis direction is weakened in the main electron lens section between the first focusing electrode 15 and the final accelerating electrode 16, and electrons on both outer sides are weakened. Although the concentration of the beams 17R, 1, and 7B is insufficient, both outer electron beam passing holes 141, R, 1, 41, and B of the first focusing electrode 14 of the quadruple-like lens portion are flat-shaped projecting edges 142R, The refraction effect is strengthened by the gradient potential formed by 142B, and the electron beam 1 on both sides is
.. The concentration of 7R and 17B increases. Therefore, when the dynamic voltage changes, the refraction effects of the electron beams on both sides in the main electron lens section and the quadruple-like lens section cancel each other out in opposite directions, so that when the dynamic voltage is applied, Discrepancies in convergence can be extremely reduced, and resolution does not deteriorate significantly.

第3図(a)は、本発明の第2の実施例を示す四重径レ
ンズ部の斜視図である。前述の第1図に示す第1の実施
例においては第2集積電極15の横長の電子ビーム通過
孔151は三本の電子ビームにまたがる一つの電子ビー
ム通過孔であったが、このように三つの独立した横長の
電子ビーム通過孔151R,151G、151Bとし、
又、第2集束電極15の両件側電子ビーム通過孔141
R,1,41Bのみならず、第2集束電極15の両件側
電子ビーム通過孔151、R,151Bにおいても管軸
方向に屈折する力を受は集中するため、第1図に示す第
1の実施例と同様にダイナミック電圧を印加した時のコ
ンバージェンスのズレを極めて少なくできる。
FIG. 3(a) is a perspective view of a quadruple diameter lens section showing a second embodiment of the present invention. In the first embodiment shown in FIG. 1 described above, the horizontally elongated electron beam passing hole 151 of the second integrated electrode 15 was one electron beam passing hole spanning three electron beams; Two independent horizontally elongated electron beam passing holes 151R, 151G, and 151B,
Further, electron beam passing holes 141 on both sides of the second focusing electrode 15
Since the force of refraction in the tube axis direction is concentrated not only at the electron beam passing holes 151 and R and 151B on both sides of the second focusing electrode 15, but also at the electron beam passing holes 151 and R, 151B on both sides of the second focusing electrode 15, Similarly to the embodiment, the deviation in convergence when a dynamic voltage is applied can be extremely reduced.

又、第3図(a)では電界補正用の突状縁を平板状とし
たが、第4図の第3の実施例に示すように第1集束電極
14の両件側電子ビーム通過孔、141R,1,41B
の突状縁142R142Bにおいて、その高さが管軸に
近づくにつれて低くなるような筒状突状縁とし、第2集
束電極15の両件側電子ビーム通過孔151R,151
、Bの突状縁152R,1、52Bにおいて、その高さ
が管軸から離れるにつれて低くなるような筒状突状縁と
しても同様の効果を得ることができる。
In addition, in FIG. 3(a), the protruding edges for electric field correction are flat, but as shown in the third embodiment of FIG. 4, electron beam passing holes on both sides of the first focusing electrode 14, 141R, 1, 41B
The projecting edge 142R142B is a cylindrical projecting edge whose height decreases as it approaches the tube axis, and the electron beam passing holes 151R, 151 on both sides of the second focusing electrode 15 are
, B, the same effect can be obtained even if the projecting edges 152R, 1, 52B are cylindrical projecting edges whose height decreases as the distance from the tube axis increases.

なお、第3図(a>および第4図に示される第2および
第3の実施例では、電界補正用の突状縁を第1集束電極
側ならびに第2集束電極側の両方に設けたが、どちらか
一方のみの場合においても同様の効果を得られることは
言うまでもない。
In addition, in the second and third embodiments shown in FIG. 3 (a> and FIG. 4), the protruding edges for electric field correction were provided on both the first focusing electrode side and the second focusing electrode side. It goes without saying that the same effect can be obtained even if only one of them is used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、第1集束電極の第2集
束電極側の端面および第2集束電極の第1集束電極側の
端面に設けられ、かつ、両件電子ビームが通過する電子
ビーム通過孔のうち、対向する少なくとも一方の電子ビ
ーム通過孔には両件側電子ビームを管軸へ集中させるた
めの電界補正用の突状縁を設けることによって、第2葉
束電極に印加されるダイナミック電圧の変動によるコン
バージェンスのズレを極めて少なくすることができより
優れたフォーカス特性を得られる効果がある。
As explained above, the present invention provides an electron beam that is provided on the end face of the first focusing electrode on the second focusing electrode side and on the end face of the second focusing electrode on the first focusing electrode side, and through which both electron beams pass. At least one of the opposing electron beam passing holes is provided with a protruding edge for correcting the electric field to concentrate the electron beams on both sides toward the tube axis, so that an electric field is applied to the second leaf bundle electrode. This has the effect of extremely minimizing convergence deviations due to dynamic voltage fluctuations, resulting in better focus characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のインライン型カラー受像管用電子銃の
第1の実施例の斜視図、第2図は第1図に示す第1の実
施例の主要部における水平方向断面図、第3図(a)は
本発明の第2の実施例の四重径レンズ部における斜視図
、第3図(b)は第3図(a>に示す第2の実施例の主
要部における水平方向断面図、第4図は本発明の第3の
実施例の四重径レンズ部における斜視図、第5図(a>
、(b)はインラインセルフコンバージェンス方式の偏
光磁界分布図、第6図は第5図(a)、(b)の偏向磁
界による電子ビームスポットの歪みパターンを示す図、
第7図は従来のインライン型カラー受像管用電子銃を示
す斜視図、第8図は第2集束電極に印加する最適なダイ
ナミック電圧の例を示す図、第9図は四重径レンズを示
す図である。 1・・・水平偏向磁界分布、2・・・垂直偏向磁界分布
、3・・・ビームコア、4・・・ハロー、5・・・四重
径レンズ、IIR,IIG、IIB・・・陰極、12制
御電極、13・加速電極、14.24・・・第1集束電
極、141R,141G、1.41B、241G、24
1B・・・第1集束電極の縦長電子ビーム通過孔、14
2R,142B・・・突状縁、15・第2集束電極、1
51B、1、51R,151G。 151B・・・第2集束電極の横長電子ビーム通過孔、
152R,152B・・・突状縁、16・・最終加速電
極、1.7.17R,17G、17B・・・電子ビーム
、201,202,211,212・・・等電位線。
FIG. 1 is a perspective view of a first embodiment of an in-line color picture tube electron gun of the present invention, FIG. 2 is a horizontal sectional view of the main part of the first embodiment shown in FIG. 1, and FIG. (a) is a perspective view of the quadruple diameter lens portion of the second embodiment of the present invention, and FIG. 3(b) is a horizontal sectional view of the main part of the second embodiment shown in FIG. 3(a). , FIG. 4 is a perspective view of the quadruple diameter lens portion of the third embodiment of the present invention, and FIG. 5 (a>
, (b) is a polarization magnetic field distribution diagram of the in-line self-convergence method, and FIG. 6 is a diagram showing the distortion pattern of the electron beam spot due to the deflection magnetic field in FIGS. 5(a) and (b).
Figure 7 is a perspective view of a conventional in-line color picture tube electron gun, Figure 8 is an example of an optimal dynamic voltage applied to the second focusing electrode, and Figure 9 is a diagram of a quadruple diameter lens. It is. 1... Horizontal deflection magnetic field distribution, 2... Vertical deflection magnetic field distribution, 3... Beam core, 4... Halo, 5... Quadruple diameter lens, IIR, IIG, IIB... Cathode, 12 Control electrode, 13・Acceleration electrode, 14.24...First focusing electrode, 141R, 141G, 1.41B, 241G, 24
1B...Vertical electron beam passing hole of first focusing electrode, 14
2R, 142B...Protruding edge, 15/Second focusing electrode, 1
51B, 1, 51R, 151G. 151B...second focusing electrode horizontally elongated electron beam passage hole;
152R, 152B... projecting edge, 16... final acceleration electrode, 1.7.17R, 17G, 17B... electron beam, 201, 202, 211, 212... equipotential line.

Claims (1)

【特許請求の範囲】 1、少なくとも、管軸方向にほぼ垂直に一直線上に配列
された中央電子ビームと両外側電子ビームを放出する陰
極、制御電極、加速電極、第1集束電極および第2集束
電極、最終加速電極を有し、前記第1集束電極の第2集
束電極側の端面に縦長の電子ビーム通過孔を設け、そし
て前記第2集束電極の第1集束電極側の端面には前記電
子ビーム通過孔に対向するように横長もしくは円形の電
子ビーム通過孔を設け、前記第1集束電極には一定の集
束電圧を印加し、前記第2集束電極には偏向磁界による
電子ビームの歪みを相殺させるようなダイナミック電圧
を印加して駆動するインライン型カラー受像管用電子銃
において、前記第1集束電極の第2集束電極側の端面の
両外側電子ビームが通過する電子ビーム通過孔には両外
側電子ビームを管軸側へ集中させるための電界補正用の
突状縁が設けられていることを特徴とするインライン型
カラー受像管用電子銃。 2、第2集束電極の第1集束電極側の端面の両外側電子
ビームが通過する電子ビーム通過孔にも両外側電子ビー
ムを管軸側へ集中させるための電界補正用の突状縁が設
けられている請求項1記載のインライン型カラー受像管
用電子銃。 3、電界補正用の突状縁は平板状である請求項1又は2
記載のインライン型カラー受像管用電子銃。 4、電界補正用の突状縁は筒状である請求項1又は2記
載のインライン型カラー受像管用電子銃。
[Claims] 1. At least a central electron beam and a cathode for emitting both outer electron beams arranged in a straight line substantially perpendicular to the tube axis direction, a control electrode, an accelerating electrode, a first focusing electrode, and a second focusing electrode. a final acceleration electrode, a vertically elongated electron beam passage hole is provided on the end surface of the first focusing electrode on the second focusing electrode side, and the electron beam passing hole is provided on the end surface of the second focusing electrode on the first focusing electrode side. A horizontally elongated or circular electron beam passing hole is provided opposite to the beam passing hole, a constant focusing voltage is applied to the first focusing electrode, and the distortion of the electron beam due to the deflection magnetic field is canceled out to the second focusing electrode. In an in-line color picture tube electron gun that is driven by applying a dynamic voltage that causes An in-line color picture tube electron gun characterized by being provided with a protruding edge for electric field correction to concentrate the beam toward the tube axis. 2. The electron beam passing hole through which both outer electron beams pass through the end face of the second focusing electrode on the first focusing electrode side is also provided with a protruding edge for electric field correction to concentrate the outer electron beams toward the tube axis side. 2. The in-line color picture tube electron gun according to claim 1, wherein: 3. Claim 1 or 2, wherein the protruding edge for electric field correction has a flat plate shape.
The described in-line color picture tube electron gun. 4. The in-line color picture tube electron gun according to claim 1 or 2, wherein the projecting edge for electric field correction is cylindrical.
JP2221529A 1990-08-23 1990-08-23 Electron gun for in-line type color picture tube Expired - Lifetime JP3057733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221529A JP3057733B2 (en) 1990-08-23 1990-08-23 Electron gun for in-line type color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221529A JP3057733B2 (en) 1990-08-23 1990-08-23 Electron gun for in-line type color picture tube

Publications (2)

Publication Number Publication Date
JPH04104434A true JPH04104434A (en) 1992-04-06
JP3057733B2 JP3057733B2 (en) 2000-07-04

Family

ID=16768148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221529A Expired - Lifetime JP3057733B2 (en) 1990-08-23 1990-08-23 Electron gun for in-line type color picture tube

Country Status (1)

Country Link
JP (1) JP3057733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837487A2 (en) * 1996-10-21 1998-04-22 Lg Electronics Inc. Focusing electrode in electron gun for color cathode ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837487A2 (en) * 1996-10-21 1998-04-22 Lg Electronics Inc. Focusing electrode in electron gun for color cathode ray tube
EP0837487A3 (en) * 1996-10-21 1998-05-27 Lg Electronics Inc. Focusing electrode in electron gun for color cathode ray tube

Also Published As

Publication number Publication date
JP3057733B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JPH0429178B2 (en)
KR940010986B1 (en) Electron gun for c-crt
US6456017B1 (en) Electron gun for cathode ray tube
JP2567828Y2 (en) In-line type electron gun
KR900003904B1 (en) Electron gun
JPH04104434A (en) Electron gun for in-line type color picture tube
JPH01236554A (en) Color image receiving tube
JP3057730B2 (en) Electron gun for in-line type color picture tube
JPH05325825A (en) Electron gun for color cathode-ray tube
US6555975B2 (en) Cathode-ray tube apparatus
JPH0574367A (en) Electron gun for inline type color picture tube
JPH04324229A (en) Electron gun for in-line type color picture tube
JP2743400B2 (en) Electron gun for color picture tube
JPH02106855A (en) Electron gun for color picture tube
JPS6381737A (en) In-line type electron gun
JP3157855B2 (en) Electron gun for color picture tube
KR100232156B1 (en) Electron gun for color crt
JP2636521B2 (en) Electron gun for in-line type color picture tube
KR100829734B1 (en) Electrodes and color cathode ray tube utilizing the same
JPS6065433A (en) Cathode-ray tube electron gun electrode body structure
KR910001570Y1 (en) Electron gun of inline type crt
JP3057729B2 (en) Electron gun for color picture tube
JPH0821339B2 (en) Electron gun for color picture tube
JP2962893B2 (en) In-line type electron gun
JPH0410693B2 (en)