JPH0410349A - X-ray detector - Google Patents

X-ray detector

Info

Publication number
JPH0410349A
JPH0410349A JP10882890A JP10882890A JPH0410349A JP H0410349 A JPH0410349 A JP H0410349A JP 10882890 A JP10882890 A JP 10882890A JP 10882890 A JP10882890 A JP 10882890A JP H0410349 A JPH0410349 A JP H0410349A
Authority
JP
Japan
Prior art keywords
pressure
ray
ray detector
gas
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10882890A
Other languages
Japanese (ja)
Other versions
JP2938134B2 (en
Inventor
Kiyoshi Ogata
潔 尾形
Asao Nakano
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10882890A priority Critical patent/JP2938134B2/en
Publication of JPH0410349A publication Critical patent/JPH0410349A/en
Application granted granted Critical
Publication of JP2938134B2 publication Critical patent/JP2938134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To enhance X-ray detection efficiency by arbitrarily setting a pressure of operating gas of an X-ray detector by means of a regulating mechanism. CONSTITUTION:Operating gas incorporating, in a predetermined ratio, respective gas components from a plurality of gas bombs 22 with pressure reducing valves by means of a gas mixer 21 is introduced in an X-ray detector 2 via a pipe 31, to be exhausted through another pipe 32 by means of a rotary pump 20. A pressure of the operating gas is controlled by a pressure regulator 18 comprising a vacuum gauge, a variable leak valve and a controller. The pressure regulator 18 PID(proportional plus integral plus derivative)-controls the opening/closing of the variable leak valve of the pressure regulator 18 in accordance with a difference between a set pressure value and a measured pressure, to regulate conductance with respect to the operating gas, to thus supply the operating gas into an X-ray detector 2 while keeping it at a predetermined gas pressure. Therefore, setting of the pressure of the operating gas enables measuring accuracy of the X-ray detector 2 to be enhanced.

Description

【発明の詳細な説明】 口産業上の利用分野] 本発明は超高真空雰囲気でX線の計数を行なうだめのガ
ス入りX線検出器に係り、とくにシンクロトロン放射光
の軟X線の計数に好適な超高真空用X線検出器に関する
[Detailed Description of the Invention] Field of Industrial Application] The present invention relates to a gas-filled X-ray detector for counting X-rays in an ultra-high vacuum atmosphere, and particularly for counting soft X-rays from synchrotron radiation. The present invention relates to an ultra-high vacuum X-ray detector suitable for use in ultra-high vacuum applications.

[従来の技術] 従来のガス入りX線計数器は例えばG、F。[Conventional technology] Conventional gas-filled X-ray counters include, for example, G and F.

Knoll著(木材、阪井訳)″X線計測ハンドブック
”、日刊工業新聞社(1982)123頁〜190頁に
その動作原理が記述されているように、X線を試料に当
て、原理的に電離箱として動作する放射線検出器により
X線の透過率を検出したり、試料からの全反射xgを検
出したり、試料によるX線の回折、散乱等を検出、ある
いは単にX線源の強度を測定したりするようになってい
た。
As the principle of operation is described in "X-ray Measurement Handbook" by Robert Knoll (translated by Moku Moku and Sakai), Nikkan Kogyo Shimbunsha (1982), pp. 123-190, X-rays are applied to the sample, and in principle ionization occurs. A radiation detector operating as a box detects the transmittance of X-rays, detects the total reflection xg from the sample, detects the diffraction and scattering of X-rays by the sample, or simply measures the intensity of the X-ray source. I started doing things like that.

しかし、上記放射線検出器は電離箱、比例計数管、ガイ
ガーミューラー計数管等に分類されるX4!による電離
を測定してXIIA計数を行う装置であり、動作ガスを
封止した容器内に低X線吸収の膜よりなるX線透過窓を
介してX線を導入し、上記X線による動作ガスの電離を
測定するようになっているため、xi透過窓からの動作
ガスのリークにより上記シンクロトロン放射光の軟xi
の計数に必要なな超高真空が得られないという問題があ
った。
However, the radiation detectors mentioned above are classified into ionization chambers, proportional counters, Geiger-Mueller counters, etc.X4! This is a device that performs XIIA counting by measuring the ionization caused by the X-rays. Since the ionization of the synchrotron radiation is measured, the leakage of the operating gas from the xi transmission window causes the soft xi of the synchrotron radiation to be measured.
The problem was that it was not possible to obtain the ultra-high vacuum required for counting.

上記動作ガスのリークを低減するため、特開昭61−0
84584号公報においては、上記xi透過窓(高分子
有機フィルムの)を備えた放射線検出器をベリリウム薄
板のX線透過窓を有する真空容器内に収納してその真空
度を外部の超高真空度と上記の放射線検出器内の動作ガ
ス圧との中間値にし、上記に高分子有機フィルムとベリ
リウム薄板のそれぞれに作用する圧力差を低減するよう
にし、さらに高分子有機フィルムを介してリークする上
記動作ガス成分の排気を独自に制御するようにして、上
記超高真空雰囲気への動作ガスのリークを防止するよう
にしていた。
In order to reduce the leakage of the operating gas mentioned above, JP-A-61-0
In Publication No. 84584, a radiation detector equipped with the above-mentioned xi transmission window (made of a polymeric organic film) is housed in a vacuum container having an X-ray transmission window made of a thin beryllium plate, and the degree of vacuum is controlled by an external ultra-high vacuum. and the operating gas pressure in the radiation detector above to reduce the pressure difference acting on each of the polymeric organic film and the beryllium thin plate, and further reduce the pressure difference above that acts on the polymeric organic film and the beryllium thin plate, and further reduce the pressure difference above that leaks through the polymeric organic film. The exhaust of the working gas component is independently controlled to prevent the working gas from leaking into the ultra-high vacuum atmosphere.

[発明が解決しようとする課題] 上記従来技術では高精度X線計数において、測定するX
線の光子エネルギーに応じて上記動作ガスの圧力を最適
値に調整することが出来なかつため、X線計数効率を高
め、測定を高精度化することができないという問題があ
った。
[Problem to be solved by the invention] In the above conventional technology, in high-precision X-ray counting,
Since it is not possible to adjust the pressure of the working gas to an optimum value according to the photon energy of the rays, there is a problem in that it is not possible to increase the X-ray counting efficiency and make the measurement highly accurate.

さらに、上記従来技術では動作ガスの圧力を1ズ圧とし
ていたため、X線透過窓材には約1気圧の圧力差に耐え
られる膜材を用いる必要があり、例えば7.6μm厚の
カプトン膜等が用いられていた。しかし、本発明が目的
とする5keV以下の低エネルギー領域のX線光子エネ
ルギーの測定においては、上記膜厚によるxi吸収が過
大なため放射線検出器出力のS/N (信号対雑音比)
が低下して良好な計数精度が得られないという問題があ
った。
Furthermore, in the conventional technology described above, the pressure of the operating gas is 1 s pressure, so it is necessary to use a membrane material that can withstand a pressure difference of about 1 atm for the X-ray transparent window material, for example, a 7.6 μm thick Kapton membrane. etc. were used. However, in the measurement of X-ray photon energy in the low energy region of 5 keV or less, which is the objective of the present invention, the xi absorption due to the film thickness is excessive, so the S/N (signal-to-noise ratio) of the radiation detector output
There was a problem that good counting accuracy could not be obtained due to a decrease in the number of counts.

本発明の目的は上記動作ガスの圧力を、被測定X線エネ
ルギーに応じて調整できるようにして、xi透過窓材の
膜厚を薄めてその透過損失を低減するようにすることに
ある6 さらに本発明の目的は、上記動作ガス圧力の調整により
、入射X線用検出器に対しては所要のX線検出効率を確
保しながら透過損失を低減することの出来ろようにし、
試料からの出射X線用検出器に対しては検出効率を高め
るようにすることにある。
An object of the present invention is to make it possible to adjust the pressure of the working gas according to the X-ray energy to be measured, and to thin the film thickness of the xi transmission window material and reduce its transmission loss6. An object of the present invention is to make it possible to reduce transmission loss while ensuring the required X-ray detection efficiency for the incident X-ray detector by adjusting the operating gas pressure,
The object of the present invention is to improve the detection efficiency of a detector for X-rays emitted from a sample.

以上を総合して本発明は、5keV以下の低エネルギー
領域のX線光子エネルギーを測定することの出来るX線
検出装置を提供することを目的とする。
In summary, it is an object of the present invention to provide an X-ray detection device capable of measuring X-ray photon energy in a low energy region of 5 keV or less.

[課題を解決するための手段] 上記目的を達成するため本発明においては、上記X線検
出器内に導入する動作ガスの圧力を制御する圧力調整器
を設けるようにする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a pressure regulator that controls the pressure of the working gas introduced into the X-ray detector.

さらに、上記X線検出器を真空度の制御可能な真空容器
部内に収容し、上記真空容器部を上記超高真空雰囲気の
超高真空室内に設置するようにし、上記真空容器部内の
圧力を上記超高真空室の圧力より低め、さらに上記X線
検出器内の圧力を上記真空容器部内の圧力より低めるよ
うにする。
Further, the X-ray detector is housed in a vacuum container part whose degree of vacuum can be controlled, and the vacuum container part is installed in an ultra-high vacuum chamber in the ultra-high vacuum atmosphere, and the pressure inside the vacuum container part is adjusted to the above-mentioned level. The pressure is lower than that of the ultra-high vacuum chamber, and the pressure inside the X-ray detector is set lower than the pressure inside the vacuum container.

さらに、上記動作ガスを異種ガスを任意の組成に混合す
るガス混合装置により生成するようにする。
Furthermore, the working gas is generated by a gas mixing device that mixes different types of gases to an arbitrary composition.

さらに、上記X線検出器と上記真空容器部と上記超高真
空雰囲気部間を弁により相互に連結可能なようにする。
Further, the X-ray detector, the vacuum container section, and the ultra-high vacuum atmosphere section can be interconnected by a valve.

[作用] 上記X線計数器において動作ガス組成及び圧力調整機構
を用いることにより、X線計数器の計数効率及びX線透
過率を、測定するX線のエネルギーに応じて最適の値に
調節することが出来る。
[Function] By using the operating gas composition and pressure adjustment mechanism in the X-ray counter, the counting efficiency and X-ray transmittance of the X-ray counter are adjusted to optimal values according to the energy of the X-rays to be measured. I can do it.

また、5keV以下の低エネルギー領域を測定する場合
には、動作ガスの圧力を大気圧より小さくし、計数器部
のX線透過窓内外の圧力差を減少させる。これにより1
機械的強度は小さいが低エネルギーのX線の吸収が小さ
い薄膜をxi透過窓として使用可能となる。
Furthermore, when measuring a low energy region of 5 keV or less, the pressure of the operating gas is made lower than atmospheric pressure to reduce the pressure difference between the inside and outside of the X-ray transmission window of the counter section. This results in 1
A thin film with low mechanical strength but low absorption of low energy X-rays can be used as the xi transmission window.

また計数器部、真空容器部及び超高真空雰囲気の測定室
を連結する弁を設けたことにより、計数器部、真空容器
部または超高真空雰囲気の測定室を大気圧にリークする
際のX線透過窓の破損を防止することができる。
In addition, by providing a valve that connects the counter section, vacuum container section, and measurement chamber with an ultra-high vacuum atmosphere, the X Damage to the line-transmitting window can be prevented.

[実施例] まず、本発明の効果を裏づける理論的根拠に付き説明し
、次いでその具体的実施例に付き説明する。
[Examples] First, the theoretical basis supporting the effects of the present invention will be explained, and then specific examples thereof will be explained.

第2図(a)、(b)はX線計測の方法を原理的に説明
する図である。
FIGS. 2(a) and 2(b) are diagrams explaining the principle of the X-ray measurement method.

第2図(a)は試料100のX線吸収を測定する場合で
、検出器21により入射X線強度を測定し、検出器22
により試料100を透過するX線強度を測定するように
する。
FIG. 2(a) shows a case where the X-ray absorption of the sample 100 is measured. The incident X-ray intensity is measured by the detector 21, and the detector 22
The intensity of X-rays transmitted through the sample 100 is measured using the following method.

第2図(b)は試料100のX線反射率あるいは回折、
散乱強度等を測定する場合で、検出器21により入射X
線強度を測定し、検出器22により試料100から反射
あるいは回折、散乱するX線強度を測定する。
Figure 2(b) shows the X-ray reflectance or diffraction of sample 100,
When measuring scattering intensity etc., the detector 21 detects the incident X
The X-ray intensity reflected, diffracted, or scattered from the sample 100 is measured by the detector 22.

上記第2図(a)、(b)において測定精度を高めるに
は、第1に検出器21のX線透過率を高めて試料100
に照射されるX線量の減衰を防止し、第2に検出器22
のX線検出率を高めるようにする必要がある。
In order to improve the measurement accuracy in FIGS. 2(a) and 2(b) above, the first step is to increase the X-ray transmittance of the detector 21 to
This prevents attenuation of the X-ray dose irradiated to the detector 22.
It is necessary to increase the X-ray detection rate.

検出器の上記X線透過率やX線検出率等は以下に説明す
るように検出器内の動作ガスの圧力に応じて変化するの
で、上記要件を満たすには上記動作ガス圧力を最適値に
設定する必要がある。
The above-mentioned X-ray transmittance and X-ray detection rate of the detector change depending on the pressure of the operating gas inside the detector, as explained below, so in order to meet the above requirements, the above-mentioned operating gas pressure must be set to the optimum value. Must be set.

しかしながら、従来のXl&検出器では上記動作ガス圧
力は略一定値に固定されていたので。
However, in the conventional Xl&detector, the operating gas pressure is fixed at a substantially constant value.

測定精度にも自ずと限界があったのである。There were naturally limits to measurement accuracy.

上記X、II検出器は計測目的に応じて種々の形式のも
のが使用される。
Various types of X and II detectors are used depending on the purpose of measurement.

第3図、第4図は上記XMc検出器の一例の断面図であ
る。
FIGS. 3 and 4 are cross-sectional views of an example of the XMc detector.

第3図において、XI!はX@@過窓61より入射され
同62より外部に出射する。各X線透過窓61.62は
2.5μm厚程度の有機高分子フィルムが用いられ、エ
ポキシ樹脂によりハウジング25に接着しオーリング2
6を介して検出器部2に取付けら九でいる。ハウジング
25内にはパイプ31.32により動作ガスが給排気さ
れ外部への動作ガスの漏れが無いように機密性が保たれ
る。電極7,8間には高電圧が印加され、X線の通路に
沿って電離されたイオンを捕集する。なお、24は電極
端部の電場の乱れを補償する補償電極であり、これによ
り検出精度が向上する。
In Figure 3, XI! is incident through the X@@ pass window 61 and exits to the outside through the same window 62. Each X-ray transmission window 61, 62 is made of an organic polymer film with a thickness of about 2.5 μm, and is bonded to the housing 25 with epoxy resin.
It is attached to the detector section 2 via the connector 6. Working gas is supplied and exhausted into the housing 25 through pipes 31 and 32, and airtightness is maintained so that there is no leakage of the working gas to the outside. A high voltage is applied between electrodes 7 and 8 to collect ions ionized along the path of the X-rays. Note that 24 is a compensation electrode that compensates for disturbances in the electric field at the end of the electrode, which improves detection accuracy.

第4図は比例計数管、GM管等の高電界が必要なガス入
りX#!計数器用の円筒電極型計数器部の断面図である
。円筒型電極27が動作ガス容器を兼ね、アルミニウム
を蒸着した2、5μm厚のマイラー膜がXIIIA透過
窓61と62として第2図と同様にして取付けられる。
Figure 4 shows a gas-filled X# that requires a high electric field such as a proportional counter tube or GM tube! FIG. 3 is a cross-sectional view of a cylindrical electrode type counter section for a counter. The cylindrical electrode 27 also serves as a working gas container, and a 2.5 μm thick Mylar film coated with aluminum is attached as XIIIA transmission windows 61 and 62 in the same manner as shown in FIG.

高電圧は円筒型電極27と中心部に張られた直径8μm
程度のワイヤー陽極29間に印加される。
The high voltage is connected to a cylindrical electrode 27 with a diameter of 8 μm in the center.
A voltage is applied between the wire anodes 29 of approximately

上記X線検出器において、Ioを入射X4I強度、Tを
X@検検器器透過した出射X線強度とすると、X#!透
過$1/I、は理論的に。
In the above X-ray detector, if Io is the incident X4I intensity and T is the emitted X-ray intensity that passed through the X@detector, then X#! Transmission $1/I is theoretical.

1 / Io=exp(−tt A−tt wW)  
    (1)と表される。ただし、Aは動作ガス中の
Xg光路の長さ(am)、μmはXR透過窓の線吸収係
数(cm−” )、WはX線透過窓の厚さ(’cm)で
ある。
1/Io=exp(-tt A-tt wW)
It is expressed as (1). Here, A is the length of the Xg optical path in the working gas (am), μm is the linear absorption coefficient of the XR transmission window (cm-''), and W is the thickness of the X-ray transmission window (cm).

一方、上記X線検出器の検出効率は、μを動作ガスのX
線吸収係数(cm−1)、Lを動作ガス中の電極の長さ
(cm)とすると理論的に1−exp(−μL)   
    (2)に比例する。
On the other hand, the detection efficiency of the above X-ray detector is expressed as μ
Linear absorption coefficient (cm-1), where L is the length of the electrode in the working gas (cm), theoretically 1-exp (-μL)
It is proportional to (2).

式(1)よりxi透過率は動作ガスのX線吸収係数μに
逆比例し、式(2)より、検出効率は上記μに比例する
ことがわかる。
Equation (1) shows that the xi transmittance is inversely proportional to the X-ray absorption coefficient μ of the working gas, and Equation (2) shows that the detection efficiency is proportional to the above μ.

したがって、例えば第2図(a)、(b)においては、
検出器21の動作ガス圧力は出来るだけ低め、検出器2
2の動作ガス圧力は出来るだけ高めるようにしたい。し
かし検出器21では、動作ガス圧力を低めると透過率は
向上するものの入射X線の検出感度が低下するので、そ
の動作ガス圧力は両者の兼ね合いから決定する必要があ
る。
Therefore, for example in FIGS. 2(a) and (b),
The operating gas pressure of detector 21 is as low as possible;
I want to make the operating gas pressure in step 2 as high as possible. However, in the detector 21, when the operating gas pressure is lowered, although the transmittance is improved, the detection sensitivity of incident X-rays is lowered, so the operating gas pressure must be determined based on the balance between the two.

通常、上記検出器21の透過率は約90%が適当である
Normally, the appropriate transmittance of the detector 21 is about 90%.

また、検出器22の場合は動作ガス圧力を高める程良い
ように思われるが、実際には例えば第2図(a)に示す
ように、電極7.8の端部と各X線透過窓61.61間
の透過損失が存在し、これは上記動作ガス圧力に比例し
て増加する。
In the case of the detector 22, it seems better to increase the operating gas pressure, but in reality, as shown in FIG. There is a permeation loss between .61 and .61, which increases proportionally with the operating gas pressure.

したがって、実際には式(2)は (電極端部と各透過窓間の透過率)X式(2)のように
修正する必要がある。
Therefore, in reality, equation (2) needs to be modified to (transmittance between the electrode end and each transmission window)X equation (2).

第5図は検出器22における上記動作ガスと検出効率と
の関係の測定データの一例である。
FIG. 5 shows an example of measurement data of the relationship between the above-mentioned operating gas and detection efficiency in the detector 22.

なお、動作ガスにはNe、電極7は70.5mm、電極
8は80.5mm、透過窓61.61には2.5μmの
マイラー膜を用い、各電極端部と対応する透過窓間の距
離は15mmである。
The working gas is Ne, the electrode 7 is 70.5 mm, the electrode 8 is 80.5 mm, and the transmission window 61.61 is a 2.5 μm mylar film, and the distance between the end of each electrode and the corresponding transmission window is is 15 mm.

第5図のCは入射X線のエネルギが2keVの場合であ
り、明らかに動作ガス圧が10kPaにて検出効率が最
大になりことがわかる。この最大点では、動作ガス圧の
増加による検出効率の増加と、上記透過率の低下とが丁
度拮抗しているのである。
C in FIG. 5 is a case where the energy of incident X-rays is 2 keV, and it is clearly seen that the detection efficiency is maximized at an operating gas pressure of 10 kPa. At this maximum point, the increase in detection efficiency due to the increase in working gas pressure is exactly balanced against the decrease in transmittance.

同図のDは入射X!aのエネルギが3kVの場合であり
、検出効率の最大点は動作ガス圧力の高い方に移動して
いる。
D in the same figure is incident X! This is a case where the energy of a is 3 kV, and the maximum point of detection efficiency has moved to the side where the operating gas pressure is higher.

これより測定するX線エネルギーに応じて動作ガス圧を
最適に設定する必要があることがわかる。さらに、上記
ガス圧は動作ガスの組成に応じても調整する必要がある
This shows that it is necessary to optimally set the operating gas pressure according to the X-ray energy to be measured. Furthermore, the gas pressure needs to be adjusted depending on the composition of the working gas.

第1図は上記した考え方に従って、)l検出器の動作ガ
ス圧力を任意に設定できるようにした本発明の超高真空
用X線検出器実施例の構成図であり、第2図(a)、(
b)に示した検出器21.22等の一方のみを収容した
状態を示している。
Figure 1 is a block diagram of an embodiment of the ultra-high vacuum X-ray detector of the present invention in which the operating gas pressure of the )l detector can be arbitrarily set according to the above-mentioned concept, and Figure 2 (a) ,(
A state in which only one of the detectors 21, 22, etc. shown in b) is accommodated is shown.

入射X線1は同図中央左側より矢印の向きにX線検出器
2内に入りその通路に沿って動作ガスを電離する。この
電離により発生したイオン対は平行平板型の電極7と8
間の電場に従って移動し上記電極に捕集される。
Incident X-rays 1 enter the X-ray detector 2 from the left side of the center of the figure in the direction of the arrow and ionize the working gas along the path. The ion pairs generated by this ionization are the parallel plate type electrodes 7 and 8.
The particles move according to the electric field between them and are collected by the electrodes.

X線検出器2は真空容器部3内に収容され、また、真空
容器部3は10−’Pa程度の超高真空雰囲気4内に置
かれろ。
The X-ray detector 2 is housed in a vacuum container section 3, and the vacuum container section 3 is placed in an ultra-high vacuum atmosphere 4 of about 10-'Pa.

12.13はそれぞれ超高真空雰囲気4生成用のターボ
分子ポンプ、およびロータリポンプである。
12 and 13 are a turbo molecular pump and a rotary pump for generating ultra-high vacuum atmosphere 4, respectively.

真空容器部3はX線検出器2内の動作ガス圧力と超高真
空雰囲気4間の過大な圧力差を緩衝するために設けられ
た特開昭61−084584号公報記載の装置である。
The vacuum container section 3 is a device described in Japanese Patent Laid-Open No. 61-084584, which is provided to buffer an excessive pressure difference between the working gas pressure in the X-ray detector 2 and the ultra-high vacuum atmosphere 4.

真空容器部3はロータリポンプ15およびターボ分子ポ
ンプ14により所定の圧力に排気され、X線透過窓5を
備えている。
The vacuum container section 3 is evacuated to a predetermined pressure by a rotary pump 15 and a turbomolecular pump 14, and is equipped with an X-ray transmission window 5.

xi検出器2 (7) X1ii過窓61.62 ニハ
2 。
xi detector 2 (7) X1ii pass window 61.62 niha 2.

5μm厚のマイラー膜が用いられハウジング25にエポ
キシ樹脂により接着されている。
A Mylar film with a thickness of 5 μm is used and is bonded to the housing 25 with epoxy resin.

X線検出器2にはガス混合装置21により複数の減圧弁
付きガスボンベ22の各ガス成分を所定の組成に混合し
た動作ガスがパイプ31を介して導入され、パイプ32
により排気される。
A working gas in which each gas component of a plurality of gas cylinders 22 with pressure reducing valves is mixed to a predetermined composition by a gas mixing device 21 is introduced into the X-ray detector 2 via a pipe 31 .
Exhausted by.

20は排気用のロータリーポンプである。20 is a rotary pump for exhaust.

上記動作ガスの圧力は真空計、可変リークバルブ、制御
装置等を含む真空調整器18により制御される。真空調
整器18は設定圧力値と計測圧力の差に応じて上記真空
調整器の可変リークバルブの開閉をPID (比例積分
微分)制御して動作ガスに対するコンダクタンスを調整
し、動作ガスを所定のガス圧に保って計数器部2内に供
給する。
The pressure of the working gas is controlled by a vacuum regulator 18 that includes a vacuum gauge, a variable leak valve, a control device, and the like. The vacuum regulator 18 controls the opening and closing of the variable leak valve of the vacuum regulator according to the difference between the set pressure value and the measured pressure using PID (Proportional Integral Derivative) control to adjust the conductance with respect to the operating gas, and adjusts the operating gas to a predetermined gas. It is maintained at a constant pressure and supplied into the counter section 2.

上記動作ガス圧力の設定によりX線検出器の測定精度を
向上することができるのである。
The measurement accuracy of the X-ray detector can be improved by setting the operating gas pressure.

X線検出器2のX線透過窓61.62等が破損すると真
空容器部3内に動作ガスが漏れ圧力が高まる結果、真空
容器部3のX線透過窓5を破損し超高真空雰囲気4の圧
力を一挙に高めるような事故となる可能性がある。した
がって真空容器部3内の真空度を真空計16により常に
監視し、これが所定値を越えた場合には締切バルブ17
を自動的に閉じて動作ガスの供給を停止するようにする
If the X-ray transmitting windows 61, 62, etc. of the X-ray detector 2 are damaged, the operating gas leaks into the vacuum container section 3 and the pressure increases, causing the X-ray transmitting window 5 of the vacuum container section 3 to be damaged and the ultra-high vacuum atmosphere 4 to occur. There is a possibility of an accident that will increase the pressure on the people all at once. Therefore, the degree of vacuum inside the vacuum container section 3 is constantly monitored by the vacuum gauge 16, and when the degree of vacuum exceeds a predetermined value, the cutoff valve 17
automatically closes to stop the supply of operating gas.

測定終了時等においてX線検出器2、真空容器部5、あ
るいは超高真空雰囲気4等に大気圧をリークさせる際に
は、圧力ショックによりX線透過窓が破損する場合があ
る。これを防ぐためには各部の圧力を均衡させながら上
記リークを進める必要がある。このため、まず締切バル
ブ17を閉じてX線検出rg2内を減圧する。次いで、
バルブ9.10を開いてX線検出器2、真空容器部5、
超高真空雰囲気4等の圧力を等しくする。この際、X線
透過窓にかかる差圧をできるだけ小さくするため、リー
クバルブから各X線透過窓両面までの各流体抵抗値(コ
ンダクタンス)を等しくしてバルブ9.10を開くよう
にする。その後、リークバルブ11を開いて乾燥空気を
導入する。
When atmospheric pressure is leaked to the X-ray detector 2, the vacuum container 5, the ultra-high vacuum atmosphere 4, etc. at the end of measurement, the X-ray transmission window may be damaged due to pressure shock. In order to prevent this, it is necessary to proceed with the leak while balancing the pressure in each part. For this reason, first, the shutoff valve 17 is closed to reduce the pressure inside the X-ray detection rg2. Then,
Open the valve 9.10 to remove the X-ray detector 2, vacuum container section 5,
Equalize the pressure in the ultra-high vacuum atmosphere 4, etc. At this time, in order to minimize the differential pressure applied to the X-ray transmission window, the valves 9 and 10 are opened by making the fluid resistance values (conductances) equal from the leak valve to both surfaces of each X-ray transmission window. Thereafter, the leak valve 11 is opened to introduce dry air.

第6図は第1図に示した本発明装置によるX線計測結果
の一例である。多結晶シリコンの試料100ヘエネルギ
Eを連続的に変化させながらX線を入射させ、入射X線
強度と透過X線強度を本発明装置により測定してX線吸
収スペクトルを得る。横軸は上記EとシリコンのX線吸
収端のエネルギE0の差分より演算される波数k、縦軸
は試料のXi吸収スペクトルより抽出して規格化した振
動χである6周知のように、同図の測定波形の山谷が明
瞭であるほどS/N (信号対雑音比)がよく、分析の
精度が向上する。
FIG. 6 is an example of the results of X-ray measurement by the apparatus of the present invention shown in FIG. X-rays are applied to a polycrystalline silicon sample 100 while continuously changing the energy E, and the incident X-ray intensity and transmitted X-ray intensity are measured by the apparatus of the present invention to obtain an X-ray absorption spectrum. The horizontal axis is the wave number k calculated from the difference between the above E and the energy E0 of the X-ray absorption edge of silicon, and the vertical axis is the vibration χ extracted and normalized from the Xi absorption spectrum of the sample6. The clearer the peaks and troughs of the measured waveform in the figure, the better the S/N (signal-to-noise ratio) and the more accurate the analysis.

従来の装置f(X線検出器2内の動作ガス圧力が一定の
タイプ)では同図のAに相当するの部分の波形がBの部
分の程度であった。これより本発明の効果をS/Nに換
算すると10倍以上の向上が達成されていることになる
In the conventional device f (a type in which the operating gas pressure within the X-ray detector 2 is constant), the waveform of the portion corresponding to A in the same figure was similar to that of the portion B. From this, when the effect of the present invention is converted into S/N, an improvement of more than 10 times has been achieved.

[発明の効果コ 本発明によれば、1g検出器の動作ガスの圧力を調整機
構により任意に設定することができるので、入射X線エ
ネルギーに応じてX線検出器のX線透過率とxg検出効
率の兼ね合いを最適にとって上記X線検出効率を最大に
高めることができる。
[Effects of the Invention] According to the present invention, since the pressure of the operating gas of the 1g detector can be arbitrarily set by the adjustment mechanism, the X-ray transmittance of the X-ray detector and xg can be adjusted according to the incident X-ray energy. The X-ray detection efficiency can be maximized by optimally balancing detection efficiency.

さらに、動作ガス圧力を従来の大気圧より小さく設定す
ることができるので、X4!透過窓に作用する圧力差を
減少させることができ、これによりX線透過窓として膜
厚の薄いマイラー膜使用することが8来るのでX線透過
窓の透過率を高めることができる6 上1紀各xi検出器の透過効率、検出効率等の改善によ
り、xg計測のS/Nを10倍以上向上することができ
るので、各種試料の構造、特性等の微細解析の限界を大
きく前進させることができる。
Furthermore, the operating gas pressure can be set lower than conventional atmospheric pressure, so X4! It is possible to reduce the pressure difference acting on the transmission window, which allows the use of a thin Mylar film as the X-ray transmission window8, thereby increasing the transmittance of the X-ray transmission window6. By improving the transmission efficiency, detection efficiency, etc. of each xi detector, the S/N of xg measurement can be improved by more than 10 times, making it possible to greatly advance the limits of fine analysis of the structure and characteristics of various samples. can.

これにより、従来困難であった5keV以下の低エネル
ギー領域での測定の精度を向上することができる。
This makes it possible to improve the accuracy of measurement in the low energy region of 5 keV or less, which has been difficult in the past.

さらに、xg検出器2.真空容器部3および超高真空雰
囲気4等を連結する弁9.10等の設置により、これら
を大気圧にリークする際に各xi透過窓5.61.62
等に作用する圧力ショックを緩和しその破損を防止する
ことができる。
Furthermore, xg detector 2. By installing valves 9.10, etc. that connect the vacuum container section 3 and the ultra-high vacuum atmosphere 4, etc., each xi transmission window 5.61.62 is installed when leaking these to atmospheric pressure.
It is possible to alleviate the pressure shock that acts on the parts, etc. and prevent their damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による透過型超高真空用X線検出器の実
施例断面図、第2図(a)、(b)は各所X線計測の説
明図、第3図、第4図はそれぞれ透過型超高真空用X線
検出器の断面図、第5図は本発明装置によるX線検出効
率の特性図、第6図は本発明装置による多結晶シリコン
のEX’AF(拡張X線吸収端微細構造)測定結果の一
例を示す特性図である。 1・・・入射X線、2・・・計数器部、3・・・真空容
器部、4・・・超高真空雰囲気、5・・・X線透過窓。 6・・・X線透過窓、7・・・高圧電極、8・・・集電
極、9.10・・・締切バルブ、11・・・可変リーク
バルブ、12・・・ロータリーポンプ、13・・・ター
ボ分子ポーンプ、14・・・ロータリーポンプ、15・
・・ターボ分子ポンプ、16・・・真空計、17・・・
締切バルブ、18・・・真空調整器、19・・・可変リ
ークバルブ、20・・・ロータリーポンプ、21・・・
ガス混合装置、22・・・ガスボンベ、24・・・保護
電極、25・・・ハウジング、26・・・○−リング、
100・・・試料。
Fig. 1 is a sectional view of an embodiment of the transmission type ultra-high vacuum X-ray detector according to the present invention, Figs. 2(a) and (b) are explanatory diagrams of X-ray measurement at various locations, and Figs. FIG. 5 is a cross-sectional view of a transmission type ultra-high vacuum X-ray detector, FIG. 5 is a characteristic diagram of X-ray detection efficiency by the device of the present invention, and FIG. FIG. 3 is a characteristic diagram showing an example of measurement results (absorption edge fine structure). DESCRIPTION OF SYMBOLS 1... Incident X-ray, 2... Counter part, 3... Vacuum container part, 4... Ultra-high vacuum atmosphere, 5... X-ray transmission window. 6... X-ray transmission window, 7... High voltage electrode, 8... Collector electrode, 9.10... Shutoff valve, 11... Variable leak valve, 12... Rotary pump, 13...・Turbo molecular pump, 14...rotary pump, 15・
...turbo molecular pump, 16... vacuum gauge, 17...
Shutoff valve, 18...Vacuum regulator, 19...Variable leak valve, 20...Rotary pump, 21...
Gas mixing device, 22... Gas cylinder, 24... Protective electrode, 25... Housing, 26...○-ring,
100...sample.

Claims (1)

【特許請求の範囲】 1、電離箱型X線検出器により超高真空雰囲気より入射
されるX線の測定を行なうX線検出装置において、上記
X線検出器内に導入する動作ガスの圧力を制御する圧力
調整器を備えたことを特徴とするするX線検出装置。 2、電離箱型X線検出器により超高真空雰囲気より入射
されるX線の測定を行なうX線検出装置において、上記
X線検出器内に導入する動作ガスの圧力を制御する圧力
調整器と、上記X線検出器を収容する真空度の制御可能
な真空容器部とを備え、上記真空容器部を上記超高真空
雰囲気内に設置するようにしたことを特徴とするするX
線検出装置。 3、請求項2において、上記真空容器部を収容する超高
真空室を備えたことを特徴とするX線検出装置。 4、請求項1ないし3において、異種ガスを任意の組成
に混合して上記動作ガスを生成するガス混合装置を備え
たことを特徴とするX線検出装置。 5、請求項2ないし4において、上記X線検出器と上記
真空容器部と上記超高真空雰囲気部とを相互に連結可能
とする弁を備えたことを特徴とするするX線検出装置。 6、請求項2ないし5において、上記真空容器部内の圧
力を上記超高真空雰囲気部の圧力より低め、さらに上記
X線検出器内の圧力を上記真空容器部内の圧力より低く
設定するようにしたことを特徴とするするX線検出装置
。 7、請求項2ないし4において、上記X線検出器内のX
線透過窓材を大気圧より低い圧力保持強度の薄膜材とし
たことを特徴とするX線検出装置。
[Claims] 1. In an X-ray detection device that measures X-rays incident from an ultra-high vacuum atmosphere using an ionization chamber type X-ray detector, the pressure of the working gas introduced into the X-ray detector is controlled. An X-ray detection device characterized by comprising a pressure regulator for controlling the pressure. 2. In an X-ray detection device that measures X-rays incident from an ultra-high vacuum atmosphere using an ionization chamber type X-ray detector, a pressure regulator for controlling the pressure of the working gas introduced into the X-ray detector; , a vacuum container part that accommodates the X-ray detector and whose degree of vacuum can be controlled, and the vacuum container part is installed in the ultra-high vacuum atmosphere.
Line detection device. 3. The X-ray detection apparatus according to claim 2, further comprising an ultra-high vacuum chamber for accommodating the vacuum container section. 4. The X-ray detection apparatus according to any one of claims 1 to 3, further comprising a gas mixing device that mixes different gases into an arbitrary composition to produce the working gas. 5. The X-ray detection device according to any one of claims 2 to 4, further comprising a valve that allows the X-ray detector, the vacuum container section, and the ultra-high vacuum atmosphere section to be connected to each other. 6. In claims 2 to 5, the pressure within the vacuum container section is set lower than the pressure within the ultra-high vacuum atmosphere section, and further the pressure within the X-ray detector is set lower than the pressure within the vacuum container section. An X-ray detection device characterized by the following. 7. In claims 2 to 4, X in the X-ray detector
An X-ray detection device characterized in that the radiation-transmitting window material is a thin film material with a pressure holding strength lower than atmospheric pressure.
JP10882890A 1990-04-26 1990-04-26 X-ray detector Expired - Lifetime JP2938134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10882890A JP2938134B2 (en) 1990-04-26 1990-04-26 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10882890A JP2938134B2 (en) 1990-04-26 1990-04-26 X-ray detector

Publications (2)

Publication Number Publication Date
JPH0410349A true JPH0410349A (en) 1992-01-14
JP2938134B2 JP2938134B2 (en) 1999-08-23

Family

ID=14494576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10882890A Expired - Lifetime JP2938134B2 (en) 1990-04-26 1990-04-26 X-ray detector

Country Status (1)

Country Link
JP (1) JP2938134B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241313A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd X-ray absorbing analyzing detector
US8191402B2 (en) 2007-07-13 2012-06-05 Toyota Jidosha Kabushiki Kaisha Monitoring device of gas introducing device for analyzer
US8276470B2 (en) 2007-07-12 2012-10-02 Toyota Jidosha Kabushiki Kaisha Device and method for introducing gas for analysis device
CN109343101A (en) * 2018-09-11 2019-02-15 东莞中子科学中心 Pressure balance control method for white light neutron source charged particle detection spectrometer
CN109343103A (en) * 2018-09-11 2019-02-15 东莞中子科学中心 A kind of vacuum air-channel system for charged particle detection spectrometer vacuum target chamber
WO2020054511A1 (en) * 2018-09-13 2020-03-19 国立研究開発法人産業技術総合研究所 Ionization chamber and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241313A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd X-ray absorbing analyzing detector
US8276470B2 (en) 2007-07-12 2012-10-02 Toyota Jidosha Kabushiki Kaisha Device and method for introducing gas for analysis device
US8191402B2 (en) 2007-07-13 2012-06-05 Toyota Jidosha Kabushiki Kaisha Monitoring device of gas introducing device for analyzer
CN109343101A (en) * 2018-09-11 2019-02-15 东莞中子科学中心 Pressure balance control method for white light neutron source charged particle detection spectrometer
CN109343103A (en) * 2018-09-11 2019-02-15 东莞中子科学中心 A kind of vacuum air-channel system for charged particle detection spectrometer vacuum target chamber
CN109343101B (en) * 2018-09-11 2023-03-14 东莞中子科学中心 Differential pressure balance control method for white light neutron source charged particle detection spectrometer
WO2020054511A1 (en) * 2018-09-13 2020-03-19 国立研究開発法人産業技術総合研究所 Ionization chamber and method for producing same
JPWO2020054511A1 (en) * 2018-09-13 2021-05-13 国立研究開発法人産業技術総合研究所 Ionization chamber and its manufacturing method

Also Published As

Publication number Publication date
JP2938134B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP7319161B2 (en) Hard X-ray photoelectron spectrometer and system
Nishikawa et al. Corrections for intensity data in energy-dispersive X-ray diffractometry of liquids. Application to carbon tetrachloride.
CN101256160B (en) X-ray diffraction equipment for x-ray scattering
KR970707435A (en) METHOD AND EQUIPMENT FOR DETERMINING THE CONTENT OF AN ELEMENT
JPH0410349A (en) X-ray detector
Törmä et al. Ultra-thin silicon nitride X-ray windows
Cavasso Filho et al. A synchrotron beamline for delivering high purity vacuum ultraviolet photons
US3843884A (en) X-ray gauging method and apparatus with stabilized response
Tohji et al. Double‐crystal spectrometer for laboratory EXAFS spectroscopy
Hendee et al. Gas‐flow proportional counter for soft x‐ray detection
Hudson et al. Design and performance of a curved-crystal x-ray emission spectrometer
US11002693B2 (en) Hard X-ray photoelectron spectroscopy system
JP4262709B2 (en) An X-ray analyzer equipped with an X-ray gas flow proportional counter and a method of using the X-ray gas flow proportional counter.
CN112781786A (en) Device for measuring ultrahigh or extremely high vacuum by using supercooled atoms and detection method
Yanagihara et al. Performance tests of a 2-meter grasshopper monochromator at Photon Factory
US6278120B1 (en) UV sensor
JP2571071B2 (en) X-ray gas proportional counter
US3456108A (en) Apparatus for fluorescent x-ray analysis of test bodies employing fluid filters with variable absorption characteristics
Bartlett et al. Characteristics and performance of the Los Alamos VUV beamline at the NSLS
Birks Apparatus for Vacuum X‐Ray Fluorescence Analysis of Light Elements
CN106783502A (en) A kind of lossless real time position of Synchrotron Radiation Soft X ray differentiates ionisation chamber
Fulton et al. A variable ultra-short-pathlength solution cell for XAFS transmission spectroscopy of light elements
Poletto et al. Optical performance and characterization of an EUV and soft x-ray test facility
Laitano et al. The primary exposure standard of Enea for medium energy X-ray: characteristics and measurements procedures
JPH05332958A (en) X-ray diffraction apparatus and position-sensitive gas-filled x-ray counter used for it