JPH04103433A - Driving force distribution control device for four-wheel drive vehicle - Google Patents

Driving force distribution control device for four-wheel drive vehicle

Info

Publication number
JPH04103433A
JPH04103433A JP22075290A JP22075290A JPH04103433A JP H04103433 A JPH04103433 A JP H04103433A JP 22075290 A JP22075290 A JP 22075290A JP 22075290 A JP22075290 A JP 22075290A JP H04103433 A JPH04103433 A JP H04103433A
Authority
JP
Japan
Prior art keywords
difference
tire
different diameter
rotational speed
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22075290A
Other languages
Japanese (ja)
Other versions
JP2646820B2 (en
Inventor
Hiroki Sasaki
博樹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2220752A priority Critical patent/JP2646820B2/en
Publication of JPH04103433A publication Critical patent/JPH04103433A/en
Application granted granted Critical
Publication of JP2646820B2 publication Critical patent/JP2646820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To improve durability of a transfer and the like and prevent generation of vibration without losing control function against rotating speed difference of front/ rear wheels by correcting a detected value of rotating speed difference of front/rear wheels according to diameter difference of tires and vehicle speed, at detecting mount of different diameter tires, and controlling driving force distribution based on the corrected value. CONSTITUTION:Rotating speed difference of front/rear wheels is detected by a means (b), vehicle speed is detected by a means (c), and mount of different diameter tires is detected by a means (d). At detecting mount of different diameter tires, tire diameter difference is computed by a means (e). At no detecting of mount of different diameter tires, a coupling force command according to the detected value of front/rear wheel rotating speed difference is output to a torque distributing clutch (a), and at detecting mount of different diameter tires, the coupling force of the clutch (a) is controlled by a means (f) due to corrected speed difference according to the tire diameter difference and the vehicle speed. Hence at detecting mount of different diameter tires, without losing the control function against rotating speed difference, improving durability of a transfer or differential, preventing vibration, and preventing deterioration of fuel consumption is attained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪駆動力配分が変更可能な四輪駆動車の
駆動力配分制御装置、特に、前後輪異径タイヤ装着対策
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drive force distribution control device for a four-wheel drive vehicle in which drive force distribution between the front and rear wheels can be changed, and particularly to a measure for installing different diameter tires on the front and rear wheels.

(従来の技術) 従来、四輪駆動車の駆動力配分制御装置としては、例え
ば、特開昭63−133,1号公報に記載されているよ
うに、前後輪回転速度差検出手段からの回転速度差検出
値に基づきクラッチ締結力を増減させ、エンジン駆動力
の前後輪配分を可変とする装置が知られていて、後輪駆
動車の畏所である操縦性を生かしながら駆動輪スリップ
を抑制して駆動性能を高める為、前後輪回転速度差(後
輪−前輪)とクラッチ締結力(前輪駆動トルク)との関
係を、前後輪回転速度差が小さい時には前輪駆動トルク
を小さく、前後輪回転速度差が大きくなるに従って前輪
駆動トルクが大きくなる特性が得られる設定とし、常に
前後輪回転速度差を零に数束させる方向の制御としてい
る。
(Prior Art) Conventionally, as a driving force distribution control device for a four-wheel drive vehicle, for example, as described in Japanese Patent Laid-Open No. 133-1981, There is a known device that increases or decreases the clutch engagement force based on the detected speed difference value and changes the distribution of the engine driving force between the front and rear wheels.This device suppresses drive wheel slip while taking advantage of the maneuverability that is the hallmark of rear-wheel drive vehicles. In order to improve drive performance, the relationship between front and rear wheel rotational speed difference (rear wheel - front wheel) and clutch engagement force (front wheel drive torque) is determined. The setting is such that the front wheel drive torque increases as the speed difference increases, and the control is such that the difference in rotational speed between the front and rear wheels is always reduced to zero.

(発明が解決しようとする課題) しかしながら、このような従来の駆動力配分制御装置に
あっては、前後輪回転速度差検出値を駆動輪スリップに
よる前後輪回転速度差とみなし、この検出値に基づきト
ルク配分用クラッチのクラッチ締結力を制御する装置で
あり、前後輪のタイヤ異径による回転速度差の影響か考
慮されていない為、このタイヤ異径分による前後輪回転
速度差だけ過剰にクラッチ締結力が付与される。
(Problem to be Solved by the Invention) However, in such a conventional driving force distribution control device, the detected value of the difference in rotational speed between the front and rear wheels is regarded as the difference in rotational speed between the front and rear wheels due to drive wheel slip, and the detected value is This is a device that controls the clutch engagement force of the torque distribution clutch based on the torque distribution clutch, and does not take into account the effect of the rotational speed difference due to the different tire diameters between the front and rear wheels. A fastening force is applied.

即ち、第7図に示すように、前後輪回転速度差検出値△
vwは、駆動輪スリップによる前後輪回転速度差△v5
(クラッチ締結により縮小傾向)に、クラッチ締結とは
無関係に車速の上昇に応じて大きくなる前後輪のタイヤ
異径による回転速度差△vTを加えた値で出力され、車
速に応じて上昇するクラッチ締結力T、J□が付与され
る。
That is, as shown in FIG. 7, the detected value of the rotational speed difference between the front and rear wheels is
vw is the difference in rotational speed between the front and rear wheels due to drive wheel slip △v5
(tends to decrease due to clutch engagement) is output as the sum of the rotational speed difference △vT due to different tire diameters between the front and rear wheels, which increases as the vehicle speed increases regardless of clutch engagement, and the clutch increases in accordance with vehicle speed. Fastening forces T and J□ are applied.

その結果、特に、高速走行時において不快な上下振動(
プルプル振動)が発生したり、クラッチ滑り(=△V5
+ΔV、)による激しい発熱でトランスファやディファ
レンシャルの油温か上昇して耐久性が低下したり、燃費
の悪化をもたらす等の問題が生じる。
As a result, unpleasant vertical vibrations (
(pulling vibration) or clutch slippage (=△V5
+ΔV, ) causes problems such as increased oil temperature in the transfer and differential due to intense heat generation, resulting in decreased durability and worsened fuel efficiency.

尚、前後輪のタイヤが異径となる原因としては、テンパ
ータイヤ装着時や偏摩耗時やタイヤ空気圧が異なる場合
や乗員の増減により輪荷重が変化する場合等があるが、
走行時のタイヤ径をみた場合には大なり小なり異径とな
っている。
In addition, the causes of the front and rear tires having different diameters include when tempered tires are installed, when they wear unevenly, when the tire air pressure is different, and when the wheel load changes due to an increase or decrease in the number of passengers.
If you look at the tire diameters when driving, they are more or less different diameters.

また、高速走行時における不快な振動は、実験により確
かめられたもので、その原因は明確ではないが少なくと
もクラッチ締結力の変動ではなく、第8図に示すように
、前後輪のタイヤ異径による回転速度差が加わることで
大きな回転差のついたままの前後輪を強制的に滑り締結
した状態で走行させると駆動系で何らかの共振現象が発
生すると考えられる。
In addition, the unpleasant vibrations during high-speed driving were confirmed through experiments, and although the cause is not clear, at least it is not due to fluctuations in clutch engagement force, but rather due to different tire diameters between the front and rear wheels, as shown in Figure 8. If the front and rear wheels, which have a large rotational speed difference and are forced to slip and run together due to the rotational speed difference, are considered to cause some sort of resonance phenomenon in the drive system.

本発明は、上述のような問題に着目してなされたもので
、前後輪のうち一方にはエンジン駆動力を直接伝達し、
他方にはトルク配分用クラッチを介して伝達するトルク
スプリット式の四輪駆動車において、異径タイヤ装着検
出時に前後輪回転速度差対応制御の機能を失うことなく
、トランスファやディファレンシャルの耐久性向上や振
動発生防止や燃費低下防止を図ることを課題とする。
The present invention was made with attention to the above-mentioned problems, and the present invention directly transmits engine driving force to one of the front and rear wheels.
On the other hand, in four-wheel drive vehicles with a torque split system that transmits torque through a torque distribution clutch, it is possible to improve the durability of transfers and differentials without losing the ability to control the difference in rotational speed between the front and rear wheels when different diameter tires are detected. The goal is to prevent vibrations and reduce fuel consumption.

(課題を解決するだめの手段) 上記課題を解決するため本発明の四輪駆動車の駆動力配
分制御装置にあっては、異径タイヤ装着検出時には、前
後輪回転速度差検出値からタイヤ径差と車速に応じて補
正した前後輪回転速度差により駆動力配分制御を行なう
装置とした。
(Means for Solving the Problems) In order to solve the above problems, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, when detecting the installation of tires with different diameters, the tire diameter is The device performs driving force distribution control based on the difference in rotational speed between the front and rear wheels, which is corrected according to the difference and vehicle speed.

即ち、第1図のクレーム対応図に示すように、前後輪の
一方へのエンジン直結駆動系に対し前後輪の他方への駆
動系の途中に設けられ、伝達されるエンジン駆動力を外
部からの締結力制御で変更可能とするトルク配分用クラ
ッチaと、前後輪の回転速度差を検出する前後輪回転速
度差検出手段すと、車速を検出する車速検出手段Cと、
異径タイヤ装着を検出する異径タイヤ装着検出手段dと
、異径タイヤ装着を検出した時にタイヤ径差を演算する
タイヤ径差演算手段eと、異径タイヤ装着の非検出時に
は前後輪回転速度差検出値に応じた締結力指令を前記ト
ルク配分用クラッチaへ出力し、異径タイヤ装着の検出
時には上記タイヤ径差と車速に応じて補正した前後輪回
転速度差に基づいて前記トルク配分用クラッチaの締結
力を制御する駆動力配分制御手段fとを備えている。
In other words, as shown in the complaint response diagram in Figure 1, a drive system that connects the engine directly to one of the front and rear wheels is installed midway through the drive system to the other of the front and rear wheels, and the engine driving force to be transmitted is transferred from the outside. A torque distribution clutch a that can be changed by fastening force control, front and rear wheel rotation speed difference detection means for detecting the rotation speed difference between the front and rear wheels, and vehicle speed detection means C for detecting the vehicle speed.
A different diameter tire attachment detection means d detects the attachment of a different diameter tire, a tire diameter difference calculation means e calculates a tire diameter difference when the attachment of a different diameter tire is detected, and a front and rear wheel rotation speed when the attachment of a different diameter tire is not detected. A fastening force command corresponding to the detected difference value is output to the torque distribution clutch a, and when installation of tires with different diameters is detected, the torque distribution is performed based on the tire diameter difference and the front and rear wheel rotational speed difference corrected according to the vehicle speed. The driving force distribution control means f controls the engagement force of the clutch a.

(作 用) 高速走行時には、異径タイヤ装着検出手段dにおいて、
例えば、所定以上のクラッチトルクが所定時間以上連続
印加されたかどうかで異径タイヤの装着時か非装着時か
が検出される。
(Function) When driving at high speed, the different diameter tire mounting detection means d
For example, whether a different diameter tire is installed or not is detected based on whether a clutch torque of a predetermined value or more is continuously applied for a predetermined time or more.

異径タイヤ装着の非検出時には、駆動力配分制御手段9
において、前後輪回転速度差検出手段すにより検出され
た前後輪回転速度差検出値に応じた締結力指令が出力さ
れ、トルク配分用クラッチaが締結される。
When installation of a different diameter tire is not detected, the driving force distribution control means 9
At this time, a fastening force command corresponding to the front and rear wheel rotational speed difference detection value detected by the front and rear wheel rotational speed difference detection means is output, and the torque distribution clutch a is engaged.

従って、クラッチ締結駆動輪側には駆動輪スリップ情報
である前後輪回転速度差検出値に応じたエンジン駆動力
が配分される。
Therefore, the engine driving force is distributed to the clutch-engaged drive wheel side in accordance with the detected value of the front and rear wheel rotational speed difference, which is the drive wheel slip information.

一方、異径タイヤ装着の検出時には、タイヤ径差演算手
段eにおいてタイヤ径差が演算され、車速検出手段Cに
おいて車速か検出される。
On the other hand, when detecting the installation of a different diameter tire, the tire diameter difference calculation means e calculates the tire diameter difference, and the vehicle speed detection means C detects the vehicle speed.

そして、駆動力配分制御手段fにおいて、前後輪回転速
度差検出手段すにより検出された前後輪回転速度差検出
値がタイヤ径差と車速に応じて補正され、この前後輪回
転速度差補正値に応じた締結力指令が出力され、トルク
配分用クラッチaが締結される。
Then, in the driving force distribution control means f, the front and rear wheel rotational speed difference detection value detected by the front and rear wheel rotational speed difference detection means is corrected according to the tire diameter difference and the vehicle speed, and the front and rear wheel rotational speed difference detection value is corrected according to the tire diameter difference and the vehicle speed. A corresponding fastening force command is output, and the torque distribution clutch a is fastened.

従って、クラッチ締結駆動輪側には異径タイヤによる前
後輪回転速度差検出値が取り除かれ、異径タイヤ装着の
非検出時と同様に、駆動輪スリップ情報と一致する前後
輪回転速度差補正値に応じてエンジン駆動力が配分され
る。
Therefore, the detection value of the front and rear wheel rotation speed difference due to the different diameter tires is removed from the clutch engagement drive wheel side, and the front and rear wheel rotation speed difference correction value matches the drive wheel slip information, as in the case of non-detection of the installation of the different diameter tires. Engine driving force is distributed accordingly.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図は四輪駆動車のトルクスプリット制御システム(
駆動力配分制御装置)が連用された駆動系を含む全体シ
ステム図であり、まず、構成を説明する。
Figure 2 shows the torque split control system of a four-wheel drive vehicle (
1 is an overall system diagram including a drive system in which a driving force distribution control device (driving force distribution control device) is used; first, the configuration will be explained.

実施例のトルクスプリット制御システムが適用される車
両は後輪ベースの四輪駆動車で、その駆動系には、エン
ジン1.トランスミッション2゜トランスファ入力軸3
.リヤプロペラシャフト4、リヤディファレンシャル5
.後輪6.トランスファ出力軸7.フロントプロペラシ
ャフト8゜フロントディファレンシャル9.前輪10を
備えていて、後輪6へはトランスミッション2を経過し
てきたエンジン駆動力が直接伝達され、前輪10へは前
輪駆動系である前記トランスファ入出力軸3.7間に設
けであるトランスファ11を介して伝達される。
The vehicle to which the torque split control system of the embodiment is applied is a rear-wheel-based four-wheel drive vehicle, and its drive system includes an engine 1. Transmission 2゜Transfer input shaft 3
.. Rear propeller shaft 4, rear differential 5
.. Rear wheel 6. Transfer output shaft7. Front propeller shaft 8° Front differential 9. The engine driving force that has passed through the transmission 2 is directly transmitted to the rear wheels 6, and the front wheels 10 are provided with a transfer 11 provided between the transfer input and output shafts 3 and 7 of the front wheel drive system. transmitted via.

そして、駆動性能と操舵性能の両立を図りながら前後輪
の駆動力配分を最違に制御するトルクスプリット制御シ
ステムは、湿式多板摩擦クラッチ11aを内蔵した前記
トランスファ11 (例えば、先願の特願昭63−32
5379号の明細書及び図面を参照)と、クラッチ締結
力となる制御油圧Pcを発生する制御油圧発生装置20
と、制御油圧発生装置20に設けられたソレノイドバル
ブ28へ各種人力センサ30からの情報に基づいて所定
のデイザ−電流1°を出力するトルクスプリットコント
ローラ40とを備えている。
The torque split control system that optimally controls the distribution of driving force between the front and rear wheels while achieving both driving performance and steering performance is based on the transfer 11 (for example, Showa 63-32
(see the specification and drawings of No. 5379) and a control hydraulic pressure generating device 20 that generates a control hydraulic pressure Pc that becomes a clutch engagement force.
and a torque split controller 40 that outputs a predetermined dither current of 1° to the solenoid valve 28 provided in the control oil pressure generator 20 based on information from various human power sensors 30.

前記油圧制御装置20は、リリーフスイッチ21により
駆動または停止するモータ22と、該モータ22により
作動してリザーバタンク23から吸い上げる油圧ポンプ
24と、該油圧ポンプ24からのポンプ吐出圧(−沈圧
)をチエツクバルブ25を介して蓄えるアキュムレータ
26と、該アキュムレータ26からのライン圧(二次圧
)をトルクスプリット制御部40からのソレノイド駆動
のデイザ−電流i−こより所定の制御油圧Pcに調整す
るソレノイドバルブ28とを備え、制御油圧Pcの作動
油は制御油圧バイブ29を経過してクラッチポートに供
給される。
The hydraulic control device 20 includes a motor 22 that is driven or stopped by a relief switch 21, a hydraulic pump 24 that is operated by the motor 22 to draw water from a reservoir tank 23, and a pump discharge pressure (-sinking pressure) from the hydraulic pump 24. an accumulator 26 for accumulating oil via a check valve 25, and a solenoid for adjusting the line pressure (secondary pressure) from the accumulator 26 to a predetermined control oil pressure Pc from a solenoid-driven dither current i from a torque split control section 40. The hydraulic fluid of the control hydraulic pressure Pc is supplied to the clutch port via a control hydraulic vibrator 29.

前記各種入力センサ30としては、第3図のシステム電
子制御系のフロック図に示すように、左前輪回転センサ
30a、右前輪回転センサ30b、左後輪回転センサ3
0C1右後輪回転センサ30d、第1横加速度センサ3
0e、第2横加速度センサ30fを有する。
As shown in the block diagram of the system electronic control system in FIG. 3, the various input sensors 30 include a left front wheel rotation sensor 30a, a right front wheel rotation sensor 30b, and a left rear wheel rotation sensor 3.
0C1 right rear wheel rotation sensor 30d, first lateral acceleration sensor 3
0e, and a second lateral acceleration sensor 30f.

前記トルクスプリット制御部40は、第3図のシステム
電子制御系のフロック図に示すように、左前軸通演算回
路40a、右前輪速演算回路40b、左後軸通演算回路
40c、右後輪速演算回路40d、前輪速演算回路40
e、後輪速演算回路40f、回転速度差演算回路409
.締結力演算回路40h、T−i変換回路401.デイ
ザ−電流出力回路40j、横加速度演算回路402.ゲ
イン演算回路40m、異径タイヤ装着検出回路40n、
タイヤ径差演算回路40p1前後輪回転速度差不感帯設
定回路40q、フェイルセーフ回路40rを有する。
As shown in the system electronic control system block diagram of FIG. Arithmetic circuit 40d, front wheel speed computing circuit 40
e, rear wheel speed calculation circuit 40f, rotational speed difference calculation circuit 409
.. Fastening force calculation circuit 40h, T-i conversion circuit 401. dither current output circuit 40j, lateral acceleration calculation circuit 402. Gain calculation circuit 40m, different diameter tire mounting detection circuit 40n,
It has a tire diameter difference calculation circuit 40p1, a front and rear wheel rotational speed difference dead zone setting circuit 40q, and a failsafe circuit 40r.

尚、図中、A/DはA/D変換器、D/Al;ltD/
A変換器である。
In addition, in the figure, A/D is an A/D converter, D/Al; ltD/
It is an A converter.

また、フェイルセーフ回路40rには警報ランプ50が
接続されている。
Further, a warning lamp 50 is connected to the failsafe circuit 40r.

次に、作用を説明する。Next, the effect will be explained.

第4図はトルクスプリットコントローラ40で行なわれ
る前後輪駆動力配分制御作動の流れを示すフローチャー
トで、以下、各ステ・ンプについて順に説明する。
FIG. 4 is a flowchart showing the flow of the front and rear wheel drive force distribution control operation performed by the torque split controller 40, and each step will be explained in turn below.

ステップ80では、左前輪速し、い右前輪速VWFRI
左後輪速vW RL +右後輪速VW RR+第1横加
速度Y67.第2横加速度YG2が入力される。
In step 80, the left front wheel speed is changed to the right front wheel speed VWFRI.
Left rear wheel speed vW RL + right rear wheel speed VW RR + first lateral acceleration Y67. Second lateral acceleration YG2 is input.

ステップ81では、入力処理として、上記左前輪速VW
FLと右前輪速VWFFIとの平均値により前輪速VW
Fが演算され、上記左後輪速VWRLと右後輪速VWR
Rとの平均値により後輪速VWRが演算され、第1横加
速度Y61と第2横加速度YG2との平均値により横加
速度Y。が演算され、前輪速VWFがそのまま車体速V
、として設定される。
In step 81, as input processing, the left front wheel speed VW
Front wheel speed VW is determined by the average value of FL and right front wheel speed VWFFI.
F is calculated, and the above left rear wheel speed VWRL and right rear wheel speed VWR are calculated.
The rear wheel speed VWR is calculated from the average value of the first lateral acceleration Y61 and the second lateral acceleration YG2, and the lateral acceleration Y is calculated from the average value of the first lateral acceleration Y61 and the second lateral acceleration YG2. is calculated, and the front wheel speed VWF becomes the vehicle speed V
, is set as .

ステップ82では、前輪速VWFと後輪速VWRとから
前後輪回転速度差検出値△v(−vwR−vWF但し、
△V≧O)が演算される。
In step 82, a detected value Δv(−vwR−vWF) of the front and rear wheel rotation speed difference is calculated from the front wheel speed VWF and the rear wheel speed VWR.
ΔV≧O) is calculated.

ステップ83では、前後輪回転速度差検出値△Vまたは
前後輪回転速度差補正値△V°に対するクラッチトルク
出力値TAV。U工の制御ゲインに、が横加速度検出値
Y6の逆数に基づいて下記の式で演算される。
In step 83, the clutch torque output value TAV is determined with respect to the detected value ΔV of the rotational speed difference between the front and rear wheels or the correction value ΔV° of the rotational speed difference between the front and rear wheels. The control gain of the U-engine is calculated by the following formula based on the reciprocal of the detected lateral acceleration value Y6.

Kh=ah/Ya(但し、ト≦βh) 例えば、O□=1でB、=1oとする。Kh=ah/Ya (however, g≦βh) For example, let O□=1 and B=1o.

ステップ84では、上記制御ゲインに、と前後輪回転速
度差検出値△VとによってクラッチトルクTΔVが演算
される。
In step 84, the clutch torque TΔV is calculated based on the control gain and the detected value ΔV of the rotational speed difference between the front and rear wheels.

ステップ85では、異径タイヤ装着検出フラグFS3が
異径タイヤ装着検出を示すFS3=1か異径タイヤ装着
非検出を示すFS3・0かが判断される。
In step 85, it is determined whether the different diameter tire mounting detection flag FS3 is FS3=1, which indicates that the mounting of a different diameter tire is detected, or FS3.0, which indicates that the mounting of a different diameter tire is not detected.

そして、FS3=Oの場合には、ステップ86〜ステツ
プ90において、異径タイヤ装着の検出処理が行なわれ
る。
If FS3=O, then in steps 86 to 90, detection processing for mounting a different diameter tire is performed.

即ち、ステップ86では、クラッチトルク平均値TΔV
と車体速平均値V、とが5secの周期平均により演算
され、ステップ87では、クラッチトルク平均値TΔV
が設定値×を超え、且つ、車体速平均値V1が設定値V
HTを超えているかどうかが判断される。そして、ステ
ップ87でYESの場合には、ステップ88において高
クラッチトルク判別フラグ)ITFLG=1とされ、ス
テップ89でHTFLG=1が5分連続しているかどう
かが判断される。つまり、高クラフチトルク条件及び高
車速条件を同時に満足する状態が通常の加速走行ではあ
り得ない時間である5分以上連続して生じた場合に異径
タイヤ装着時であると検出され、ステップ90で異径タ
イヤ装着検出フラグFS3が異径タイヤ装着検出を示す
FS3=1に書き換えられる。
That is, in step 86, the clutch torque average value TΔV
and vehicle body speed average value V are calculated by a periodic average of 5 seconds, and in step 87, clutch torque average value TΔV
exceeds the set value ×, and the vehicle body speed average value V1 exceeds the set value V
It is determined whether the HT is exceeded. If YES in step 87, the high clutch torque determination flag (ITFLG) is set to 1 in step 88, and it is determined in step 89 whether HTFLG=1 continues for 5 minutes. In other words, if a state in which both the high clutch torque condition and the high vehicle speed condition are satisfied at the same time occurs continuously for more than 5 minutes, which is impossible during normal acceleration driving, it is detected that a different diameter tire is installed, and step 90 is performed. The different diameter tire attachment detection flag FS3 is rewritten to FS3=1 indicating that different diameter tire attachment has been detected.

一方、ステップ8アの条件を満足しない時には、ステッ
プ91で高クラッチトルク判別フラグHTFLGがHT
FLG=Oとされ、ステップ92で異径タイヤ装着検出
フラグFS3がFS3=Oとされ、また、ステップ89
での連続条件を満足しない時にもステップ92で異径タ
イヤ装着横比フラグFS3がFS3=0とされる。
On the other hand, if the condition in step 8a is not satisfied, the high clutch torque determination flag HTFLG is set to HT in step 91.
FLG=O, and in step 92 the different diameter tire installation detection flag FS3 is set as FS3=O, and in step 89
Even when the continuity condition is not satisfied, the different diameter tire mounting lateral ratio flag FS3 is set to FS3=0 in step 92.

そして、異径タイヤ装着の非検出時には、ステップ93
において、ステップ84で求められたクラッチトルクT
AVがクラッチトルク出力値TΔVOLI工として設定
され、ステップ94において、予め与えられたT−i特
性テーブルに基づいてクラッチトルク出力値T6V。u
lが得られるソレノイド駆動電流lに変換され、ステッ
プ95において、ソレノイドバルブ28に対しデイザ−
電流l責例えば、l±O,IA +0OHz)が8力さ
れる。
Then, if installation of a different diameter tire is not detected, step 93
, the clutch torque T determined in step 84
AV is set as the clutch torque output value TΔVOLI, and in step 94, the clutch torque output value T6V is set based on the Ti characteristic table given in advance. u
l is converted into the obtained solenoid drive current l, and in step 95, a dither is applied to the solenoid valve 28.
A current (for example, l±O, IA +0OHz) is applied.

異径タイヤ装着の検出時には、ステップ90からステッ
プ96以降の流れとなる。
When it is detected that a tire with a different diameter is attached, the flow is from step 90 to step 96 and subsequent steps.

ステップ96では、ステップ90での異径タイヤ装着横
比を受けて、異径タイヤ装着時であることをドライバー
に知らせるべく警報ランプ50を点滅させる。
In step 96, in response to the lateral ratio of the different diameter tire installed in step 90, the warning lamp 50 is blinked to inform the driver that the different diameter tire is being installed.

ステップ97では、前後輪回転速度差検出値△Vが正か
負か判断され、△V〈0で駆動輪スリップを原因としな
いで前後輪回転速度差が発生している場合には、ステッ
プ93以降の減速側通常制御が行なわれる。
In step 97, it is determined whether the detected value △V of the difference in rotational speed between the front and rear wheels is positive or negative. If △V<0 and the difference in rotational speed between the front and rear wheels is not caused by drive wheel slip, step 93 The subsequent deceleration-side normal control is performed.

ステップ98では、車体速平均値v1とクラッチトルク
平均値TΔVに基づいてタイヤ径差Δrが第5図に示す
マツプにより検索される。
In step 98, the tire diameter difference Δr is searched from the map shown in FIG. 5 based on the vehicle speed average value v1 and the clutch torque average value TΔV.

尚、このマツプは、車体速平均値V、が小さくて、クラ
ッチトルク平均値T△Vが大きい場合にタイヤ径差△r
が大きく、逆の場合にタイヤ径差Δrが小さいことで計
算や実験等で設定される。
Note that this map shows that when the average vehicle speed value V is small and the average clutch torque value T△V is large, the tire diameter difference △r
is large, and in the opposite case, the tire diameter difference Δr is small, so it is set by calculation or experiment.

ステップ99及びステップ100では、前後軸回転速度
差不感帯ΔVOFFの設定ゲインに。FFが横加速度検
出値Y6とタイヤ径差Δrに基づいて下記の式で演算さ
れる。
In step 99 and step 100, the gain is set for the dead zone ΔVOFF for the rotational speed difference between the front and rear axes. FF is calculated by the following formula based on the detected lateral acceleration value Y6 and the tire diameter difference Δr.

にs=a+/ya(但し、Ya=Oの時はに8−81)
に。2.=に1・Δr 即ち、設定ゲインに。1.は、横加速度検出値Y6が大
きいほど小さく、タイヤ径差Δrが大きいほど大きな値
に設定される。
s=a+/ya (however, when Ya=O, 8-81)
To. 2. = to 1・Δr, that is, to the set gain. 1. is set to a smaller value as the detected lateral acceleration value Y6 is larger, and is set to a larger value as the tire diameter difference Δr is larger.

ステップ101では、前後軸回転速度差不感帯八VOF
Fが、設定ゲインに。FFと車体速V、により下記の式
で演算される。
In step 101, the front and rear axle rotational speed difference dead zone 8 VOF
F is the setting gain. It is calculated using the following formula using the FF and the vehicle speed V.

八VOFF ”にOFF ’ Vi ミステップ10では、前後輪回転速度差補正値△V゛が
前後輪回転速度差検出値△Vと前後輪回転速度差不感帯
ΔVOFFにより下記の式で演算される。
8VOFF''OFF' Vi In step 10, the front and rear wheel rotational speed difference correction value ΔV' is calculated by the following formula using the front and rear wheel rotational speed difference detected value ΔV and the front and rear wheel rotational speed difference dead zone ΔVOFF.

△V =△V−八VOへF (但し、△V゛ ≧0) ステップ103では、前後輪回転速度差補正値△V′に
基づいてユニット保護トルクTΔV゛が下記の式で演算
される。
△V = △V - F to 8 VO (However, △V゛≧0) In step 103, the unit protection torque TΔV′ is calculated based on the front and rear wheel rotational speed difference correction value △V′ using the following formula.

TΔv′二に。・△V゛ ステップj04では、異径タイヤ装着検出後にクラッチ
トルクIIVのユニット保護トルクTΔV。
TΔv′2.・△V゛In step j04, after the attachment of a different diameter tire is detected, the unit protection torque TΔV of the clutch torque IIV is applied.

への移行を示すトルク移行フラグF1が移行完了を示す
E1=1かどうかが判断される。
It is determined whether the torque transfer flag F1 indicating the transition to is E1=1 indicating the completion of the transition.

そして、F1=0の時にはステップ105へ進み、クラ
ッチトルク出力値TΔVOUTがユニット保護トルクT
AV’以下かどうかが判断され、TΔVo−v >TΔ
V“である間は、ステップ106へ進み、今回のクラッ
チトルク出力値TΔVOLITから設定トルクToを差
し引いた値が次回のクラッチトルク出力値TΔVOU□
と設定される。
Then, when F1=0, the process advances to step 105, and the clutch torque output value TΔVOUT is set to the unit protection torque T.
It is determined whether TΔVo−v > TΔ
V", the process proceeds to step 106, and the value obtained by subtracting the set torque To from the current clutch torque output value TΔVOLIT is the next clutch torque output value TΔVOU□
is set.

即ち、クラッチトルクTΔVが制御周期毎に設定トルク
■。づつ徐々に下げられる。
That is, the clutch torque TΔV is the set torque ■ for each control cycle. gradually lowered.

そして、ステップ106のトルク低下処理を繰り返すこ
とでクラッチトルク出力値TΔVOLI7がユニット保
護トルクTΔV“以下になると、ステップ105からス
テップ107へ進み、F1=OからF1=1に書き換え
られ、ステップ108では、ユニット保護トルクTΔV
°がそのままクラッチトルク出力値下ムV。U工とされ
る。
When the clutch torque output value TΔVOLI7 becomes equal to or less than the unit protection torque TΔV'' by repeating the torque reduction process in step 106, the process proceeds from step 105 to step 107, where F1=O is rewritten to F1=1, and in step 108, Unit protection torque TΔV
° remains below the clutch torque output value V. It is said to be a U-engineer.

次に、走行時における駆動力配分作用を説明する。Next, the driving force distribution effect during running will be explained.

車体速平均値V、が設定値Vl−ITを超える高速走行
時には、ステップ86〜ステツプ89の異径タイヤ装着
検出処理において、設定トルクX以上のクラッチトルク
平均値TΔVが5分以上連続印加されたかどうかで異径
タイヤの装着時か非装着時かが検圧される。
During high-speed driving where the vehicle body speed average value V exceeds the set value Vl-IT, in the different diameter tire mounting detection processing in steps 86 to 89, is the clutch torque average value TΔV greater than or equal to the set torque X continuously applied for 5 minutes or more? The pressure is measured depending on whether a different diameter tire is installed or not.

そして、異径タイヤ装着の非検出時には、ステップ84
で求められた前後編回転速度差検出値△Vに応じたクラ
ッチトルクTΔVが、ステップ93においてクラッチト
ルク出力値TΔVOLITとされ、このTΔVOUTに
応じた締結力により湿式多板クラッチ11aが締結され
る(第6図の異径タイヤ装着非検出時特性)。
Then, if installation of a different diameter tire is not detected, step 84
The clutch torque TΔV corresponding to the front and rear rotational speed difference detection value ΔV obtained in step 93 is set as the clutch torque output value TΔVOLIT, and the wet multi-disc clutch 11a is engaged with the engagement force according to this TΔVOUT ( (Characteristics when different diameter tires are not detected in Figure 6).

従って、前輪10側には駆動輪スリップ情報である前後
輪回転速度差検出値ΔVに応じたエンシン駆動力が配分
される。
Therefore, engine driving force is distributed to the front wheels 10 according to the detected value ΔV of the front and rear wheel rotational speed difference, which is drive wheel slip information.

一方、異径タイヤ装着の検出時には、ステップ98にお
いてタイヤ径差Δrが演算され、ステップ101におい
て前後輪回転速度差不感帯ΔVOFFが設定され、ステ
ップ102において前後輪回転速度差検出値△Vから前
後輪回転速度差不感帯AVoFFを差し引いた値が前後
輪回転速度差補正値△Vとされ、ステップ103におい
て前後輪回転速度差補正値△V°に基づいてユニット保
護トルクTΔV′が求められ、ステップ108において
このユニット保護トルクT△V°がクラッチトルク出力
値TΔVou□とされ、このT△Vo、JTに応じた締
結力により湿式多板クラッチ1+aが締結される(第6
図の異径タイヤ装着検出時特性)。
On the other hand, when detecting the installation of tires with different diameters, the tire diameter difference Δr is calculated in step 98, the front and rear wheel rotation speed difference dead zone ΔVOFF is set in step 101, and the front and rear wheels are The value obtained by subtracting the rotational speed difference dead zone AVoFF is set as the front and rear wheel rotational speed difference correction value △V. In step 103, the unit protection torque TΔV' is determined based on the front and rear wheel rotational speed difference correction value △V°, and in step 108 This unit protection torque T△V° is set as the clutch torque output value T△Vou□, and the wet multi-disc clutch 1+a is engaged with the engagement force according to this T△Vo and JT (6th
Characteristics when detecting installation of different diameter tires (see figure).

従って、前輪10側には異径タイヤによる前後輪回転速
度差検出値が取り除かれ、異径タイヤ装着の非検出時と
同様に、駆動輪スリップ情報と一致する前後輪回転速度
差補正値△V゛に応じてニンジン駆動力が配分される。
Therefore, on the front wheel 10 side, the detected value of the difference in rotational speed between the front and rear wheels due to the different diameter tires is removed, and the correction value △V of the difference in rotational speed between the front and rear wheels matches the driving wheel slip information, as in the case when the different diameter tires are not detected. The carrot driving force is distributed accordingly.

尚、ステップ104〜ステツプ108のクラッチトルク
移行処理では、ユニット保護トルクTΔVが設定された
場合、不感帯設定前のクラッチトルクTΔVから不感帯
設定後のユニ・ント保護トルクTΔV′に徐々に移行す
る指令が出力される。
Note that in the clutch torque transition process from step 104 to step 108, when the unit protection torque TΔV is set, a command is issued to gradually shift from the clutch torque TΔV before the dead zone is set to the unit protection torque TΔV' after the dead zone is set. Output.

以上説明してきたように実施例の四輪駆動車の駆動力配
分制御装置にあっては、下記に列挙する効果が発揮され
る。
As explained above, the driving force distribution control device for a four-wheel drive vehicle according to the embodiment exhibits the effects listed below.

■ 異径タイヤ装着検出時には、前後輪回転速度差検出
値△Vからタイヤ径差Δrと車体速V、に応じた前後輪
回転速度差検出手段VOFFを差し引いた前後輪回転速
度差補正値△V′により駆動力配分制御を行なう装置と
した為、異径タイヤ装着検出時に前後輪回転速度差対応
制御の機能を失うことなく、トランスファ11やディフ
ァレンシャル5゜9の耐久性向上や振動発生防止や燃費
低下防止を図ることが出来る。
■ When detecting the installation of different diameter tires, a front and rear wheel rotational speed difference correction value △V is obtained by subtracting the front and rear wheel rotational speed difference detection means VOFF according to the tire diameter difference Δr and the vehicle speed V from the front and rear wheel rotational speed difference detection value △V. ', the device controls the drive force distribution, without losing the function of controlling the rotation speed difference between the front and rear wheels when detecting the installation of different diameter tires, improving the durability of the transfer 11 and differential 5°9, preventing vibration generation, and improving fuel efficiency. It is possible to prevent the decrease.

■ 異径タイヤ装着検出の前後でのクラッチトルクT△
Vかユニット保護トルクTΔV′に急に低下するのを抑
えた為、異径タイヤ装着検出の前後での車両挙動の急変
防止を図ることが出来る。
■ Clutch torque T△ before and after detecting installation of different diameter tires
Since the sudden drop in the unit protection torque TΔV' is suppressed, it is possible to prevent sudden changes in vehicle behavior before and after the installation of a different diameter tire is detected.

以上、実施例を図面に基づいて説明してきたが、具体的
な構成及び制御内容はこの実施例に限られるものではな
い。
Although the embodiment has been described above based on the drawings, the specific configuration and control contents are not limited to this embodiment.

例えば、実施例では、後輪側をエンジン駆動直結にした
後輪ベースの四輪駆動車の駆動力配分制御装置への適応
例を示したが、前輪側をエンジン駆動直結にした前輪ベ
ースの四輪駆動車の駆動力配分制御装置へも適応出来る
For example, in the embodiment, an example of application to a driving force distribution control system for a rear-wheel-based four-wheel drive vehicle in which the rear wheels are directly connected to the engine drive was shown, but a front-wheel-based four-wheel drive vehicle in which the front wheels are directly connected to the engine drive was shown. It can also be applied to drive force distribution control devices for wheel drive vehicles.

(発明の効果) 以上説明してきたように、請求項1記載の本発明にあっ
ては、前後輪のうち一方にはエンジン駆動力を直接伝達
し、他方にはトルク配分用クラッチを介して伝達するト
ルクスプリット式の四輪駆動車において、異径タイヤ装
着検出時には、前後輪回転速度差検出値がタイヤ径差と
車速に応じて補正され、この補正値により駆動力配分制
御を行なう装置とした為、異径タイヤ装着検圧時に前後
輪回転速度差対応制御の機能を失うことなく、トランス
ファやディファレンシャルの耐久性向上や振動発生防止
や燃費低下防止を図ることが出来るという効果が得られ
る。
(Effects of the Invention) As explained above, in the present invention according to claim 1, engine driving force is directly transmitted to one of the front and rear wheels, and transmitted to the other through a torque distribution clutch. In a torque split type four-wheel drive vehicle, when different diameter tires are detected, the detected value of the difference in rotational speed between the front and rear wheels is corrected according to the tire diameter difference and the vehicle speed, and this correction value is used to control the drive force distribution. Therefore, it is possible to improve the durability of the transfer and differential, prevent the generation of vibration, and prevent a decrease in fuel efficiency without losing the function of controlling the front and rear wheel rotational speed differences when pressure testing is carried out when tires with different diameters are installed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム対応図、第2図は実施例のトルクスプリット
制御装置(駆動力配分制御装置)を適応した四輪駆動車
の駆動系及び制御系を示す全体概略図、第3図は実施例
装置に用いられた電子制御系を示すブロック図、第4図
は前後輪駆動力配分制御作動を示すフローチャート、第
5図はタイヤ径差マツプ図、第6図は実施例のトルクス
プリット制御装置でのクラッチトルク特性図、第7図は
車速に対するクラッチ締結力及び回転速度差特性図、第
8図はトルクスプリット式の四輪駆動車での走行状態を
示す図である。 a・・・トルク配分用クラッチ b・・・前後輪回転速度差検出手段 C・・・車速検出手段 d・・・異径タイヤ装着検出手段 e・・・タイヤ径差演算手段 f・・・駆動力配分制御手段 第5図 (異惺タイヤ装@+剰を吋] 前後輪回転速度差補正1−ΔV 第7図 第8図 制動力 駆動刀
FIG. 1 is a complaint diagram showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention, and FIG. 2 is a diagram showing a drive force distribution control device for a four-wheel drive vehicle according to an embodiment of the present invention. Fig. 3 is a block diagram showing the electronic control system used in the embodiment device, Fig. 4 is a flowchart showing the front and rear wheel drive force distribution control operation, and Fig. 5 is a diagram showing the tire diameter. Difference map diagram, Figure 6 is a clutch torque characteristic diagram in the torque split control device of the embodiment, Figure 7 is a clutch engagement force and rotational speed difference characteristic diagram with respect to vehicle speed, and Figure 8 is a torque split type four-wheel drive vehicle. FIG. a... Torque distribution clutch b... Front and rear wheel rotational speed difference detection means C... Vehicle speed detection means d... Different diameter tire installation detection means e... Tire diameter difference calculation means f... Drive Force distribution control means Fig. 5 (Different tire arrangement @ + surplus) Front and rear wheel rotational speed difference correction 1 - ΔV Fig. 7 Fig. 8 Braking force drive blade

Claims (1)

【特許請求の範囲】 1)前後輪の一方へのエンジン直結駆動系に対し前後輪
の他方への駆動系の途中に設けられ、伝達されるエンジ
ン駆動力を外部からの締結力制御で変更可能とするトル
ク配分用クラッチと、 前後輪の回転速度差を検出する前後輪回転速度差検出手
段と、 車速を検出する車速検出手段と、 異径タイヤ装着を検出する異径タイヤ装着検出手段と、 異径タイヤ装着を検出した時にタイヤ径差を演算するタ
イヤ径差演算手段と、 異径タイヤ装着の非検出時には前後輪回転速度差に応じ
た締結力指令を前記トルク配分用クラッチへ出力し、異
径タイヤ装着の検出時には上記タイヤ径差と車速に応じ
て補正した前後輪回転速度差に基づいて前記トルク配分
用クラッチの締結力を制御する駆動力配分制御手段と、 を備えている事を特徴とする四輪駆動車の駆動力配分制
御装置。 2)上記駆動力配分制御手段は、異径タイヤ装着の検出
時には、ヤイヤ径差が大で車速が大きいほど大きな前後
輪回転速度差不感帯を設定し、前後輪回転速度差検出値
から該不感帯を差し引いた値を補正値とする事を特徴と
する請求項1記載の四輪駆動車の駆動力配分制御装置。
[Scope of Claims] 1) A drive system that is directly connected to the engine to one of the front and rear wheels is provided in the middle of the drive system to the other of the front and rear wheels, and the transmitted engine drive force can be changed by external fastening force control. a torque distribution clutch, a front and rear wheel rotational speed difference detection means for detecting a rotational speed difference between the front and rear wheels, a vehicle speed detection means for detecting vehicle speed, a different diameter tire attachment detection means for detecting attachment of a different diameter tire, tire diameter difference calculating means for calculating a tire diameter difference when mounting of a different diameter tire is detected, and outputting a fastening force command according to the difference in rotational speed of the front and rear wheels to the torque distribution clutch when mounting of a different diameter tire is not detected; A driving force distribution control means for controlling the engagement force of the torque distribution clutch based on the difference in rotational speed between the front and rear wheels corrected according to the difference in tire diameter and the vehicle speed when detecting the installation of a different diameter tire. A driving force distribution control device for four-wheel drive vehicles. 2) When detecting the installation of tires with different diameters, the driving force distribution control means sets a larger dead zone for the front and rear wheel rotational speed difference as the tire diameter difference is larger and the vehicle speed is higher, and determines the dead zone from the detected value of the front and rear wheel rotational speed difference. The driving force distribution control device for a four-wheel drive vehicle according to claim 1, wherein the subtracted value is used as the correction value.
JP2220752A 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle Expired - Fee Related JP2646820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220752A JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220752A JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH04103433A true JPH04103433A (en) 1992-04-06
JP2646820B2 JP2646820B2 (en) 1997-08-27

Family

ID=16755988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220752A Expired - Fee Related JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2646820B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461568A (en) * 1992-05-20 1995-10-24 Nissan Motor Co., Ltd. Torque split control apparatus
EP0799740A2 (en) * 1996-04-06 1997-10-08 Volkswagen Aktiengesellschaft Method for controlling a controllable clutch of a four-wheel drive vehicle
EP1188597A2 (en) 2000-09-19 2002-03-20 Nissan Motor Co., Ltd. Front/rear wheel torque distribution control apparatus for four wheel drive vehicle
JP2002166737A (en) * 2000-09-19 2002-06-11 Nissan Motor Co Ltd Front and rear wheel torque distribution controller for four-wheel drive car
US6769526B2 (en) 2000-09-19 2004-08-03 Nissan Motor Co., Ltd. Apparatus for estimating clutch temperature
US7151991B2 (en) 2002-09-26 2006-12-19 Nissan Motor Co., Ltd. Driving-force distribution control system for four-wheel-drive vehicles
FR2958585A1 (en) * 2010-04-12 2011-10-14 Renault Sa METHOD FOR CONTROLLING A COUPLER
FR2958607A1 (en) * 2010-04-12 2011-10-14 Renault Sa TORQUE DISTRIBUTION CONTROL METHOD FOR A MOTORIZED MOTOR VEHICLE WITH FOUR WHEELS AND CORRESPONDING VEHICLE
US9248739B2 (en) 2013-03-28 2016-02-02 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
US9315101B2 (en) 2013-03-28 2016-04-19 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
US9931931B2 (en) 2013-10-17 2018-04-03 Honda Motor Co., Ltd. Driving force distribution apparatus and method for distributing driving force
CN108621788A (en) * 2017-03-16 2018-10-09 株式会社斯巴鲁 The control device of vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387320A (en) * 1986-09-29 1988-04-18 Toyota Motor Corp Method of controlling four-wheel drive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387320A (en) * 1986-09-29 1988-04-18 Toyota Motor Corp Method of controlling four-wheel drive device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461568A (en) * 1992-05-20 1995-10-24 Nissan Motor Co., Ltd. Torque split control apparatus
EP0799740A2 (en) * 1996-04-06 1997-10-08 Volkswagen Aktiengesellschaft Method for controlling a controllable clutch of a four-wheel drive vehicle
EP0799740A3 (en) * 1996-04-06 1999-05-19 Volkswagen Aktiengesellschaft Method for controlling a controllable clutch of a four-wheel drive vehicle
EP1188597A2 (en) 2000-09-19 2002-03-20 Nissan Motor Co., Ltd. Front/rear wheel torque distribution control apparatus for four wheel drive vehicle
JP2002166737A (en) * 2000-09-19 2002-06-11 Nissan Motor Co Ltd Front and rear wheel torque distribution controller for four-wheel drive car
US6497301B2 (en) 2000-09-19 2002-12-24 Nissan Motor Co., Ltd. Front/rear wheel torque distribution control apparatus for four wheel drive vehicle
US6769526B2 (en) 2000-09-19 2004-08-03 Nissan Motor Co., Ltd. Apparatus for estimating clutch temperature
US7151991B2 (en) 2002-09-26 2006-12-19 Nissan Motor Co., Ltd. Driving-force distribution control system for four-wheel-drive vehicles
FR2958585A1 (en) * 2010-04-12 2011-10-14 Renault Sa METHOD FOR CONTROLLING A COUPLER
FR2958607A1 (en) * 2010-04-12 2011-10-14 Renault Sa TORQUE DISTRIBUTION CONTROL METHOD FOR A MOTORIZED MOTOR VEHICLE WITH FOUR WHEELS AND CORRESPONDING VEHICLE
WO2011128569A1 (en) * 2010-04-12 2011-10-20 Renault S.A.S. Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle
CN102958738A (en) * 2010-04-12 2013-03-06 雷诺股份公司 Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle
US9156349B2 (en) 2010-04-12 2015-10-13 Renault S.A.S. Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle
US9248739B2 (en) 2013-03-28 2016-02-02 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
US9315101B2 (en) 2013-03-28 2016-04-19 Honda Motor Co., Ltd. Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
US9931931B2 (en) 2013-10-17 2018-04-03 Honda Motor Co., Ltd. Driving force distribution apparatus and method for distributing driving force
CN108621788A (en) * 2017-03-16 2018-10-09 株式会社斯巴鲁 The control device of vehicle
CN108621788B (en) * 2017-03-16 2023-04-18 株式会社斯巴鲁 Vehicle control device

Also Published As

Publication number Publication date
JP2646820B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JPH02279427A (en) Driving force distribution controller for four-wheel drive vehicle
CA1197596A (en) System for controlling a power transmission of a four- wheel drive vehicle
JP2768134B2 (en) Driving force distribution control device for four-wheel drive vehicle
US6488344B2 (en) Distribution of torque when driven wheels slip during regenerative braking
JP3129793B2 (en) Vehicle drive
JP2001180318A (en) Driving force control system for four-wheel drive vehicle
JP2002127773A (en) Drive force distribution device of four-wheel drive vehicle
JPH04103433A (en) Driving force distribution control device for four-wheel drive vehicle
JPS6387320A (en) Method of controlling four-wheel drive device
JPH02171330A (en) Driving force distribution control device for four-wheel drive car
JP2002234355A (en) Control device for four-wheel drive vehicle
JP2872718B2 (en) Four-wheel drive
JPH09177678A (en) Control method for negative pressure pump
JP6025249B2 (en) Control device for four-wheel drive vehicle
JPH106798A (en) Driving force distribution control device
JP2596196B2 (en) Driving force control device for four-wheel drive vehicle
JPH1029557A (en) Vehicular yaw-moment controller
JP2014008832A (en) Brake system
US20240239205A1 (en) Axle torque estimation in electric vehicles with multi-speed drive unit
JPH02290728A (en) Driving power distribution control device of four-wheel drive vehicle
JPS63141834A (en) Differential limiting control device for vehicle
JP2768138B2 (en) Driving force distribution control device for four-wheel drive vehicle
CN118545024A (en) Vehicle control method and device and vehicle
JPH02267028A (en) Driving power distribution controller of four-wheel drive vehicle
JPH02293221A (en) Drive force distribution controlling device for four-wheel drive car

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees