JPH04103303A - Molding method for composite ceramic - Google Patents

Molding method for composite ceramic

Info

Publication number
JPH04103303A
JPH04103303A JP2220048A JP22004890A JPH04103303A JP H04103303 A JPH04103303 A JP H04103303A JP 2220048 A JP2220048 A JP 2220048A JP 22004890 A JP22004890 A JP 22004890A JP H04103303 A JPH04103303 A JP H04103303A
Authority
JP
Japan
Prior art keywords
sintered body
heat
silicon nitride
strength
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2220048A
Other languages
Japanese (ja)
Other versions
JP2657979B2 (en
Inventor
Fumihiro Wakai
史博 若井
Taiji Kodama
児玉 泰治
Hiromasa Isaki
寛正 伊崎
Takamasa Kawakami
川上 殷正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Gas Chemical Co Inc filed Critical Agency of Industrial Science and Technology
Priority to JP2220048A priority Critical patent/JP2657979B2/en
Priority to DE1990602447 priority patent/DE69002447T2/en
Priority to EP19900123858 priority patent/EP0435064B1/en
Publication of JPH04103303A publication Critical patent/JPH04103303A/en
Priority to US07/865,683 priority patent/US5244621A/en
Application granted granted Critical
Publication of JP2657979B2 publication Critical patent/JP2657979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To enhance strength, fracture toughness value and resistance to heat by superplastic deforming a silicon nitride-silicon carbide composite sintered body composed of regular particles under tensile or compression stress, and then heat treating the same in the non-oxidizing atmosphere, under the normal pressure or pressurized state and at the specified temperature. CONSTITUTION:A silicon nitride-silicon carbide composite sintered body composed of regular particles mainly is molded into the given shape by applying stress in the temperature zone showing superplasticity. Torsion speed under tensile strength or compression stress is made optimum by the molding temperature. The constitution of the superplasticized sintered body is mainly composed of regular particles same as before the superplasticizing and can be precision formed into the given shape without passing through the complicated molding and other processes. Heat treatment is applied under the non-oxidizing atmosphere under the normal pressure or pressurized state and at 1000-2300 deg.C after superplasticizing to change the constitution of a sintered body and enhance strength and modify a grain boundary phase to a composition of high resistance to heat, transform a glass phase to a crystalline phase and enhance resistance to heat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合セラミックスの成形加工法に関し、さら
に詳しくは主として等軸状粒子からなる窒化ケイ素−炭
化ケイ素複合焼結体を、引張り応力あるいは圧縮応力の
作用下で超塑性変形させ成形(以下超塑性加工というこ
とがある)した後、熱処理をすることを特徴とする複合
セラミックスの成形加工法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for forming composite ceramics, and more specifically, a silicon nitride-silicon carbide composite sintered body mainly composed of equiaxed particles is subjected to tensile stress or The present invention relates to a method for forming composite ceramics, which is characterized by carrying out heat treatment after superplastically deforming and forming under the action of compressive stress (hereinafter sometimes referred to as superplastic working).

[従来技術およびその問題点] 窒化ケイ素や炭化ケイ素はいわゆる非酸化物系の構造材
料用セラミックスとして、近年とみに注目を集め様々な
分野で使用されている。
[Prior art and its problems] Silicon nitride and silicon carbide have recently attracted attention as so-called non-oxide ceramics for structural materials and are used in various fields.

こうした窒化ケイ素や炭化ケイ素は、耐熱性、耐熱衝撃
性、耐摩耗性あるいは耐食性をいかして利用がはじまっ
ているが、いわゆる脆性材料であるため材料の成形加工
性がきわめて悪い。通常、窒化ケイ素や炭化ケイ素の部
材は原料粉末を鋳込成形、金型成形、射出成形等によっ
て成形し、焼結後加工して製造している。また、従来の
成形法ではかなり複雑な形状を付与できるものの、焼結
時に寸法収縮が起こるために、精度を要求される部材に
おいては、この成形品を1次焼結、切削加工、2次焼結
した後、研削・研磨によって最終製品を得なければなら
なかった。このようにセラミックスの本来の長所である
はずの、硬いあるいは脆性を示すという性質は、セラミ
ックスの製造にとって成形、加工工程に多大の労力を要
するという結果をもたらしている。また、こうした加工
効率の悪さは製造コストの上昇を引き起こし、セラミッ
クス部材の量産化に大きな障害となっている。
Silicon nitride and silicon carbide have begun to be used because of their heat resistance, thermal shock resistance, wear resistance, and corrosion resistance, but since they are so-called brittle materials, their moldability is extremely poor. Generally, silicon nitride and silicon carbide members are manufactured by molding raw material powder by casting, molding, injection molding, etc., and processing after sintering. In addition, although conventional molding methods can give quite complex shapes, dimensional shrinkage occurs during sintering, so for parts that require precision, this molded product must be processed through primary sintering, cutting, and secondary sintering. After bonding, the final product had to be obtained by grinding and polishing. The hard or brittle nature of ceramics, which should be an inherent advantage, results in the production of ceramics requiring a great deal of labor in the molding and processing steps. In addition, such poor processing efficiency causes an increase in manufacturing costs, which is a major obstacle to mass production of ceramic members.

一方、大きな延性を示す金属材料においては、いわゆる
塑性加工によって効率的かつ安価に製造されており、こ
の加工性の良さが金属材料を広く普及させる大きな要因
となっている。このような塑性加工が窒化ケイ素や炭化
ケイ素などの非酸化物系セラミックスに適用できれば、
製造コストは従来の製法に比べて格段に下がり、構造材
料用セラミックスの量産化あるいは用途の飛躍的な拡大
が見込まれる。
On the other hand, metal materials exhibiting high ductility are manufactured efficiently and inexpensively by so-called plastic working, and this good workability is a major factor in the widespread use of metal materials. If this kind of plastic working can be applied to non-oxide ceramics such as silicon nitride and silicon carbide,
Manufacturing costs are significantly lower than with conventional manufacturing methods, and it is expected to lead to mass production of ceramics for structural materials and a dramatic expansion of applications.

しかしながら、従来の窒化ケイ素や炭化ケイ素は室温に
おいては脆性破壊を示し、1200℃以上の高温域にお
いても塑性変形を示し始めるものの変形量は極めて小さ
い。例えば、−軸引っ張りクリープ試験におけるクリー
プ破断までの変形量はホットプレス窒化ケイ素で8%、
常圧焼結窒化ケイ素で3%以下であり、安定な変形がお
きずに破断してしまう。このため塑性変形による加工を
窒化ケイ素や炭化ケイ素に適用することが不可能であっ
た。
However, conventional silicon nitride and silicon carbide exhibit brittle fracture at room temperature, and although they begin to exhibit plastic deformation even in a high temperature range of 1200° C. or higher, the amount of deformation is extremely small. For example, the amount of deformation to creep rupture in the -axial tensile creep test is 8% for hot-pressed silicon nitride;
In pressureless sintered silicon nitride, it is less than 3%, and breaks without stable deformation. For this reason, it has been impossible to apply processing by plastic deformation to silicon nitride or silicon carbide.

ところで、ある種の金属合金には塑性加工が困難なもの
があり、こうした金属材料では高い温度域において制御
された歪速度によって、いわゆる超塑性変形をおこさせ
て成形・加工することが行われている。この超塑性変形
はくびれを生ずることなく通常の降伏点よりはるかに低
い応力下で変形を起こし、材料の種類によっては数百%
にも及ぶ変形が可能である。このような方法により、塑
性加工が困難な金属合金であっても、複雑形状を持つ部
材が比較的安価に製造できることが知られている。
By the way, some metal alloys are difficult to plastically work, and these metal materials are formed and processed by causing so-called superplastic deformation using controlled strain rates in high temperature ranges. There is. This superplastic deformation occurs under stress far below the normal yield point without constriction, and depending on the type of material, it deforms by several hundred percent.
Many variations are possible. It is known that by such a method, a member having a complex shape can be manufactured at a relatively low cost even if the metal alloy is difficult to plastically work.

本発明者らは、先に、微細かつ主として等軸状の粒子か
らなる窒化ケイ素−炭化ケイ素複合焼結体が制御された
温度と歪速度の一軸引っ張り試験において超塑性を示し
、この超塑性変形によって成形する方法を見い出した。
The present inventors previously demonstrated that a silicon nitride-silicon carbide composite sintered body consisting of fine, mainly equiaxed particles exhibited superplasticity in a uniaxial tensile test at controlled temperature and strain rate, and that the superplastic deformation We found a way to mold it by

 (特願平1−335063号)しかしながら、この超
塑性加工によって成形する方法においては、用いる焼結
体は主として等軸状でしかも微細な粒子からなることが
必要であり、また超塑性加工の工程において微細なキャ
ビティーが生成しやすいことなどから、超塑性加工して
得られる成形品をそのまま構造部材等として使用するに
は強度や破壊靭性値あるいは耐熱性が十分とは言えなか
った。
(Japanese Patent Application No. 1-335063) However, in this method of forming by superplastic working, the sintered body used must be mainly composed of equiaxed and fine particles, and the process of superplastic working requires Because microscopic cavities are likely to be formed in the process, molded products obtained by superplastic processing cannot be said to have sufficient strength, fracture toughness, or heat resistance to be used as structural members as they are.

そこで本発明者らは、この成形性に検討を加えた結果、
超塑性加工後の加工品に熱処理を施すことにより、得ら
れる加工品の強度や破壊靭性値あるいは耐熱性が超塑性
加工直後の成形品に比較して格段に向上することを見い
出した。
Therefore, the present inventors investigated this moldability and found that
It has been found that by heat-treating a workpiece after superplastic working, the strength, fracture toughness, or heat resistance of the resulting workpiece is significantly improved compared to a molded product immediately after superplastic working.

すなわち、本発明は、非酸化物系セラミックスを超塑性
加工しこれを熱処理することによって、安価にしかも超
塑性加工後よりもさらに強度や破壊靭性値あるいは耐熱
性に優れた加工品を与える方法を提供することにある。
In other words, the present invention provides a method of producing a processed product at a low cost and with even better strength, fracture toughness, and heat resistance than after superplastic processing by superplastically processing non-oxide ceramics and heat-treating the same. It is about providing.

[問題点を解決するための手段] 本発明は、窒化ケイ素−炭化ケイ素複合焼結体を超塑性
温度域において応力作用下で変形させ、次いで熱処理す
ることによって強度や破壊靭性に優れた加工品を与える
複合セラミックスの成形加工法に関する。詳しくは、主
として等軸状粒子からなる窒化ケイ素−炭化ケイ素複合
焼結体を引張り応力あるいは圧縮応力の作用下で超塑性
変形した後、非酸化性雰囲気中、常圧あるいは加圧下、
1000〜2300℃で熱処理を行うことを特徴とする
複合セラミックスの成形加工法に関する。
[Means for Solving the Problems] The present invention provides a processed product with excellent strength and fracture toughness by deforming a silicon nitride-silicon carbide composite sintered body under the action of stress in a superplastic temperature range and then heat-treating it. This paper relates to a method for forming composite ceramics that provides the following properties. Specifically, after a silicon nitride-silicon carbide composite sintered body mainly consisting of equiaxed particles is superplastically deformed under the action of tensile stress or compressive stress, it is deformed in a non-oxidizing atmosphere at normal pressure or under pressure.
The present invention relates to a method for forming composite ceramics, which is characterized by performing heat treatment at 1000 to 2300°C.

本発明において、超塑性加工に使用される窒化ケイ素−
炭化ケイ素複合焼結体は粒径が微細かつ主として等軸状
からなることが必要である。使用される窒化ケイ素−炭
化ケイ素複合焼結体の粒径が2μm以上の粒径であった
り、粒径が等軸状でなく例えば柱状粒子がからみあった
ような構造をしている場合は、本発明の超塑性加工によ
る成形を実施することが困難となる。これは、変形が起
こる温度域において応力を作用させた場合にキャビティ
ーが生成し、得られる成形体の強度や他の機械的物性が
著しく劣化するためである。たとえば、従来から用いら
れている窒化ケイ素では粒径が大きく柱状粒子が絡み合
った組織をしているため、高温域においてもその変形量
は小さく、安定な変形がおきずに破断したりキャビティ
ーを生成して機械的物性の著しい劣化をひきおこしてし
まう。
In the present invention, silicon nitride used for superplastic working is
It is necessary that the silicon carbide composite sintered body has a fine grain size and is mainly equiaxed. If the grain size of the silicon nitride-silicon carbide composite sintered body used is 2 μm or more, or if the grain size is not equiaxed but has a structure in which columnar grains are entangled, This makes it difficult to carry out the superplastic forming process of the invention. This is because cavities are generated when stress is applied in the temperature range where deformation occurs, and the strength and other mechanical properties of the resulting molded product are significantly deteriorated. For example, conventionally used silicon nitride has a large particle size and a structure in which columnar particles are intertwined, so the amount of deformation is small even in high temperature ranges, and stable deformation does not occur and may cause rupture or cavities. This results in significant deterioration of mechanical properties.

そこで、本発明においてはまず微細かつ主として等軸状
の粒子からなる窒化ケイ素−炭化ケイ素複合焼結体を、
超塑性を示す温度域において応力を作用させて所定形状
の成形を行う。
Therefore, in the present invention, first, a silicon nitride-silicon carbide composite sintered body consisting of fine and mainly equiaxed particles,
A predetermined shape is formed by applying stress in a temperature range that exhibits superplasticity.

この温度域は通常1400〜1700℃、好ましくは1
450〜1650℃である。これより高い温度域では窒
化ケイ素−炭化ケイ素複合焼結体の熱変質が起き、安定
な変形を起こさせることが困難になる。
This temperature range is usually 1400 to 1700°C, preferably 1
The temperature is 450-1650°C. In a temperature range higher than this, thermal alteration of the silicon nitride-silicon carbide composite sintered body occurs, making it difficult to cause stable deformation.

また、これより低い温度域では成形速度が遅くなり、経
済的に好ましくない。
Furthermore, in a temperature range lower than this, the molding speed becomes slow, which is economically unfavorable.

本発明において、引っ張り応力あるいは圧縮応力等作用
下の歪速度は、成形する温度により最適化されるが、過
度に速度を上げて成形すると粒界すベリに起因するキャ
ビティーが材料中に生成し、これらが連結して大きな欠
陥となって成形体の強度を下げたり、あるいは多孔質に
なるなど機械的物性に悪影響を及ぼすことがある。
In the present invention, the strain rate under the action of tensile stress or compressive stress is optimized by the molding temperature, but if molding is performed at an excessively high speed, cavities due to grain boundary burrs may be formed in the material. , these may link together to form large defects, lowering the strength of the molded product or making it porous, which may have an adverse effect on the mechanical properties.

また、あまり小さな速度で成形した場合には、高温に焼
結体が長時間さらされるため、熱変質を受は易くなる。
Furthermore, if the molding speed is too low, the sintered body will be exposed to high temperatures for a long time, making it more susceptible to thermal deterioration.

したがって、成形に際しての歪速度は10−’ 5ec
−’以上、10−’ 5ec−’以下、好ましくは10
−’ 5ec−’以下で実施することが望ましい。
Therefore, the strain rate during molding is 10-'5ec
-' or more, 10-'5ec-' or less, preferably 10
-' It is desirable to carry out at 5ec-' or less.

その雰囲気は酸化雰囲気あるいは非酸化雰囲気のいずれ
でもよいが、好ましくは非酸化雰囲気で実施するのが好
ましい。これは超塑性加工中に窒化ケイ素−炭化ケイ素
複合焼結体が酸化によって変質を受けないようにするた
めであり、短時間で成形を終了する場合には酸化雰囲気
でもかまわないが、長時間になる場合には非酸化雰囲気
で行うのがよい。
The atmosphere may be either an oxidizing atmosphere or a non-oxidizing atmosphere, but it is preferably carried out in a non-oxidizing atmosphere. This is to prevent the silicon nitride-silicon carbide composite sintered body from undergoing deterioration due to oxidation during superplastic processing, and an oxidizing atmosphere may be used when forming is completed in a short time, but In such cases, it is preferable to carry out the process in a non-oxidizing atmosphere.

このように超塑性加工された焼結体の組織は、加工前と
同様に主として等軸状の粒子から成っている。このため
破壊靭性値は従来の柱状粒子の発達した窒化ケイ素に比
べると低い値を示す。
The structure of the sintered body subjected to superplastic processing in this manner is mainly composed of equiaxed particles, as before processing. Therefore, the fracture toughness value is lower than that of conventional silicon nitride with developed columnar particles.

また、超塑性加工によって焼結体内部や表面には微小の
キャビティーが生成し易く、加工後の強度は加工前より
低くなる傾向がある。そのため超塑性加工して得られる
成形品をそのまま構造部材等として使用するには強度や
破壊靭性値が十分とは言い難い面がある。
In addition, superplastic working tends to produce minute cavities inside and on the surface of the sintered body, and the strength after working tends to be lower than before working. Therefore, it is difficult to say that the strength and fracture toughness values of molded products obtained by superplastic working are sufficient for use as structural members, etc. as they are.

そこで本発明は、超塑性加工後に熱処理を施すものであ
る。この熱処理の目的の一つは、焼結体の組織を変えて
破壊靭性および強度を向上させたり、あるいは、生成し
たキャビティーを熱処理によって消滅あるいは低減させ
たりすることによって高い強度を持たせることにある。
Therefore, in the present invention, heat treatment is performed after superplastic working. One purpose of this heat treatment is to improve fracture toughness and strength by changing the structure of the sintered body, or to increase strength by eliminating or reducing cavities that have formed through heat treatment. be.

また、別の目的は、粒界相を耐熱性の高い組成に変成さ
せたり、ガラス相を結晶相に変えたりすることにより耐
熱性を向上させることにある。
Another purpose is to improve heat resistance by transforming the grain boundary phase into a composition with high heat resistance or by changing the glass phase into a crystalline phase.

このような目的を達成させるための本発明における熱処
理は、非酸化性雰囲気中、常圧あるいは加圧下、1oo
o〜2300℃で実施される。
The heat treatment in the present invention to achieve this purpose is carried out in a non-oxidizing atmosphere at normal pressure or under pressure.
It is carried out at a temperature of 0 to 2300°C.

この熱処理を常圧で行う場合にはその温度は1800℃
以下が好ましく、ガス圧やHIPなどの加圧下で実施す
る場合には窒化ケイ素の分解が起きない範囲、すなわち
、2300℃以下が好ましい。熱処理時間は、成形体の
組成や形状あるいは熱処理温度によって異なるが、通常
1〜24時間程度である。
When this heat treatment is performed at normal pressure, the temperature is 1800℃
The following is preferable, and when carried out under pressure such as gas pressure or HIP, the temperature is preferably within a range where silicon nitride does not decompose, that is, 2300° C. or lower. The heat treatment time varies depending on the composition and shape of the molded article or the heat treatment temperature, but is usually about 1 to 24 hours.

この熱処理によって焼結体の組織は等軸状で微細な組織
から粒成長した柱状粒子と等軸状粒子からなる組織へと
変化し、この微構造変化によって破壊靭性値と強度が加
工直後に比べて格段に向上するようになる。また、焼結
体に生成したキャビティーが減少あるいは消滅すること
により焼結体の強度が向上することにもなる。特にガス
圧やHIPなどの加圧下でこの熱処理を実施した場合に
は、窒化ケイ素の分解が押えられたり、成形体中のキャ
ビティーが減少、消滅し易くなるので、より効果的であ
る。またこの熱処理によって粒界相が耐熱性の高い組成
に変化したり、結晶化するため破壊靭性値や耐熱性が向
上する。
Through this heat treatment, the structure of the sintered body changes from an equiaxed and fine structure to a structure consisting of columnar grains and equiaxed grains with grain growth, and this microstructural change causes the fracture toughness value and strength to improve compared to immediately after processing. This will lead to a significant improvement. Furthermore, the strength of the sintered body is improved by reducing or eliminating cavities formed in the sintered body. In particular, when this heat treatment is carried out under pressure such as gas pressure or HIP, it is more effective because decomposition of silicon nitride is suppressed and cavities in the molded article are more likely to be reduced or eliminated. Furthermore, this heat treatment changes the grain boundary phase to a composition with high heat resistance and crystallizes it, thereby improving fracture toughness and heat resistance.

この熱処理は超塑性加工後−旦冷却することなく引き続
いて実施してもよく、超塑性加工を実施した後焼結体を
室温まで冷却し、しかるのち所定温度まで上昇して熱処
理を実施してもよい。
This heat treatment may be carried out successively after superplastic working without first cooling. After carrying out superplastic working, the sintered body is cooled to room temperature, and then the temperature is raised to a predetermined temperature and heat treatment is carried out. Good too.

このように、本発明においてはまず超塑性温度域で成形
することにより、例えば、圧縮によって薄板を成形した
り、薄板を曲げ成形したり、あるいは所定の形状に加工
された精密な型中で精密成形を行うことができる。さら
に本発明に従って熱処理を行うことにより、得られる成
型加工品の強度や破壊靭性値あるいは耐熱性が超塑性加
工直後の成形品に比較して格段に向上する。また、本発
明に従って熱処理を実施した後、酸化雰囲気下でさらに
熱処理をすることも差し支えない。このような酸化雰囲
気下での熱処理を行うことにより成型加工品の表面状態
を良好にすることができる。
In this way, in the present invention, by first forming in the superplastic temperature range, for example, a thin plate can be formed by compression, a thin plate can be bent, or precisely formed in a precision mold processed into a predetermined shape. Can be molded. Furthermore, by performing heat treatment according to the present invention, the strength, fracture toughness, or heat resistance of the resulting molded product is significantly improved compared to a molded product immediately after superplastic processing. Further, after the heat treatment according to the present invention, further heat treatment may be performed in an oxidizing atmosphere. By performing heat treatment in such an oxidizing atmosphere, the surface condition of the molded product can be improved.

次に本発明の実施例を示す。以下に示す実施例は本発明
の一例を示すものであって本発明の要旨を超えない限り
、これに限定されるものでない。
Next, examples of the present invention will be shown. The examples shown below are merely examples of the present invention, and are not intended to be limiting unless they go beyond the gist of the present invention.

実施例 1 炭素を7.2重量%含有するケイ素、炭素、窒素および
酸素からなる平均粒径が1μm以下の非晶質粉末に、Y
2O36重量%、Aj220.2重量%、を加えエタノ
ール中で湿式混合を行い乾燥した後、直径50Mの黒鉛
ダイスに充填し、窒素ガス中350Kg/cm3の圧力
で1650℃、1時間のホットプレス焼結を行った。得
られた焼結体は密度が3.2g/ra3であり、主とし
て等軸状粒子からなる窒化ケイ素−炭化ケイ素複合焼結
体であった。
Example 1 Y
After adding 6% by weight of 2O3 and 220.2% by weight of Aj, wet-mixing in ethanol and drying, the mixture was filled into a graphite die with a diameter of 50M, and hot-press baked at 1650℃ for 1 hour at a pressure of 350Kg/cm3 in nitrogen gas. I made a conclusion. The obtained sintered body had a density of 3.2 g/ra3, and was a silicon nitride-silicon carbide composite sintered body mainly composed of equiaxed particles.

この焼結体より、直径3InIlll、長さ10工の円
柱部を有する供試体を作成し、窒素雰囲気中1600℃
に設定された高温炉中において、歪速度4 X 1O−
5SeC−’で引っ張り応力を作用させ、円柱部の長さ
を14.4mmになるまで引っ張り、直径2.5m[1
1に加工した。超塑性加工後の破壊靭性値は5.4MP
a−m ”2、室温曲げ強度は520MPaであった。
A specimen having a cylindrical part with a diameter of 3 InIll and a length of 10 mm was made from this sintered body, and heated at 1600°C in a nitrogen atmosphere.
In a high temperature furnace set at a strain rate of 4 x 1O-
5SeC-' was applied with tensile stress until the length of the cylindrical part became 14.4 mm, and the diameter was 2.5 m [1
Processed to 1. Fracture toughness value after superplastic processing is 5.4MP
a-m”2, and the room temperature bending strength was 520 MPa.

次に、この超塑性加工した試験片を常圧において窒素雰
囲気中、1750℃2時間保持したのち、破壊靭性値と
曲げ強度を測定した結果、破壊靭性値は6.4MPa−
m””、室温曲げ強度850MPaに向上した。
Next, this superplastically worked test piece was held at 1750°C in a nitrogen atmosphere at normal pressure for 2 hours, and the fracture toughness value and bending strength were measured. As a result, the fracture toughness value was 6.4 MPa-
The room temperature bending strength was improved to 850 MPa.

実施例 2−5 実施例1と同一の焼結体から作成した供試片(35x 
35x 5 mm)を窒素中、1600℃において、黒
鉛板を介して設置した。これを8 X 1O−5sec
−’で圧縮変形(超塑性加工)させ、厚さ4mmの薄板
を得た。この薄板には亀裂や変質は認められず、超塑性
加工後の破壊靭性値と曲げ強度はそれぞれ5.3Mp 
a −m l / 2.620MPaであった。
Example 2-5 A test piece (35x
35 x 5 mm) were placed through a graphite plate at 1600° C. in nitrogen. This is 8 x 1O-5sec
-' compression deformation (superplastic working) was performed to obtain a thin plate with a thickness of 4 mm. No cracks or alterations were observed in this thin plate, and the fracture toughness and bending strength after superplastic processing were each 5.3 Mp.
a-ml/2.620 MPa.

次にこの超塑性加工品を表1に示す条件で熱処理を行っ
た結果、いずれの場合も熱処理前の破壊靭性値や強度に
優る物性が得られた。
Next, this superplastic processed product was heat treated under the conditions shown in Table 1, and as a result, in all cases, physical properties superior to those before the heat treatment in fracture toughness and strength were obtained.

表−1 実施例 6 炭素含有量9,6重量%のケイ素、炭素、窒素および酸
素からなる1μm以下の非晶質粉末にY2O。
Table 1 Example 6 Y2O was added to an amorphous powder of 1 μm or less consisting of silicon, carbon, nitrogen, and oxygen with a carbon content of 9.6% by weight.

6重量%、AA2032重量%、を加えエタノール中で
湿式混合を行い乾燥した後、直径501nInの黒鉛ダ
イスに充填し、窒素ガス中350Kg/cm’の圧力で
1650℃、1時間のホットプレス焼結を行った。得ら
れた焼結体は密度が3.268/CJ 3であり、主と
して等軸状粒子からなる窒化ケイ素−炭化ケイ素複合焼
結体であった。
After adding 6% by weight and 2032% by weight of AA and drying by wet mixing in ethanol, it was filled into a graphite die with a diameter of 501nIn, and hot press sintered at 1650°C for 1 hour at a pressure of 350Kg/cm' in nitrogen gas. I did it. The obtained sintered body had a density of 3.268/CJ 3 and was a silicon nitride-silicon carbide composite sintered body mainly composed of equiaxed particles.

この焼結体から実施例2と同様の条件で超塑性変形させ
、厚さ4画の試験片(超塑性加工品)を作成した。
This sintered body was superplastically deformed under the same conditions as in Example 2 to create a four stroke thick test piece (superplastic processed product).

この試験片の破壊靭性値は5−2MP a−m+ /2
であり、室温曲げ強度は740MPaであり、また、1
300℃における曲げ強度は370MPaで、塑性変形
していることが認められた。次に超塑性加工後の成形品
を窒素中、1750℃で4時間保持した後、破壊靭性値
と室温強度および高温強度を測定したところ、破壊靭性
値は6.2MPa−m ’ ”であり、室温曲げ強度は
890MPaであった。また、1300℃における曲げ
強度は700MPaであり、このとき塑性変形は認めら
れなかった。(すなわち成型加工品の耐熱性の向上が認
められた。) 〔発明の効果〕 以上のように、本発明に示す如きの微細組織からなる窒
化ケイ素−炭化ケイ素複合焼結体を、超塑性加工するこ
とにより、従来窒化ケイ素焼結体窒化ケイ素−炭化ケイ
素複合焼結体る成形加工に行われるような複雑な成形や
加工工程を経ることなく所定の形状に精密成形を行うこ
とができ、さらに加工後熱処理を行うことにより強度、
破壊靭性値あるいは耐熱性を向上させることができ、寸
法精度および優れた機械的特性の要求されるガスタービ
ン、エンジン等の高温高強度部材、断熱部材、あるいは
耐摩耗材や切削工具等を効率よくしかも安価に製造する
ことができる。
The fracture toughness value of this test piece is 5-2MP a-m+ /2
The bending strength at room temperature is 740 MPa, and the bending strength is 1
The bending strength at 300° C. was 370 MPa, and it was recognized that plastic deformation had occurred. Next, after holding the molded product after superplastic processing at 1750°C for 4 hours in nitrogen, the fracture toughness value, room temperature strength, and high temperature strength were measured, and the fracture toughness value was 6.2 MPa-m'''. The bending strength at room temperature was 890 MPa.The bending strength at 1300°C was 700 MPa, and no plastic deformation was observed at this time. (In other words, an improvement in the heat resistance of the molded product was observed.) [Effects] As described above, by superplastically processing a silicon nitride-silicon carbide composite sintered body having a microstructure as shown in the present invention, conventional silicon nitride sintered body silicon nitride-silicon carbide composite sintered body It is possible to perform precision molding into a predetermined shape without going through the complicated molding and processing steps that are used in molding processes, and further improves strength and strength by performing heat treatment after processing.
It can improve fracture toughness or heat resistance, and can be used efficiently for high-temperature, high-strength parts such as gas turbines and engines that require dimensional accuracy and excellent mechanical properties, insulation parts, wear-resistant materials, cutting tools, etc. It can be manufactured at low cost.

特許出願人 工 業 技 術 院 長 三菱瓦斯化学株式会社Patent applicant: Institute of Technology Director Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 主として等軸状粒子からなる窒化ケイ素−炭化ケイ素複
合焼結体を、引張り応力あるいは圧縮応力の作用下で超
塑性変形させ成形した後、非酸化性雰囲気中、常圧ある
いは加圧下、1000〜2300℃で熱処理を行うこと
を特徴とする複合セラミックスの成形加工法。
A silicon nitride-silicon carbide composite sintered body mainly consisting of equiaxed particles is superplastically deformed and molded under the action of tensile stress or compressive stress, and then heated to a temperature of 1000 to 2300 in a non-oxidizing atmosphere at normal pressure or under pressure. A molding method for composite ceramics characterized by heat treatment at ℃.
JP2220048A 1989-12-26 1990-08-23 Forming method for composite ceramics Expired - Lifetime JP2657979B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2220048A JP2657979B2 (en) 1990-08-23 1990-08-23 Forming method for composite ceramics
DE1990602447 DE69002447T2 (en) 1989-12-26 1990-12-11 Process for shaping ceramic compositions.
EP19900123858 EP0435064B1 (en) 1989-12-26 1990-12-11 Process for shaping ceramic composites
US07/865,683 US5244621A (en) 1989-12-26 1992-04-08 Process for shaping ceramic composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220048A JP2657979B2 (en) 1990-08-23 1990-08-23 Forming method for composite ceramics

Publications (2)

Publication Number Publication Date
JPH04103303A true JPH04103303A (en) 1992-04-06
JP2657979B2 JP2657979B2 (en) 1997-09-30

Family

ID=16745112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220048A Expired - Lifetime JP2657979B2 (en) 1989-12-26 1990-08-23 Forming method for composite ceramics

Country Status (1)

Country Link
JP (1) JP2657979B2 (en)

Also Published As

Publication number Publication date
JP2657979B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
JP5930317B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
CN104550956A (en) Component preparation method through beta-gamma titanium-aluminum alloy prealloy powder spark plasma sintering
CN114507833A (en) TB8 titanium alloy bar with gradient layer alpha-phase structure and preparation method thereof
WO2003083158A1 (en) HIGH STRENGTH HIGH TOUGHNESS Mo ALLOY WORKED MATERIAL AND METHOD FOR PRODUCTION THEREOF
JPS6291480A (en) Ceramic formation
KR20060087077A (en) Nano grained titanium alloy having low temperature superplasticity and manufacturing method of the same
US5244621A (en) Process for shaping ceramic composites
JPH04103303A (en) Molding method for composite ceramic
US5171458A (en) Hot forming mold and method of manufacturing the same
EP0435064B1 (en) Process for shaping ceramic composites
JP2972836B2 (en) Forming method of composite ceramics
US5887241A (en) Method of manufacture of low O2 content MoSi2 /SiC composite bodies
CN113528921A (en) C-containing high-performance multi-principal-element high-entropy alloy and preparation method thereof
JPS6152110B2 (en)
KR101072594B1 (en) Manufacturing method of low temperature sintered SiC having superplasticity or high deformation rate
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
CN112794720B (en) Low-temperature high-speed superplastic forming method for zirconium diboride-based ultrahigh-temperature ceramic
US4966629A (en) Hot forming mold and method of manufacturing the same
JPH06235032A (en) Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material
JPH03107434A (en) Method for working superplasticity silicon nitride short fiber reinforced aluminum matrix composite
JP3359443B2 (en) Alumina sintered body and method for producing the same
Wang et al. Microstructure and mechanical properties of laser deposition manufactured a newly developed Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy
JP3490662B2 (en) Surface-modified alumina ceramics and method for producing the same
Cui et al. INTELLIGENT POWDER NANOMATERIALS: SINTERING TECHNOLOGY REVIEW

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term