JPH04103015U - Piezoelectric components with built-in load capacitance - Google Patents

Piezoelectric components with built-in load capacitance

Info

Publication number
JPH04103015U
JPH04103015U JP492191U JP492191U JPH04103015U JP H04103015 U JPH04103015 U JP H04103015U JP 492191 U JP492191 U JP 492191U JP 492191 U JP492191 U JP 492191U JP H04103015 U JPH04103015 U JP H04103015U
Authority
JP
Japan
Prior art keywords
signal input
dielectric substrate
electrode
capacitance
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP492191U
Other languages
Japanese (ja)
Inventor
隆 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP492191U priority Critical patent/JPH04103015U/en
Publication of JPH04103015U publication Critical patent/JPH04103015U/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

(57)【要約】 [目的] 増幅回路と組み合わせて発振回路を構成する
圧電部品であり、発振周波数精度の高い負荷容量内蔵型
圧電部品を容易に得る。 [構成] 誘電体基板1の第1主面に接地用電極2と2
つの信号入出力用電極3,4を形成するとともに、第2
主面に接地用電極2および信号入出力用電極3,4との
間で静電容量を生じさせる補助電極5を形成し、厚みす
べり振動する圧電素子を誘電体基板の第1主面において
信号入出力用電極3,4間に接続する。[作用] 補助
電極5の部分的な切削によって、接地用電極2と信号入
出力用電極3,4間との静電容量が修正され、これによ
って発振周波数が微調整される。
(57) [Summary] [Purpose] To easily obtain a piezoelectric component with built-in load capacitance, which is a piezoelectric component that configures an oscillation circuit in combination with an amplifier circuit and has a high oscillation frequency accuracy. [Configuration] Grounding electrodes 2 and 2 are provided on the first main surface of the dielectric substrate 1.
Two signal input/output electrodes 3 and 4 are formed, and a second signal input/output electrode 3 and 4 are formed.
An auxiliary electrode 5 that generates capacitance between the grounding electrode 2 and the signal input/output electrodes 3 and 4 is formed on the main surface, and a piezoelectric element vibrating through thickness shear is used to generate signals on the first main surface of the dielectric substrate. Connect between input/output electrodes 3 and 4. [Operation] By partially cutting the auxiliary electrode 5, the capacitance between the grounding electrode 2 and the signal input/output electrodes 3 and 4 is corrected, thereby finely adjusting the oscillation frequency.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、増幅回路と組み合わせて矩形波発振回路を構成する負荷容量内蔵 型圧電部品に関する。 This idea has a built-in load capacitor that can be combined with an amplifier circuit to form a rectangular wave oscillation circuit. Regarding type piezoelectric components.

【0002】0002

【従来の技術】[Conventional technology]

例えば一定周波数の矩形波信号をクロック信号として発生する回路として図7 に示すような発振回路が構成される。同図においてXは圧電セラミクスを用いた 圧電素子、CL1,CL2はそれぞれ負荷容量、ICは増幅回路である。このよ うな回路構成によって、圧電素子Xの共振周波数および負荷容量CL1,CL2 の静電容量により定まる周波数の矩形波信号が発生される。 For example, Figure 7 shows a circuit that generates a rectangular wave signal with a constant frequency as a clock signal. An oscillation circuit as shown in is constructed. In the figure, X uses piezoelectric ceramics. Piezoelectric elements, CL1 and CL2 are load capacitances, and IC is an amplifier circuit. This way With such a circuit configuration, the resonant frequency and load capacitances CL1 and CL2 of the piezoelectric element A rectangular wave signal with a frequency determined by the capacitance of is generated.

【0003】 上述の発振回路を非常に廉価かつ小型にするために、圧電素子Xと負荷容量C L1,CL2を一体化した負荷容量内蔵型圧電部品(図7における一点鎖線内を 単一の部品で構成したもの)が用いられている。0003 In order to make the above-mentioned oscillation circuit very inexpensive and small, piezoelectric element X and load capacitance C A piezoelectric component with built-in load capacity that integrates L1 and CL2 (inside the dashed line in Figure 7) (consisting of a single part) are used.

【0004】 上記負荷容量内蔵型圧電部品の従来構造を図9〜図11に示す。0004 The conventional structure of the piezoelectric component with built-in load capacity is shown in FIGS. 9 to 11.

【0005】 図9は部品内部の構造を表す斜視図であり、部品の主要部は、電極の形成され た誘電体基板1と圧電素子Xとから構成されている。[0005] FIG. 9 is a perspective view showing the internal structure of the component. It is composed of a dielectric substrate 1 and a piezoelectric element X.

【0006】 図10は上記誘電体基板1の斜視図であり、その一方の主面に接地用電極2と 2つの信号入出力用電極3,4が形成されている。[0006] FIG. 10 is a perspective view of the dielectric substrate 1, with a grounding electrode 2 on one main surface thereof. Two signal input/output electrodes 3 and 4 are formed.

【0007】 図11は上記誘電体基板の断面図であり、図に示すように接地用電極2と2つ の信号入出力用電極3,4との間にそれぞれ静電容量CL1,CL2が形成され る。[0007] FIG. 11 is a cross-sectional view of the dielectric substrate, and as shown in the figure, the grounding electrode 2 and two Capacitances CL1 and CL2 are formed between the signal input and output electrodes 3 and 4, respectively. Ru.

【0008】 図9に示したように誘電体基板1の電極形成面側において2つの信号入出力用 電極3,4に対し、圧電素子Xが半田付けされている。[0008] As shown in FIG. 9, there are two signal input/output ports on the electrode forming surface side of the dielectric substrate 1. A piezoelectric element X is soldered to the electrodes 3 and 4.

【0009】 以上の構成によって図7の一点鎖線内に示す負荷容量内蔵型圧電部品が構成さ れている。[0009] With the above configuration, the piezoelectric component with built-in load capacity shown within the dashed line in Figure 7 is constructed. It is.

【0010】0010

【考案が解決しようとする課題】[Problem that the idea aims to solve]

上述した従来の負荷容量内蔵型圧電部品においては、非常に廉価で小型の圧電 部品を提供できるという特徴を備えているが、図7のような発振回路を構成した 際の発振周波数は圧電素子Xの共振周波数のばらつきに大きく左右されるため、 目的とする周波数公差内に収めるためには、予め圧電素子Xが単体の状態でその 共振周波数を測定し、目的の共振周波数を有する圧電素子を選別しておく必要が あった。そのため選別に漏れた圧電素子は不良品となっていた。しかも、誘電体 基板に対し、圧電素子を接続して負荷容量内蔵型圧電部品を構成した場合、その 発振周波数が目的とする公差内に収まるためには、負荷容量CL1,CL2の静 電容量のばらつきも考慮しなければならず、圧電素子Xの共振周波数の許容範囲 は極めて狭くなる。その結果精度の高い負荷容量内蔵型圧電部品を歩留り良く製 造することが困難であった。 The conventional piezoelectric components with built-in load capacitance mentioned above are extremely inexpensive and compact. Although it has the feature of being able to provide parts, it is possible to construct an oscillation circuit as shown in Figure 7. The actual oscillation frequency is greatly influenced by the variation in the resonance frequency of the piezoelectric element In order to keep the frequency within the desired frequency tolerance, the piezoelectric element It is necessary to measure the resonance frequency and select piezoelectric elements with the desired resonance frequency. there were. As a result, piezoelectric elements that were not selected were defective. Moreover, dielectric When a piezoelectric element is connected to the board to form a piezoelectric component with built-in load capacitance, In order for the oscillation frequency to fall within the target tolerance, the static load capacitances CL1 and CL2 must be Variations in capacitance must also be considered, and the permissible range of resonance frequency of piezoelectric element becomes extremely narrow. As a result, highly accurate piezoelectric components with built-in load capacitance can be manufactured with high yield. It was difficult to build.

【0011】 この考案の目的は、誘電体基板に形成する負荷容量の値を調整可能として、上 述の問題を解消した負荷容量内蔵型圧電部品を提供することにある。[0011] The purpose of this invention is to make it possible to adjust the value of the load capacitance formed on the dielectric substrate. The object of the present invention is to provide a piezoelectric component with built-in load capacitance that solves the above-mentioned problems.

【0012】0012

【課題を解決するための手段】[Means to solve the problem]

この考案の負荷容量内蔵型圧電部品は、誘電体基板の第1主面に接地用電極と 、この接地用電極との間で静電容量を生じさせる2つの信号入出力用電極をそれ ぞれ形成し、第2主面に上記接地用電極および信号入出力用電極との間で静電容 量を生じさせる補助電極を形成し、圧電素子を上記誘電体基板の第1主面におい て上記2つの信号入出力用電極間に接続したことを特徴とする。 The piezoelectric component with built-in load capacitance of this invention has a grounding electrode on the first main surface of the dielectric substrate. , connect two signal input/output electrodes that generate capacitance with this grounding electrode. A capacitance is formed between the grounding electrode and the signal input/output electrode on the second main surface. A piezoelectric element is formed on the first main surface of the dielectric substrate. and is connected between the two signal input/output electrodes.

【0013】[0013]

【作用】[Effect]

この考案の負荷容量内蔵型圧電部品では、誘電体基板の第1主面には接地用電 極と2つの信号入出力用電極とがそれぞれ形成されていて、誘電体基板の第2主 面には接地用電極および信号入出力用電極との間で静電容量を生じさせる補助電 極が形成されている。また、圧電素子が上記誘電体基板の第1の主面において上 記2つの信号入出力用電極間に接続されている。以上のように構成されているた め、接地用電極と2つの信号入出力用電極との間に直接および補助電極を介して それぞれ静電容量が形成される。誘電体基板の第1主面に形成されている接地用 電極と2つの信号入出力用電極は圧電素子によって覆われるが、誘電体基板の第 2主面に形成されている補助電極は露出状態にある。したがって誘電体基板に圧 電素子を接続した状態で、補助電極を例えば部分的に切削することによって、接 地用電極と信号入出力用電極間との静電容量を調整することができる。このこと により、圧電素子自体を変更することなく発振周波数を調整することができる。 In the piezoelectric component with built-in load capacitance of this invention, the first main surface of the dielectric substrate is provided with a grounding voltage. A pole and two signal input/output electrodes are formed respectively, and a second main electrode of the dielectric substrate is formed. There is an auxiliary capacitor on the surface that creates capacitance between the grounding electrode and the signal input/output electrode. poles are formed. Further, the piezoelectric element is arranged on the first main surface of the dielectric substrate. It is connected between the two signal input/output electrodes. It is configured as above. between the grounding electrode and the two signal input/output electrodes, both directly and via an auxiliary electrode. A capacitance is formed in each case. For grounding formed on the first main surface of the dielectric substrate The electrode and two signal input/output electrodes are covered by a piezoelectric element, but the first electrode on the dielectric substrate The auxiliary electrodes formed on the second main surface are exposed. Therefore, pressure is applied to the dielectric substrate. With the electrical element connected, the auxiliary electrode can be connected, for example by partially cutting it. The capacitance between the ground electrode and the signal input/output electrode can be adjusted. this thing Therefore, the oscillation frequency can be adjusted without changing the piezoelectric element itself.

【0014】 そのため、圧電素子自体は、その共振周波数の許容範囲を比較的広く設定するこ とができ、全体の歩留りを著しく向上させることができる。[0014] Therefore, the piezoelectric element itself has a relatively wide allowable range of resonance frequency. The overall yield can be significantly improved.

【0015】[0015]

【実施例】【Example】

この考案の実施例である負荷容量内蔵型圧電部品の主要部の構造を図1〜図4 に示す。 Figures 1 to 4 show the structure of the main parts of a piezoelectric component with built-in load capacity, which is an embodiment of this invention. Shown below.

【0016】 図1は部品の内部構造を表す斜視図であり、1は誘電体基板、Xは圧電素子、 6,7,8はそれぞれリード端子である。ここで、圧電素子Xは従来と同じ厚み すべり振動モードを利用するものである。[0016] FIG. 1 is a perspective view showing the internal structure of the component, where 1 is a dielectric substrate, X is a piezoelectric element, 6, 7, and 8 are lead terminals, respectively. Here, the piezoelectric element X has the same thickness as the conventional one. This uses the sliding vibration mode.

【0017】 図2は誘電体基板を第1主面側から見た斜視図である。誘電体基板1の第1主 面には、従来例として示した図10と同様に接地用電極2、信号入出力用電極3 ,4をそれぞれ形成している。[0017] FIG. 2 is a perspective view of the dielectric substrate viewed from the first main surface side. The first main body of the dielectric substrate 1 On the surface, there are a grounding electrode 2 and a signal input/output electrode 3, similar to the conventional example shown in FIG. , 4 respectively.

【0018】 図3は上記誘電体基板の第2主面側からみた平面図(底面図)である。同図に 示すように、接地用電極2および2つの信号入出力用電極3,4に対向する位置 に補助電極5を形成している。[0018] FIG. 3 is a plan view (bottom view) of the dielectric substrate viewed from the second main surface side. In the same figure As shown, the position facing the grounding electrode 2 and the two signal input/output electrodes 3 and 4 An auxiliary electrode 5 is formed on.

【0019】 図4は誘電体基板の中央断面図である。同図に示すように接地用電極2と信号 入出力用電極3,4との間にそれぞれ静電容量C2,C4が形成され、補助電極 5と接地用電極2および信号入出力用電極3,4との間に静電容量C3およびC 1,C5がそれぞれ形成される。[0019] FIG. 4 is a central sectional view of the dielectric substrate. As shown in the figure, the grounding electrode 2 and the signal Capacitances C2 and C4 are formed between the input and output electrodes 3 and 4, respectively, and the auxiliary electrode 5 and the grounding electrode 2 and the signal input/output electrodes 3 and 4, there are capacitances C3 and C. 1 and C5 are formed, respectively.

【0020】 図4に示した誘電体基板を回路図で表わせば図5のようになる。ここで6,7 ,8は図1に示したリード6,7,8にそれぞれ対応する。この回路図を図6の ように変形すれば明らかなように、例えば接地用リード端子7と信号入出力端子 6間の静電容量はC2+(C1C3/(2C1+C3))で表せる。[0020] A circuit diagram of the dielectric substrate shown in FIG. 4 is shown in FIG. 5. here 6,7 , 8 correspond to the leads 6, 7, and 8 shown in FIG. 1, respectively. This circuit diagram is shown in Figure 6. For example, the grounding lead terminal 7 and the signal input/output terminal The capacitance between 6 and 6 can be expressed as C2+ (C1C3/(2C1+C3)).

【0021】 さて、図7に示した基本的な発振回路において負荷容量CL1,CL2の値を 同じ割合でともに変化させたときの発振周波数は図8のように偏移する。[0021] Now, in the basic oscillation circuit shown in Figure 7, the values of load capacitances CL1 and CL2 are When both are changed at the same rate, the oscillation frequency shifts as shown in FIG.

【0022】 以上のように構成した誘電体基板は、図1に示したように第1主面において2 つの信号入出力用電極3,4間に圧電素子Xを接続した状態でその発振周波数を 測定し、目的とする発振周波数との偏差に応じて補助電極5の一部(例えば図3 における斜線部分)を切削する。これにより、C1,C2の容量が減少し、負荷 容量CL1,CL2が低下し、発振周波数が上昇する。従って、通常は補助電極 5を若干大きめに形成し、修正前において発振周波数を目標値より僅かに低く設 定しておくことによって、補助電極の僅かな切削加工または修正なしに目的の周 波数公差内に収まる圧電部品が得られる。[0022] As shown in FIG. 1, the dielectric substrate configured as described above has two With the piezoelectric element X connected between the two signal input/output electrodes 3 and 4, its oscillation frequency is Depending on the deviation from the measured and desired oscillation frequency, a part of the auxiliary electrode 5 (for example, Fig. 3 Cut the shaded area). As a result, the capacitance of C1 and C2 decreases, and the load Capacitances CL1 and CL2 decrease, and the oscillation frequency increases. Therefore, usually the auxiliary electrode 5 is made slightly larger and the oscillation frequency is set slightly lower than the target value before modification. By setting the auxiliary electrode to the desired circumference without slight machining or modification, A piezoelectric component that falls within the wavenumber tolerance is obtained.

【0023】[0023]

【考案の効果】[Effect of the idea]

この考案によれば、負荷容量を形成する誘電体基板に対し圧電素子を接続した 状態で負荷容量の値を調整することができるため、圧電素子自体の共振周波数を 狭範囲に選別することなく、目的の発振周波数を有する負荷容量内蔵型圧電部品 を容易に製造することができる。また、発振周波数精度が格段に優れた負荷容量 内蔵型圧電部品が製造できるようになる。 According to this idea, a piezoelectric element is connected to a dielectric substrate that forms a load capacitance. Since the value of the load capacitance can be adjusted depending on the state, the resonant frequency of the piezoelectric element itself can be adjusted. Piezoelectric components with built-in load capacitance that have the desired oscillation frequency without narrow selection can be easily manufactured. In addition, the load capacity has excellent oscillation frequency accuracy. Built-in piezoelectric components can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本願考案の実施例に係る負荷容量内蔵型圧電部
品の主要部の構造を表す斜視図である。
FIG. 1 is a perspective view showing the structure of a main part of a piezoelectric component with built-in load capacity according to an embodiment of the present invention.

【図2】同負荷容量内蔵型圧電部品に用いる誘電体基板
を第1主面側から見た斜視図である。
FIG. 2 is a perspective view of the dielectric substrate used in the piezoelectric component with built-in load capacitance, viewed from the first main surface side.

【図3】誘電体基板の第2主面側から見た平面図であ
る。
FIG. 3 is a plan view of the dielectric substrate viewed from the second main surface side.

【図4】図2におけるX−X´断面図である。FIG. 4 is a sectional view taken along line XX′ in FIG. 2;

【図5】誘電体基板の回路図である。FIG. 5 is a circuit diagram of a dielectric substrate.

【図6】誘電体基板の回路図である。FIG. 6 is a circuit diagram of a dielectric substrate.

【図7】一般的な矩形波発振回路の回路図である。FIG. 7 is a circuit diagram of a general rectangular wave oscillation circuit.

【図8】図7におけるCL1,CL2を変化させたとき
の発振周波数偏移の特性を表す図である。
8 is a diagram showing the characteristics of oscillation frequency shift when changing CL1 and CL2 in FIG. 7. FIG.

【図9】従来の負荷容量内蔵型圧電部品の主要部の構造
を表す斜視図である。
FIG. 9 is a perspective view showing the structure of the main part of a conventional piezoelectric component with built-in load capacity.

【図10】従来の負荷容量内蔵型圧電部品に用いられる
誘電体基板の斜視図である。
FIG. 10 is a perspective view of a dielectric substrate used in a conventional piezoelectric component with built-in load capacitance.

【図11】図10におけるX−X´の断面図である。FIG. 11 is a sectional view taken along line XX' in FIG. 10.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 誘電体基板の第1主面に接地用電極と、
この接地用電極との間で静電容量を生じさせる2つの信
号入出力用電極をそれぞれ形成し、第2主面に上記接地
用電極および信号入出力用電極との間で静電容量を生じ
させる補助電極を形成し、圧電素子を上記誘電体基板の
第1主面において上記2つの信号入出力用電極間に接続
してなる負荷容量内蔵型圧電部品。
[Claim 1] A grounding electrode on the first main surface of the dielectric substrate;
Two signal input/output electrodes that generate capacitance with this grounding electrode are formed respectively, and capacitance is generated between the grounding electrode and the signal input/output electrode on the second main surface. A piezoelectric component with built-in load capacitance, wherein an auxiliary electrode is formed to provide a load capacitance, and a piezoelectric element is connected between the two signal input/output electrodes on the first main surface of the dielectric substrate.
JP492191U 1991-02-08 1991-02-08 Piezoelectric components with built-in load capacitance Pending JPH04103015U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP492191U JPH04103015U (en) 1991-02-08 1991-02-08 Piezoelectric components with built-in load capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP492191U JPH04103015U (en) 1991-02-08 1991-02-08 Piezoelectric components with built-in load capacitance

Publications (1)

Publication Number Publication Date
JPH04103015U true JPH04103015U (en) 1992-09-04

Family

ID=31735085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP492191U Pending JPH04103015U (en) 1991-02-08 1991-02-08 Piezoelectric components with built-in load capacitance

Country Status (1)

Country Link
JP (1) JPH04103015U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122312A (en) * 1985-11-21 1987-06-03 Murata Mfg Co Ltd Piezoelectric resonator built-in capacitor
JPS62203411A (en) * 1986-03-03 1987-09-08 Fujitsu Ltd Capacitor built-in type piezoelectric vibrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122312A (en) * 1985-11-21 1987-06-03 Murata Mfg Co Ltd Piezoelectric resonator built-in capacitor
JPS62203411A (en) * 1986-03-03 1987-09-08 Fujitsu Ltd Capacitor built-in type piezoelectric vibrator

Similar Documents

Publication Publication Date Title
US6583689B2 (en) Four-pole monolithic filter held in a container by conductive adhesives at four connecting electrode locations
US4336510A (en) Oscillator with a feedback circuit employing a pre-polarized ceramic piezoelectric oscillating unit
JP4449978B2 (en) Mechanical quantity sensor
JP4694380B2 (en) Thin film tuning fork type bending vibrator and electric signal processing element
US5091671A (en) Piezoelectric oscillator
KR20030096032A (en) Temperature-compensated crystal oscillator
EP0079955B1 (en) Impedance measurement circuit
JPH0119650B2 (en)
JPH04103015U (en) Piezoelectric components with built-in load capacitance
JP3400165B2 (en) Oscillator and filter
JP2001074767A (en) Accelerometer and its manufacture
JP2004153815A (en) Variable delay line
JPH0441622Y2 (en)
JPH0697758A (en) Piezoelectric vibrator
JP2001077627A (en) Temperature-compensating piezoelectric oscillator
JPS6233303Y2 (en)
JPH03220905A (en) Crystal oscillator of temperature compensation type
JPH048649Y2 (en)
JPH0321069Y2 (en)
JPS62131617A (en) Three-terminal type piezoelectric resonator
JPH0138962Y2 (en)
JPS60256201A (en) Composite type oscillator
JPH04129314A (en) Piezoelectric resonator
JPH11317335A (en) Chip-type trimmer capacitor
JPH05327349A (en) Oscillation circuit