JPH04102096A - Shielding body against thermal neutron - Google Patents

Shielding body against thermal neutron

Info

Publication number
JPH04102096A
JPH04102096A JP21892990A JP21892990A JPH04102096A JP H04102096 A JPH04102096 A JP H04102096A JP 21892990 A JP21892990 A JP 21892990A JP 21892990 A JP21892990 A JP 21892990A JP H04102096 A JPH04102096 A JP H04102096A
Authority
JP
Japan
Prior art keywords
ray
thermal
neutrons
neutron
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21892990A
Other languages
Japanese (ja)
Inventor
Hitoshi Kikuchi
仁志 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21892990A priority Critical patent/JPH04102096A/en
Publication of JPH04102096A publication Critical patent/JPH04102096A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the reduction of generation of a secondary gamma-ray of high energy by dispersing particles containing a thermal neutron absorbing element for absorbing thermal neutrons in a resin which does not contain a secondary gamma-ray generating element of high energy generating the secondary gamma-ray of high energy when the thermal neutrons are captured. CONSTITUTION:A fluororesin such as Teflon is used in a matrix on a neutron shielding layer 23 and a boron compound (B4C particle) dispersed to form as particles containing a thermal neutron absorbing element in a resin. A shield shutter 13 is opened to irradiate a test specimen 14 with thermal neutrons 6 through a conduit 12 from a heavy water tank so as to expose an exposure plate 15 by the use of transmitted neutrons 6. When the neutrons 6 strike B4C particles contained in a shield member 16, the B4C particles captures them and a secondary gamma-ray 7 of low energy is released instead. Since the retained energy of the ray 7 is about 0.5MeV, it can be shielded by the use of an outside gamma-ray shielding layer 24. In addition, since hydrogen is not contained in the matrix of the shielding layer 23, the secondary gamma ray of high energy is not generated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、熱中性子を遮蔽するための熱中性子用遮蔽
体に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a thermal neutron shield for shielding thermal neutrons.

[従来の技術] 近時、中性子ラジオグラフィ (NRG)による非破壊
検査及び中性子の散乱を利用した物質の分子構造解析等
の分野において、熱中性子を利用する技術が注目を集め
、各方面で種々研究されている。この場合に、中性子そ
の他の放射線を外部に漏らさないように、装置各部を遮
蔽体で覆う必要がある。
[Prior Art] Recently, technology that uses thermal neutrons has attracted attention in fields such as non-destructive testing using neutron radiography (NRG) and molecular structure analysis of substances using neutron scattering, and has been used in various fields. being researched. In this case, it is necessary to cover each part of the device with a shield to prevent neutrons and other radiation from leaking to the outside.

第4図に示すように、従来の遮蔽体2は、線源95の側
に中性子遮蔽層3が設けられ、この外側がガンマ線遮蔽
層4で覆われている。線源5から放射される中性子は遮
蔽層3で吸収され、ガンマ線は鉛製の遮蔽層4で吸収さ
れるようになっている。
As shown in FIG. 4, in the conventional shielding body 2, a neutron shielding layer 3 is provided on the side of the radiation source 95, and the outside thereof is covered with a gamma ray shielding layer 4. Neutrons emitted from the radiation source 5 are absorbed by the shielding layer 3, and gamma rays are absorbed by the shielding layer 4 made of lead.

中性子遮蔽層3は、ポリエチレン、シリコーンゴム、ま
たはパラフィン等からなるマトリックス中にホウ素化合
物粒子(B203 、B4C等)を所定の割合で分散さ
せたものである。ホウ素化合物粒子は、中性子を吸収す
る吸収材としての役割を有する。このような遮蔽体2に
おいては、中性子遮蔽層3のマトリックス中に多量の水
素が含まれており、これら水素原子によって高速中性子
が減速され、熱中性子(減速中性子)6となる。さらに
、熱中性子6はホウ素化合物粒子によって捕獲される。
The neutron shielding layer 3 is made by dispersing boron compound particles (B203, B4C, etc.) in a predetermined ratio in a matrix made of polyethylene, silicone rubber, paraffin, or the like. The boron compound particles serve as an absorbent that absorbs neutrons. In such a shielding body 2, a large amount of hydrogen is contained in the matrix of the neutron shielding layer 3, and fast neutrons are slowed down by these hydrogen atoms to become thermal neutrons (decelerated neutrons) 6. Furthermore, thermal neutrons 6 are captured by boron compound particles.

[発明が解決しようとする課題] しかしながら、従来の遮蔽体は、高速中性子に対しては
優れた遮蔽性能を示すが、低速の熱中性子に対する遮蔽
性能は必ずしも万全ではない。これは、中性子遮蔽層の
マトリックス中に多量の水素が含有されているために、
吸収材に熱中性子6が吸収されてしまう前に、熱中性子
6の一部が水素原子に捕獲されて、高エネルギの二次ガ
ンマ線7(工、ネルギレベルが約2.2MeV)を放出
するからである。この高エネルギの二次ガンマ線7は、
ホウ素から放出される比較的低エネルギの二次ガンマ線
を遮蔽する程度の厚さの鉛遮蔽層4では十分に遮蔽でき
ない。このため、人体に有害な高エネルギ二次ガンマ線
7が外部に漏れ出し、実験者等が被爆するおそれが生じ
る。
[Problems to be Solved by the Invention] However, although conventional shielding bodies exhibit excellent shielding performance against fast neutrons, their shielding performance against slow thermal neutrons is not necessarily perfect. This is because the matrix of the neutron shielding layer contains a large amount of hydrogen.
Before the thermal neutrons 6 are absorbed by the absorbing material, some of them are captured by hydrogen atoms and emit high-energy secondary gamma rays 7 (energy level is about 2.2 MeV). It is. This high-energy secondary gamma ray 7 is
The lead shielding layer 4, which is thick enough to shield relatively low-energy secondary gamma rays emitted from boron, cannot sufficiently shield them. Therefore, there is a risk that high-energy secondary gamma rays 7 harmful to the human body leak outside, exposing experimenters and others to radiation.

ここで、熱中性子とは、エネルギレベルが約1eV以下
のものをいい、高速中性子を減速材で減速させた低エネ
ルギ状態の中性子のことをいう。
Here, the thermal neutron refers to a neutron with an energy level of about 1 eV or less, and refers to a low-energy neutron obtained by moderating a fast neutron with a moderator.

高速中性子は、炉心内の燃料の核分裂で放出された状態
で、通常、エネルギレベルがl M e V以上である
Fast neutrons are released by nuclear fission of fuel in a reactor core and typically have an energy level of 1 M e V or higher.

ところで、従来においては、高速中性子の遮蔽を主目的
としていたので、遮蔽体中に減速材としての水素の存在
は必要不可欠であり、高エネルギの二次ガンマ線の発生
を回避することはできない。
By the way, in the past, since the main purpose was to shield fast neutrons, the presence of hydrogen as a moderator in the shielding body was essential, and the generation of high-energy secondary gamma rays could not be avoided.

しかし、近時、熱中性子の利用促進に伴い、熱中性子だ
けの遮蔽を行なうための遮蔽体が必要とされている。熱
中性子は、水素原子のみならず、鉄、アルミニウム等の
金属原子に捕獲されると、人体に有害な高エネルギの二
次ガンマ線を生じる。
However, in recent years, as the use of thermal neutrons has been promoted, a shielding body for shielding only thermal neutrons is required. When captured by not only hydrogen atoms but also metal atoms such as iron and aluminum, thermal neutrons produce high-energy secondary gamma rays that are harmful to the human body.

この発明は、かかる事情に鑑みてなされたものであって
、人体に有害な高エネルギ二次ガンマ線を生じることな
く、熱中性子を遮蔽することができる熱中性子用遮蔽体
を提供することを目的とする。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a thermal neutron shield that can shield thermal neutrons without producing high-energy secondary gamma rays that are harmful to the human body. do.

[課題を解決するための手段及び作用コこの発明に係る
熱中性子用遮蔽体は、熱中性子を捕獲すると高エネルギ
の二次ガンマ線を発生する高エネルギ二次ガンマ線発生
元素を含まない樹脂の中に、熱中性子を吸収する熱中性
子吸収元素を含む粒子を分散させたことを特徴とする。
[Means and Effects for Solving the Problems] The thermal neutron shield according to the present invention includes a resin containing no high-energy secondary gamma ray-generating element that generates high-energy secondary gamma rays when thermal neutrons are captured. , is characterized by dispersing particles containing a thermal neutron absorbing element that absorbs thermal neutrons.

熱中性子吸収元素を含む粒子にはB 203.84C等
のホウ素系化合物を採用することが最も好ましい。Bは
、熱中性子を捕獲したときに、これから放出されるに次
ガンマ線が比較的低エネルギ(エネルベルが約0.5M
eV)である。このため、Bによれば人体に有害な高エ
ネルギ二次ガンマ線を放出することなく、熱中性子を吸
収することができる。また、ホウ素系化合物以外の他の
物質としてLiF等のリチウム系化合物を熱中性子吸収
元素を含む粒子に用いることもできる。
It is most preferable to employ a boron-based compound such as B 203.84C for the particles containing a thermal neutron absorbing element. B is that when a thermal neutron is captured, the next gamma ray emitted from it has relatively low energy (the energy level is about 0.5M).
eV). Therefore, according to B, thermal neutrons can be absorbed without emitting high-energy secondary gamma rays that are harmful to the human body. Furthermore, a lithium-based compound such as LiF can also be used as a material other than a boron-based compound for particles containing a thermal neutron absorbing element.

従って、このようなホウ素系化合物およびリチウム系化
合物は、熱中性子吸収材として用いるのに好適である。
Therefore, such boron-based compounds and lithium-based compounds are suitable for use as thermal neutron absorbers.

通常、遮蔽体として使用される材料の成分元素の内、高
エネルギ二次ガンマ線を発生する元素の典型的なものと
しては水素がある。水素以外の元素では、鉄、アルミニ
ウム等の金属があげられる。
Among the constituent elements of materials normally used as shielding bodies, hydrogen is a typical element that generates high-energy secondary gamma rays. Elements other than hydrogen include metals such as iron and aluminum.

従って、これらの成分がマトリックスの樹脂中に含まれ
ないようにする必要がある。
Therefore, it is necessary to prevent these components from being included in the matrix resin.

従って、マトリックスの樹脂には、フッ素系樹脂を用い
ることか好ましい。
Therefore, it is preferable to use a fluororesin as the matrix resin.

一般に、フッ素樹脂は、ゴムやポリエチレンに比べて耐
放射線性の点で劣るといわれている。しかし、熱中性子
遮蔽体は、放射線レベルが比較的低い環境で使用される
こと、および、構造材料としての強度は要求されないこ
と、の理由から実用上不都合は生じない。
Generally, fluororesins are said to have inferior radiation resistance compared to rubber and polyethylene. However, thermal neutron shields do not pose any practical disadvantages because they are used in environments where the radiation level is relatively low and strength as a structural material is not required.

[実施例] 以下、添付の図面を参照しながら、この発明の実施例に
ついて具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

研究用原子炉の建屍に隣接して中性子ラジオグラフィ設
備が設けられている。原子炉プールには炉心が浸漬され
、炉心周囲に重水タンクが設けられている。重水タンク
から中性子ラジオグラフィ設備に至るまでの間に、ガラ
ス製の中性子導管が設けられており、熱中性子だけを取
り出すことができる。
A neutron radiography facility is located adjacent to the research reactor building. The reactor core is immersed in the reactor pool, and a heavy water tank is installed around the reactor core. A glass neutron conduit is installed between the heavy water tank and the neutron radiography equipment, allowing only thermal neutrons to be extracted.

第2図に示すように、中性子導管12の先端が中性子ラ
ジオグラフィ設備の撮影容器11の入口に到達している
。撮影容器11は鉄鋼材料でつくられている。容器11
の入口にはシャッタ13が設けられている。シャッタ1
3には熱中性子遮蔽体が張り付けられている。容器11
の入口に対面するように感光板15が設けられている。
As shown in FIG. 2, the tip of the neutron conduit 12 has reached the entrance of the imaging container 11 of the neutron radiography equipment. The photographic container 11 is made of steel material. Container 11
A shutter 13 is provided at the entrance. shutter 1
3 is attached with a thermal neutron shield. Container 11
A photosensitive plate 15 is provided so as to face the entrance.

感光板15は、熱中性子遮蔽体を有する部材16でバッ
クアップされている。容器入口から感光板15までの間
にはカプセル状の被検体14が載置され、入口から入射
した熱中性子6が被検体14に当たるようになっている
The photosensitive plate 15 is backed up by a member 16 having a thermal neutron shield. A capsule-shaped specimen 14 is placed between the entrance of the container and the photosensitive plate 15, so that thermal neutrons 6 incident from the entrance hit the specimen 14.

次に、第1図に示すモデルを参照して熱中性子遮蔽体に
ついて説明する。なお、上記の遮蔽シャッタ13および
遮蔽部材16は、これと実質的に同様の構成をなすもの
である。
Next, the thermal neutron shield will be explained with reference to the model shown in FIG. Note that the shielding shutter 13 and shielding member 16 described above have substantially the same configuration as this.

中性子遮蔽体20は、線源5の側に中性子遮蔽層23を
、その外側にガンマ線遮蔽層24ををする。中性子遮蔽
層23は、マトリックスにテフロン等のフッ素系樹脂を
用い、この樹脂中にB4C粒子を分散させて形成されて
いる。84C粒子は、平均粒径が51で、平均分布率が
2X109個/am3である。この場合に、84C粒子
とマトリックス樹脂との混合比は重量比で約1対9であ
る。
The neutron shielding body 20 has a neutron shielding layer 23 on the side of the radiation source 5 and a gamma ray shielding layer 24 on the outside thereof. The neutron shielding layer 23 is formed by using a fluororesin such as Teflon as a matrix and dispersing B4C particles in this resin. The 84C particles have an average particle size of 51 and an average distribution rate of 2×10 9 particles/am 3 . In this case, the mixing ratio of 84C particles and matrix resin is approximately 1:9 by weight.

次に、第1図および第3図を参照しながら熱中性子遮蔽
体の機能について説明する。
Next, the function of the thermal neutron shield will be explained with reference to FIGS. 1 and 3.

遮蔽シャッタ13を開け、重水タンクから導管12を介
して熱中性子6を被検体14に所定時間たけ照射する。
The shielding shutter 13 is opened, and the subject 14 is irradiated with thermal neutrons 6 from the heavy water tank through the conduit 12 for a predetermined period of time.

熱中性子6は、被検体14を透過し、後方の感光板15
を感光させる。遮蔽部材16に含まれるB4C粒子25
に熱中性子6が当たると、これが粒子25に捕獲され、
かわりに低エネルギの二次ガンマ線7が放出される。こ
の二次ガンマ線7は、保有エネルギが約0.5MeV程
度であるので、外側の鉛遮蔽層24によって十分に遮蔽
され得る。
The thermal neutron 6 passes through the object 14 and hits the photosensitive plate 15 at the rear.
expose to light. B4C particles 25 contained in the shielding member 16
When thermal neutron 6 hits, it is captured by particle 25,
Instead, low-energy secondary gamma rays 7 are emitted. Since this secondary gamma ray 7 has an energy of about 0.5 MeV, it can be sufficiently shielded by the outer lead shielding layer 24.

また、中性子遮蔽層23のマトリックスに水素を含まな
いので、熱中性子6が粒子25に捕獲吸収されてしまう
間に、熱中性子6の一部がマトリックスに当たって高エ
ネルギ二次ガンマ線が生しることはない。この結果、撮
影容器11の外部への放射線漏洩量か大幅に低減される
Furthermore, since the matrix of the neutron shielding layer 23 does not contain hydrogen, while the thermal neutrons 6 are captured and absorbed by the particles 25, there is no chance that some of the thermal neutrons 6 will hit the matrix and generate high-energy secondary gamma rays. do not have. As a result, the amount of radiation leaking to the outside of the imaging container 11 is significantly reduced.

次に、第1図および第2図に示すモデルを用いて輸送計
算コードANISNにより模擬計算を行ない、本発明と
従来とを理論的に比較した場合について説明する。
Next, a case will be described in which a simulation calculation is performed using the transportation calculation code ANISN using the models shown in FIGS. 1 and 2, and a theoretical comparison is made between the present invention and the conventional method.

遮蔽体の形状および寸法、ホウ素の原子個数密度、並び
に線源の強さの条件を同じにして、両者を比較した。こ
の場合に、中性子吸収層3ではホウ素化合物20重量%
に対してポリエチレン80重量%の割合に、中性子吸収
層23ではホウ素化合物10重量96に対してテフロン
90重量%の割合とした。線Fi、5の径は1cITl
で、中性子放出量は毎秒3 X 1010とした。中性
子遮蔽層3.23は、内径を5 cm 、厚さを5印と
した。鉛遮蔽層4゜24は、内径を10cm、厚さを1
0cmとした。なお、線源5と中性子遮蔽層3.23の
間には空気が存在するとした。
The two were compared under the same conditions, including the shape and dimensions of the shield, the boron atomic number density, and the strength of the radiation source. In this case, the neutron absorption layer 3 contains 20% by weight of a boron compound.
In the neutron absorbing layer 23, the ratio of Teflon was 90% by weight to 10% by weight of the boron compound. The diameter of the wire Fi, 5 is 1cITl
The amount of neutrons emitted was 3 x 1010 per second. The neutron shielding layer 3.23 had an inner diameter of 5 cm and a thickness of 5 marks. The lead shielding layer 4゜24 has an inner diameter of 10 cm and a thickness of 1.
It was set to 0 cm. It is assumed that air exists between the radiation source 5 and the neutron shielding layer 3.23.

上記モデルを用いた模擬計算の結果によれば、鉛遮蔽層
の外表面おけるガンマ線の線量等量率は、本発明の遮蔽
体では従来の遮蔽体の約1/10に低■する。線量等量
率を同程度とすれば、本発明の遮蔽体では、外側の鉛遮
蔽層の厚さを従来の約1/2まで薄くすることが可能に
なる。
According to the results of simulation calculations using the above model, the dose equivalent rate of gamma rays on the outer surface of the lead shielding layer is about 1/10 lower in the shielding body of the present invention than in the conventional shielding body. If the dose equivalent rate is kept at the same level, in the shielding body of the present invention, the thickness of the outer lead shielding layer can be reduced to about 1/2 of that of the conventional shielding body.

また、上記実施例の遮蔽体は、従来のものより耐熱性に
優れ、約200℃までの温度で使用可能である。
Further, the shield of the above embodiment has better heat resistance than the conventional shield and can be used at temperatures up to about 200°C.

[発明の効果コ 本発明の熱中性子用遮蔽体によれば、高エネルギの二次
ガンマ線の発生量を従来のものより大幅に低減すること
ができる。このため、従来のものよりも放射線遮蔽性能
が向上し、同程度の遮蔽性能であれば、外側の鉛遮蔽層
の厚さを大幅に薄くすることが可能になり、遮蔽体を軽
量化できる。
[Effects of the Invention] According to the thermal neutron shield of the present invention, the amount of high-energy secondary gamma rays generated can be significantly reduced compared to conventional shields. Therefore, the radiation shielding performance is improved compared to the conventional one, and with the same level of shielding performance, it is possible to significantly reduce the thickness of the outer lead shielding layer, and the weight of the shield can be reduced.

また、本発明の遮蔽体は、従来のものより加工性か良好
である。さらに、耐熱性に優れ、水素を含まないので不
燃性であり、長期間の使用に耐えられる。
Further, the shielding body of the present invention has better workability than conventional shielding bodies. Furthermore, it has excellent heat resistance, is nonflammable because it does not contain hydrogen, and can withstand long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る熱中性子用遮蔽体を示
す断面模式図、第2図は中性子ラジオグラフィ装置の一
部を示す断面模式図、第3図は熱中性子の吸収挙動を説
明するために、中性子遮蔽層の一部を拡大して示す概念
図、第4図は従来の遮蔽体を示す断面模式図である。 5・・・線源、6・・・中性子、7・・・二次ガンマ線
、13.16.20・・・遮蔽体、23・・・中性子遮
蔽層、24・・・ガンマ線遮蔽層、25・・・熱中性子
吸収材。
Fig. 1 is a schematic cross-sectional diagram showing a thermal neutron shield according to an embodiment of the present invention, Fig. 2 is a schematic cross-sectional diagram showing a part of a neutron radiography device, and Fig. 3 explains the absorption behavior of thermal neutrons. FIG. 4 is a schematic cross-sectional view showing a conventional shielding body. 5... Radiation source, 6... Neutron, 7... Secondary gamma ray, 13.16.20... Shielding body, 23... Neutron shielding layer, 24... Gamma ray shielding layer, 25. ...Thermal neutron absorber.

Claims (2)

【特許請求の範囲】[Claims] (1)熱中性子を吸収すると高エネルギの二次ガンマ線
を発生する高エネルギ二次ガンマ線発生元素を含まない
樹脂の中に、熱中性子を吸収する熱中性子吸収元素を含
む粒子を分散させたことを特徴とする熱中性子用遮蔽体
(1) Particles containing a thermal neutron absorbing element that absorbs thermal neutrons are dispersed in a resin that does not contain a high energy secondary gamma ray generating element that generates high energy secondary gamma rays when absorbing thermal neutrons. Features a thermal neutron shield.
(2)熱中性子吸収元素を含む粒子が、ホウ素化合物で
あることを特徴とする請求項1記載の熱中性子用遮蔽体
(2) The thermal neutron shield according to claim 1, wherein the particles containing the thermal neutron absorbing element are boron compounds.
JP21892990A 1990-08-22 1990-08-22 Shielding body against thermal neutron Pending JPH04102096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21892990A JPH04102096A (en) 1990-08-22 1990-08-22 Shielding body against thermal neutron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21892990A JPH04102096A (en) 1990-08-22 1990-08-22 Shielding body against thermal neutron

Publications (1)

Publication Number Publication Date
JPH04102096A true JPH04102096A (en) 1992-04-03

Family

ID=16727534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21892990A Pending JPH04102096A (en) 1990-08-22 1990-08-22 Shielding body against thermal neutron

Country Status (1)

Country Link
JP (1) JPH04102096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047096A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Radioisotope manufacturing equipment and its installation method
JP2014055854A (en) * 2012-09-12 2014-03-27 High Energy Accelerator Research Organization Neutron absorber and neutron exposure preventing structure
JP2017026563A (en) * 2015-07-28 2017-02-02 株式会社▲高▼田機械製作所 Neutron shielding material, method for manufacturing the same, and neutron shielding container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047096A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Radioisotope manufacturing equipment and its installation method
JP2014055854A (en) * 2012-09-12 2014-03-27 High Energy Accelerator Research Organization Neutron absorber and neutron exposure preventing structure
JP2017026563A (en) * 2015-07-28 2017-02-02 株式会社▲高▼田機械製作所 Neutron shielding material, method for manufacturing the same, and neutron shielding container

Similar Documents

Publication Publication Date Title
US20170200518A1 (en) Composition for radiation shielding and method for preparing same
Bevelacqua Basic health physics: problems and solutions
McCall et al. Transport of accelerator produced neutrons in a concrete room
Shultis et al. Radiation shielding and radiological protection
CN103946338B (en) Immersion neutron imaging equipment and the imaging method using the equipment
JP2016102650A (en) Neutron shield structure and neutron irradiation chamber
JPH04102096A (en) Shielding body against thermal neutron
Swanson et al. Dosimetry for radiological protection at high-energy particle accelerators
Igwesi et al. A Comparative study of Dose transmission factor of polythene and borated polythene for high neutron source shielding
Keshavamurthy et al. Radiation safety and radiation shielding design
JP2017026563A (en) Neutron shielding material, method for manufacturing the same, and neutron shielding container
Chen et al. Design of an Am–Be neuron source experimental platform at Sichuan University
Panitra et al. Rubber based neutron shielding material simulation using MCNP5
CN212061894U (en) Composite structure type neutron flow shielding device
JP7219513B2 (en) Method and apparatus for producing radioisotope
Tsypin Use of collimated neutron beam sources in shielding studies (the B-2 assembly of the BR-5 Reactor)
JP2002257996A (en) Neutron generating device
Demerdjiev et al. Numerical optimization of radiation shielding of target used for production of 18F
Pradana et al. ESTIMATION OF NEUTRON AND PROMPT PHOTON DOSE RATE DISTRIBUTION IN TMSR-500 USING MCNP6
Deatanyah et al. Determination of photon ambient dose buildup factors for radiological applications for points and plaque source configurations using MCNP5
Mitev et al. Investigation of an Innovative Material for Neutron Shielding
DE2613700A1 (en) Detector for fissionable material long objects esp. fuel rods - includes layer which selectively attenuates source neutrons
Hasan et al. Development of novel jute based composite material for radiation shielding applications
Cai et al. Research Article Experimental and Simulation Study on Shielding Performance of Developed Hydrogenous Composites
JP2024000810A (en) Neutron and gamma-ray collimater, radiography device