JPH04102066A - Acceleration sensor and its manufacture - Google Patents

Acceleration sensor and its manufacture

Info

Publication number
JPH04102066A
JPH04102066A JP2220654A JP22065490A JPH04102066A JP H04102066 A JPH04102066 A JP H04102066A JP 2220654 A JP2220654 A JP 2220654A JP 22065490 A JP22065490 A JP 22065490A JP H04102066 A JPH04102066 A JP H04102066A
Authority
JP
Japan
Prior art keywords
etching
weight
groove
silicon substrate
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220654A
Other languages
Japanese (ja)
Inventor
Kimitoshi Sato
公敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2220654A priority Critical patent/JPH04102066A/en
Publication of JPH04102066A publication Critical patent/JPH04102066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To simplify management of a position of a weight and thickness of a thin part and also to stably realize desired sensitivity in batch processing by integrating a mount, a cantilever, the weight and the thin part by means of etching of a desired part of a silicon substrate. CONSTITUTION:An HI groove 1b which is formed by anisotropic etching HI from a rear of a silicon substrate 1 and an HI groove 1c which is formed by plasma HI from a surface form a through groove 1a communicating through the surface and the rear. The groove 1a separates the substrate 1 into a peripheral part and an inner part except a coupling portion, while a mount 3 is structured on the peripheral part and a weight 5, a cantilever 4 and a thin part 2 are integrally structured on the inner part. The grooves 1b, 1b located on both sides of the coupling portion are subjected to side etching to form a recess 16, while the thin part 2 is formed between the bottom of the recess and the surface of the substrate 1. Therefore at the time of anisotropic HI, it is easy to manage thickness of the thin part by means of optimization of HI width. In addition, an integral structure permits easy placement of the weight to an optimum position so that stable acquisition of desired sensitivity in batch processing is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に自動車用の加速度センサとして広く用い
られており、シリコン製のカンチレバーに生じる歪によ
り加速度検出を行う加速度センサ(半導体加速度センサ
)及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is widely used as an acceleration sensor particularly for automobiles, and is an acceleration sensor (semiconductor acceleration sensor) that detects acceleration by strain generated in a silicon cantilever. and its manufacturing method.

〔従来の技術〕[Conventional technology]

半導体加速度センサは、基端に台座を備え、中途に薄肉
部を設けたシリコン製のカンチレバーの先端に重錘を固
定し、加速度の作用による該重錘の振れに伴って前記薄
肉部に生じる歪を、これの表面に拡散抵抗により構成し
たブリフジの出力として検出するものであり、小型化が
容易であると共に劣悪な環境下での使用が可能であるこ
とから、自動車用等、配設空間が限定される用途に最適
なものとして広く用いられている。そしてこの種の加速
度センサは、従来、シリコン基板の中途を薄肉化してな
るカンチレバーを作成し、この薄肉部の基端側を台座と
するか、又は台座に固定し、また先端側に重錘を取付け
る手順にて製造されている。
A semiconductor acceleration sensor has a pedestal at its base end, a silicon cantilever with a thin wall in the middle, and a weight fixed to the tip of the cantilever. is detected as the output of a brifuge made up of a diffused resistor on its surface.It is easy to downsize and can be used in harsh environments, so it is suitable for use in automobiles, etc., where the installation space is small. It is widely used as it is optimal for limited uses. Conventionally, this type of acceleration sensor is made by creating a cantilever made by thinning the middle part of a silicon substrate, using the base end of this thin part as a pedestal, or fixing it to the pedestal, and attaching a weight to the tip end. Manufactured with installation instructions.

第12図〜第14図は、従来の加速度センサの製造手順
の説明図である。まず第12図に示す如く、素材となる
シリコン基板1の表面をシリコン酸化膜10にて被覆し
て、これの欠落部に歪検出用のブリッジを構成する拡散
抵抗11を形成し、前記ブリッジの人、出力用の電極1
2を取付けた後、これらの表面をシリコン酸化膜10の
表面と共に、パッシベーション膜13のガラスコートで
覆う。次いで第13図に示す如く、表面側の前記拡散抵
抗11に対応する位置にエツチング孔15を有するエツ
チングマスク14により前記シリコン基[1の裏面を被
覆し、裏面側からのエツチングにより前記エツチング孔
15の相当位置に所定深さの凹部16を形成する。これ
により第14図に示す如く、前記凹部16の底面とシリ
コン基板1の表面との間に薄肉部2が得られ、該薄肉部
2の一側(図における左側)に台座3が、また他側にカ
ンチレバー4が夫々得られることになり、このカンチレ
バー4の先端に接着等の接合手段により重錘5を固定す
ることにより加速度センサが構成される。
FIG. 12 to FIG. 14 are explanatory diagrams of the manufacturing procedure of a conventional acceleration sensor. First, as shown in FIG. 12, the surface of a silicon substrate 1 as a raw material is coated with a silicon oxide film 10, and a diffused resistor 11 constituting a bridge for strain detection is formed in the missing part of the silicon oxide film 10. Person, output electrode 1
2, these surfaces, together with the surface of the silicon oxide film 10, are covered with a glass coat of a passivation film 13. Next, as shown in FIG. 13, the back side of the silicon base [1 is covered with an etching mask 14 having etching holes 15 at positions corresponding to the diffused resistors 11 on the front side, and the etching holes 15 are etched from the back side. A recess 16 of a predetermined depth is formed at a position corresponding to . As a result, as shown in FIG. 14, a thin part 2 is obtained between the bottom surface of the recess 16 and the surface of the silicon substrate 1, and a pedestal 3 is placed on one side (the left side in the figure) of the thin part 2, and a pedestal 3 is placed on the other side (the left side in the figure). A cantilever 4 is obtained on each side, and an acceleration sensor is constructed by fixing a weight 5 to the tip of the cantilever 4 by bonding means such as adhesive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

さて以上の如く製造される加速度センサの検出感度は、
カンチレバー4及び重錘5の重量、重錘5の固定位置、
並びに薄肉部2の厚さ及び平面積に依存する。ところが
従来においては、前述の如く薄肉部2の形成後になされ
る重錘5の固定に際しての作業性が極めて悪く、所定位
置への固定がなされない虞があり、また、前記薄肉部2
の厚さはシリコン基板1の裏面側から行われる前記凹部
16のエツチング時間により管理されるが、このエツチ
ングは多数のウェハを一単位とするハツチ処理であるた
め、各ウェハの面内、ウェハ間、及びハノ千間でのエツ
チングレートの相違により、薄肉部2の厚さにばら付き
が生しることが避けられない問題があって、所定の検出
感度を安定的に実現することが困難であった。
Now, the detection sensitivity of the acceleration sensor manufactured as described above is
The weight of the cantilever 4 and the weight 5, the fixed position of the weight 5,
It also depends on the thickness and planar area of the thin section 2. However, in the conventional method, as described above, the workability of fixing the weight 5 after forming the thin wall portion 2 is extremely poor, and there is a possibility that the weight 5 may not be fixed at a predetermined position.
The thickness of the recess 16 is controlled by the etching time of the recess 16 performed from the back side of the silicon substrate 1, but since this etching is a hatch process in which many wafers are treated as one unit, the thickness is controlled within the plane of each wafer and between the wafers. There is an unavoidable problem that variations in the thickness of the thin section 2 occur due to differences in etching rates between there were.

本発明は斯かる事情に鑑みてなされたものであり、重錘
の位置及び薄膜部の厚さの管理が容易であり、バッジ処
理により所望の感度を安定的に実現し得る加速度センサ
及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an acceleration sensor and its manufacture in which the position of the weight and the thickness of the thin film part can be easily controlled, and desired sensitivity can be stably achieved through badge processing. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る加速度センサは、台座、カンチレバー、重
錘及び薄肉部を、シリコン基板の所要部分のエツチング
により一体的に構成したものであり、また本発明に係る
加速度センサの製造方法は、素材となるシリコン基板の
裏面側からの異方性エツチングにより、裏面の周縁と内
側とを一部の連結部位を除いて隔絶するエツチング溝を
形成し、連結部位両側の工・ッチング溝間でのサイドエ
ッチにより連結部位の一部を薄肉化して薄肉部を構成し
、更にエツチング溝の相当部分でのシリコン基板の表面
側からのプラズマエツチングにより、エツチング溝を表
面側に貫通させて、これの周縁側を台座とし、また内側
をカンチレバー及び重錘とするものである。
The acceleration sensor according to the present invention has a pedestal, a cantilever, a weight, and a thin wall portion integrally formed by etching required parts of a silicon substrate. By anisotropic etching from the back side of the silicon substrate, an etching groove is formed that isolates the periphery of the back side from the inside except for some connecting areas, and side etching is performed between the etched grooves on both sides of the connecting area. A part of the connection part is thinned by etching to form a thin part, and a corresponding part of the etching groove is plasma etched from the surface side of the silicon substrate to make the etching groove penetrate to the surface side, and the peripheral edge side of this is made by plasma etching from the surface side of the silicon substrate. It is used as a pedestal, and the inside is used as a cantilever and a weight.

〔作用〕[Effect]

本発明においては、シリコン基板の異方性エンチングが
、<111>方向には殆ど進行しないことを利用し、ま
ず裏面側からのH00>方向へのエツチングにより、こ
のとき使用するエツチングマスクのサイズにより定まる
所定深さのエツチング溝を形成して、シリコン基板の周
縁部と内側とを一部の連結部位を除いて隔絶し、次いで
この連結部位両側のエツチング溝間にてH’lO)方向
へ進行するサイドエ・ノチにより、エツチング溝の深さ
に相当する深さの凹部を形成して、この形成範囲に一定
厚さの薄肉部を構成し、更に前記エツチング溝をプラズ
マエツチングにより表面側に連通させて、エツチング溝
にて隔絶された周縁側の部分を台座として、同じ(内側
の部分をカンチレバー及びこれと一体化された重錘とし
て分離せしめ、このカンチレバー及び重錘が前記薄肉部
を介して周縁の台座に支えられた構造をなす加速度セン
サを得る。
In the present invention, taking advantage of the fact that anisotropic etching of a silicon substrate hardly progresses in the <111> direction, etching is first performed in the H00> direction from the back side, depending on the size of the etching mask used at this time. An etching groove with a predetermined depth is formed to isolate the peripheral edge of the silicon substrate from the inside except for a part of the connecting area, and then etching proceeds in the H'lO) direction between the etching grooves on both sides of the connecting area. A recess with a depth corresponding to the depth of the etching groove is formed by the side etching groove, a thin wall portion with a constant thickness is formed in this forming area, and the etching groove is communicated with the surface side by plasma etching. Then, the peripheral part separated by the etched groove is used as a pedestal, and the same inner part is separated as a cantilever and a weight integrated with it, and the cantilever and the weight are separated from the peripheral part through the thin part. Obtain an acceleration sensor with a structure supported by a pedestal.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて詳述する
。第1図は本発明に係る加速度センサの平面図、第2図
は第1図のn−n線による縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a plan view of an acceleration sensor according to the present invention, and FIG. 2 is a longitudinal sectional view taken along line nn in FIG. 1.

本発明に係る加速度センサは、平面視にて矩形をなすシ
リコン基板1を素材とし、第1図中にクロスハツチを施
して示す如く、該シリコン基板1を表裏に貫通する貫通
溝1aにより、−個所の連結部位を除いて周縁部と内側
とに切離し、周縁部に台座3を、また内側に重錘5、カ
ンチレバー4及び薄肉部2を一体的に構成してなる。前
記貫通溝1aにより周縁部の台座3と隔絶さ九た内側部
分は、平面視にて丁字形をなし、このT字の縦棒相当部
分の先端が前記台座3との連結端となっており、本発明
に係る加速度センサの製造方法(以下本発明方法という
)においては、この連結端近傍が後述の如き処理により
薄肉部2とされ、T字の縦棒相当部分の残部によりカン
チレバー4が、また横棒相当部分により重錘5が一体的
に構成される。
The acceleration sensor according to the present invention is made of a silicon substrate 1 which is rectangular in plan view, and as shown by crosshatching in FIG. It is separated into a peripheral part and an inner part except for the connection part, and the pedestal 3 is integrally formed on the peripheral part, and the weight 5, cantilever 4 and thin part 2 are integrally formed on the inside. The inner portion separated from the pedestal 3 at the peripheral edge by the through groove 1a has a T-shape in plan view, and the tip of the portion corresponding to the vertical bar of this T-shape is the connecting end with the pedestal 3. In the method for manufacturing an acceleration sensor according to the present invention (hereinafter referred to as the method of the present invention), the vicinity of this connecting end is made into a thin portion 2 by the process described below, and the cantilever 4 is formed by the remaining portion corresponding to the vertical bar of the T-shape. Further, the weight 5 is integrally constituted by the portion corresponding to the horizontal bar.

前記貫通溝1aは、後述する如く、シリコン基板1の一
面(裏面)側からの異方性エツチングにより他面(表面
)に向けて形成された三角形断面のエツチング溝1bを
、表面側からのプラズマエツチングにより形成された一
定幅のエツチング溝ICにて表面側に貫通せしめ、第2
図に示す如き断面形状を有してなる。第1図は、エツチ
ング溝1bの傾斜面が見える側、即ち裏面側からの平面
図となっており、図中のクロスハツチは、エツチング溝
ICの相当部分にのみ施しである。前記薄肉部2は、前
記連結部位の両側に位置するエツチング溝1b、lbを
、両者間にて後述の如く進行するサイドエッチにより相
互に連通セしめ、第2図に示す如く台形断面をなす凹部
16を形成して、この凹部16の底面とシリコン基板1
の表面との間に構成される。
As will be described later, the through groove 1a is an etching groove 1b having a triangular cross section formed by anisotropic etching from one side (back side) of the silicon substrate 1 toward the other side (front side), and is etched by plasma etching from the front side. An etching groove IC of a certain width is formed by etching to penetrate the surface side, and the second
It has a cross-sectional shape as shown in the figure. FIG. 1 is a plan view from the side where the inclined surface of the etched groove 1b is visible, that is, from the back side, and the crosshatching in the figure is applied only to a corresponding portion of the etched groove IC. The thin portion 2 has etched grooves 1b and lb located on both sides of the connection portion that communicate with each other by side etching that progresses as described below, and forms a recessed portion having a trapezoidal cross section as shown in FIG. 16, and the bottom surface of this recess 16 and the silicon substrate 1
is constructed between the surface of

以上の如く本発明に係る加速度センサは、矩形枠形の台
座3の内側に、カンチレバー4と重錘5とが薄肉部2の
みによって支えられた構造となっており、台座3を適宜
の測定位置に固定して、この測定位置における加速度を
カンチレバー4及び重錘5に作用せしめて用いられ、こ
のとき薄肉部2に生じる歪を媒介として前記加速度を検
出する。
As described above, the acceleration sensor according to the present invention has a structure in which the cantilever 4 and the weight 5 are supported only by the thin part 2 inside the rectangular frame-shaped pedestal 3, and the pedestal 3 is placed at an appropriate measurement position. The acceleration at this measurement position is applied to the cantilever 4 and the weight 5, and the acceleration is detected using the strain generated in the thin portion 2 as a medium.

次に以上の如き構成の加速度センサを得るための本発明
方法の実施手順について説明する。
Next, the procedure for implementing the method of the present invention for obtaining the acceleration sensor configured as described above will be explained.

第3図〜第7図は、第1図のm−m線断面における薄肉
部2の構成手順の説明図である。まず第3図に示す如く
、素材となるシリコン基板1の表面をシリコン酸化膜1
0にて被覆して、これの欠落部に歪検出用のブリッジを
構成する拡散抵抗11を形成し、これに前記ブリッジの
人、出力用の電極12を取付けた後、これらの表面をシ
リコン酸化膜10の表面と共に、パッシベーション膜1
3のガラスコートで覆う。以上の手順は従来の方法と同
様であるが、本発明方法においては、薄肉部2を台座3
から遮断する貫通溝1aの形成のため、前記拡散抵抗1
1の両側部分において、シリコン酸化膜10とパッシベ
ーション膜13とをエツチングにより除去しておく。こ
の除去は、シリコン基板1の表面側における前記貫通溝
1aの形成範囲全体に亘って実施され、後述の如く、こ
の際の除去部分の幅が表面側からのプラズマエツチング
によるエンチング溝1cの幅となる。
3 to 7 are explanatory diagrams of the construction procedure of the thin portion 2 in a cross section taken along the line mm in FIG. 1. First, as shown in FIG.
0, a diffused resistor 11 constituting a bridge for strain detection is formed in the missing part of the resistor 11, and the bridge electrode 12 and output electrode 12 are attached to this, and then these surfaces are coated with silicon oxide. Along with the surface of the film 10, the passivation film 1
Cover with glass coat from step 3. The above procedure is similar to the conventional method, but in the method of the present invention, the thin part 2 is
In order to form a through groove 1a that blocks the diffusion resistor 1 from
The silicon oxide film 10 and the passivation film 13 are removed by etching on both sides of the silicon oxide film 1. This removal is carried out over the entire formation range of the through groove 1a on the surface side of the silicon substrate 1, and as will be described later, the width of the removed portion is equal to the width of the etched groove 1c formed by plasma etching from the surface side. Become.

次いで、シリコン基板1の裏面側からの異方性エツチン
グの実施のため、該シリコン基板1の裏面にエツチング
マスク14を形成する。このエツチングマスク14の平
面図を第8図に示す。本図に示す如くエツチングマスク
14は、前記台座3に相当する周縁部分14aと、カン
チレバー4及び重錘5に相当する丁字形の内側部分14
bとを、前記貫通溝1aの形成位置に対応して形成され
たエツチング孔15により、薄肉部2に相当する連結部
分14cを除いて隔絶した平面形状を有している。この
エツチングマスク14の形成により、前記■−■線によ
る断面においては、第4図に示す如く、拡散抵抗ILI
Iの形成部位の裏面側が前記連結部分14cにて被覆さ
れ、またシリコン酸化膜10及びパッシベーション膜1
3の除去部分の裏面側相当位置にエツチング孔15が位
置し、更に該エツチング孔15の外側が前記周縁部分1
4aにて被覆された状態となる。
Next, an etching mask 14 is formed on the back side of the silicon substrate 1 in order to carry out anisotropic etching from the back side of the silicon substrate 1. A plan view of this etching mask 14 is shown in FIG. As shown in this figure, the etching mask 14 includes a peripheral portion 14a corresponding to the pedestal 3, and a T-shaped inner portion 14 corresponding to the cantilever 4 and the weight 5.
It has a planar shape in which the connecting portion 14c corresponding to the thin wall portion 2 is separated from the connecting portion 14c by an etching hole 15 formed corresponding to the formation position of the through groove 1a. Due to the formation of this etching mask 14, in the cross section taken along the line 1--2, as shown in FIG.
The back side of the region where I is formed is covered with the connecting portion 14c, and the silicon oxide film 10 and the passivation film 1 are covered with the connecting portion 14c.
An etching hole 15 is located at a position corresponding to the back side of the removed portion of No. 3, and the outside of the etching hole 15 is located on the peripheral edge portion of
4a, it is in a covered state.

エツチングマスク14の後、KOH等の異方性エッチャ
ントを用い、シリコン基板1の裏面側からエツチングを
行う。このときH11>方向のエッチレートがHOO)
方向のそれに比して著しく小さいことから、シリコン基
板1の裏面側での前記エツチング孔15の形成部分にて
生じるエツチングは、裏面に対し所定角度(具体的には
54.3°)だけ傾斜する傾斜面に沿って進行して、前
記エツチング孔15の幅方向両辺を起点とする傾斜面が
交叉する位置にて殆ど停止し、第5図に示す如く、この
交叉位置を頂点とする三角形断面のエツチング溝1bが
形成される。そしてこのようにして得られるエンチング
溝1bの深さhは、エツチング孔15の幅寸法D(第8
図参照)のみに依存するから、エツチングマスク14の
形成に際し、次式にて算出された幅りを有するエツチン
グ孔15を設けるだけの容易な作業により、エツチング
溝1bの深さhを正確に管理することができる。
After etching mask 14, etching is performed from the back side of silicon substrate 1 using an anisotropic etchant such as KOH. At this time, the etch rate in the H11> direction is HOO)
Since the etching is significantly smaller than that in the direction, the etching that occurs at the portion where the etching hole 15 is formed on the back side of the silicon substrate 1 is inclined at a predetermined angle (specifically, 54.3°) with respect to the back side. The etching progresses along the slope and almost stops at a position where the slopes starting from both widthwise sides of the etching hole 15 intersect, and as shown in FIG. Etched grooves 1b are formed. The depth h of the etched groove 1b obtained in this way is the width dimension D (the eighth width) of the etched hole 15.
When forming the etching mask 14, the depth h of the etching groove 1b can be accurately controlled by simply providing an etching hole 15 with a width calculated by the following formula. can do.

D = 2  ・h /  jan54.3°    
−(1)さて、<100>方向へのエツチング完了後、
更にエツチングを続行すると、H11)方向のエツチン
グは殆ど進行しないが、H10>方向のエツチングは比
較的速く進行し、第5図中に破線にて示す如く進行する
サイドエッチにより、拡散抵抗11の形成位置両側のエ
ツチング溝1b、 Ib間の部分が、拡散抵抗1工の形
成位置の裏側全体に亘って食刻され、最終的には第6図
に示す如く、前記エツチング溝1b、 lbを相互に連
通してなる台形断面の凹部16が形成され、該凹部16
の底面とシリコン基板1の表面との間に、表面側に拡散
抵抗11を備えた薄肉部2が構成される。なおこのとき
前記サイドエッチは、エツチング溝1bの深さ範囲内に
おいてのみ進行し、得られる凹部16の深さは、先に得
られたエツチング溝1bの深さhに略等しくなる一方、
この深さhは前述の如く容易にしかも正確に管理できる
から、所望の一定厚さを有する薄肉部2を安定的に得る
ことができる。
D = 2 ・h / jan54.3°
-(1) Now, after completing the etching in the <100> direction,
When etching is continued further, the etching in the H11) direction hardly progresses, but the etching in the H10> direction progresses relatively quickly, and the side etching progresses as shown by the broken line in FIG. 5, resulting in the formation of the diffused resistor 11. The portion between the etched grooves 1b and Ib on both sides of the position is etched over the entire back side of the position where the first diffused resistor is formed, and finally, as shown in FIG. A continuous recess 16 having a trapezoidal cross section is formed, and the recess 16
A thin portion 2 having a diffused resistor 11 on the surface side is formed between the bottom surface of the silicon substrate 1 and the surface of the silicon substrate 1 . At this time, the side etching progresses only within the depth range of the etching groove 1b, and the depth of the resulting recess 16 is approximately equal to the depth h of the etching groove 1b previously obtained.
Since this depth h can be easily and accurately controlled as described above, the thin portion 2 having a desired constant thickness can be stably obtained.

以上の如く裏面側からの異方性エツチングを終了した後
、シリコン基板1の表面側からプラズマエツチングを実
施し、パンシベーション膜13及びシリコン酸化膜10
の除去部分を食刻してエツチング溝1c、 lcを形成
する。これにより、前記除去部分に対応する位置に裏面
側から形成されたエツチング溝1b、 Ibが表面側に
貫通することになり、これらの間に形成された前記薄肉
部2は、エツチング溝1c外側の台座3と分離される。
After completing the anisotropic etching from the back side as described above, plasma etching is performed from the front side of the silicon substrate 1 to remove the pansivation film 13 and the silicon oxide film 10.
The removed portions are etched to form etching grooves 1c and lc. As a result, the etching grooves 1b, Ib formed from the back side at positions corresponding to the removed portions penetrate to the front side, and the thin wall portion 2 formed between these grooves 1b and 1c are formed on the outside of the etching grooves 1c. It is separated from the pedestal 3.

第9図〜第11図は、第1図のIX−IX線断面におけ
る重錘5の構成手順の説明図である。重錘5の構成部分
においては、まず第9図に示す如く、素材となるシリコ
ン基板1の表面をシリコン酸化膜10にて被覆した後、
先に説明した拡散抵抗11の形成及び電極12の取付け
を待って、シリコン酸化膜10の表面をバ、シベーショ
ン膜13にてガラスコートし、これらの膜13.10に
よる被覆層を、前記貫通’a1aの相当部分においてエ
ツチングにより除去する。次いで、シリコン基板1の裏
面をエツチングマスク14にて被覆するが、エツチング
マスク14は前述の如き形状を有するから、貫通a1a
の相当位置、即ち表面側の前記除去部分の対応位置にエ
ツチング孔15.15が位置し、第1図のIX−IX線
による断面図である第9図においては、エツチング孔1
5.15の外側がエツチングマスク14の前記周縁部分
14aにて被覆され、同じく内側が前記内側部分14b
にて被覆された状態となる。
9 to 11 are explanatory diagrams of the construction procedure of the weight 5 in a cross section taken along the line IX-IX in FIG. 1. In the component parts of the weight 5, first, as shown in FIG.
After forming the diffused resistor 11 and attaching the electrode 12 as described above, the surface of the silicon oxide film 10 is glass-coated with a scivation film 13, and the covering layer of these films 13 and 10 is coated with the through-hole film 13. 'a1a is removed by etching. Next, the back surface of the silicon substrate 1 is covered with an etching mask 14. Since the etching mask 14 has the shape described above, the through hole a1a is
In FIG. 9, which is a cross-sectional view taken along the line IX--IX in FIG.
The outer side of 5.15 is covered with the peripheral edge portion 14a of the etching mask 14, and the inner side is covered with the inner portion 14b.
It becomes covered with.

このようにエツチングマスク14での被覆をなした後、
薄膜部2の構成の場合と同様、KOH等の異方性エッチ
ャントを用い、シリコン基板1の裏面側からエツチング
を行う。このエツチングは、前述した如く、裏面に対し
所定角度だけ傾斜する傾斜面に沿って進行して、第10
図に示す如く、前記エツチング孔15の幅方向両辺を起
点とする傾斜面が交叉する位置に頂点を有する三角形断
面のエツチング溝1bを形成して停止する。この場合の
エツチング孔15の幅は、前記頂点がシリコン基板1の
表面に達しない程度に適宜に設定すればよく、薄肉部2
両側のエツチング溝1b形成のためのエツチング孔15
と同幅でなくともよい。
After being covered with the etching mask 14 in this way,
As in the case of the structure of the thin film portion 2, etching is performed from the back side of the silicon substrate 1 using an anisotropic etchant such as KOH. As mentioned above, this etching progresses along the inclined surface that is inclined at a predetermined angle with respect to the back surface, and the 10th etching
As shown in the figure, an etching groove 1b having a triangular cross section having an apex at a position where the slopes starting from both widthwise sides of the etching hole 15 intersect is formed and then stopped. In this case, the width of the etching hole 15 may be appropriately set so that the apex does not reach the surface of the silicon substrate 1, and
Etching holes 15 for forming etching grooves 1b on both sides
It doesn't have to be the same width.

このように裏面側からのエツチングを終了した後、シリ
コン基板1の表面側からプラズマエツチングを実施し、
パッシベーション膜13及びシリコン酸化膜10の除去
部分を食刻してエツチング溝ICを形成し、前記エツチ
ング溝1bを表面側に連通させて貫通溝1aとなし、周
縁側の基台3から重錘5を分離形成する。なお、この重
錘5と前記薄肉部2との間のカンチレバー4もまた、全
く同様の手順により形成される。即ち以上の手順により
、薄肉部2、カンチレバー4及び重錘5が基台3と一体
的に構成されることになり、重錘5の位置決めが容易に
しかも確実になされる。
After completing the etching from the back side in this way, plasma etching is performed from the front side of the silicon substrate 1.
The removed portions of the passivation film 13 and the silicon oxide film 10 are etched to form an etched groove IC, and the etched groove 1b is communicated with the surface side to form a through groove 1a. Separate and form. It should be noted that the cantilever 4 between the weight 5 and the thin portion 2 is also formed by the same procedure. That is, by the above procedure, the thin wall portion 2, the cantilever 4, and the weight 5 are integrated with the base 3, so that the weight 5 can be easily and reliably positioned.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明においては、シリコン基板の裏
面側から異方性エツチングを実施して、裏面の周縁と内
側とを一部の連結部位を除いて隔絶するエツチング溝を
形成し、更に前記連結部位の一部をこれの両側のエツチ
ング溝間でのサイドエッチにより連結部位の一部を薄肉
化して薄肉部を構成するから、前記異方性エツチングの
際のエツチング幅の適正化により薄肉部の厚さを容易に
しかも正確に管理でき、また、前記エツチング溝の相当
部分をプラズマエツチングにより表面側に貫通させて、
これの周縁側の台座と、内側のカンチレバー、重錘及び
前記薄肉部とが一体的に構成されるから、適正な位置へ
の重錘の配置を容易に実現でき、所望の感度を有する加
速度センサがバッチ処理により安定的に得られる等、本
発明は優れた効果を奏する。
As described in detail above, in the present invention, anisotropic etching is performed from the back side of the silicon substrate to form an etching groove that isolates the periphery of the back side from the inside except for some connecting parts, and Since a part of the connection part is thinned by side etching between the etching grooves on both sides to form a thin part, the thin part can be formed by optimizing the etching width during the anisotropic etching. The thickness of the etched groove can be easily and accurately controlled, and a considerable portion of the etched groove can be penetrated to the surface side by plasma etching.
Since the pedestal on the peripheral side, the inner cantilever, the weight, and the thin part are integrally constructed, the weight can be easily placed in the appropriate position, and the acceleration sensor has the desired sensitivity. The present invention has excellent effects, such as being able to stably obtain it by batch processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る加速度センサの平面図、第2図は
第1図のn−n線による縦断面図、第3図〜第7図は本
発明方法による薄肉部の構成手順の説明図、第8図は本
発明方法の実施に使用するエツチングマスクの平面図、
第9図〜第11図は本発明方法による重錘の構成手順の
説明図、第12図〜第14図は従来の加速度センサの製
造方法の説明図である。 工・・・シリコン基板  2・・・薄肉部  3・・・
台座4・・・カンチレバー  5・・・重錘  1a・
・・貫通溝lb、 lc・・・エツチング溝 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a plan view of an acceleration sensor according to the present invention, FIG. 2 is a vertical cross-sectional view taken along line nn in FIG. Figure 8 is a plan view of an etching mask used in carrying out the method of the present invention;
FIGS. 9 to 11 are explanatory diagrams of the construction procedure of a weight according to the method of the present invention, and FIGS. 12 to 14 are explanatory diagrams of a conventional method of manufacturing an acceleration sensor. Engineering...Silicon substrate 2...Thin wall part 3...
Pedestal 4... Cantilever 5... Weight 1a.
...Through grooves lb, lc...Etching grooves In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)基端に台座を備えたシリコン製カンチレバーの先
端に重錘を、また中途に薄肉部を夫々設けてなり、前記
重錘の振れに伴って前記薄肉部に生じる歪により加速度
を検出する加速度センサにおいて、シリコン基板の所要
部分のエッチングにより、前記台座、カンチレバー、重
錘及び薄肉部が一体的に構成してあることを特徴とする
加速度センサ。
(1) A weight is provided at the tip of a silicon cantilever with a pedestal at the base end, and a thin part is provided in the middle, and acceleration is detected by the strain generated in the thin part as the weight swings. 1. An acceleration sensor, wherein the pedestal, cantilever, weight, and thin portion are integrally formed by etching a required portion of a silicon substrate.
(2)素材となるシリコン基板の裏面側から異方性エッ
チングを実施して、裏面の周縁部と内側とを一部の連結
部位を除いて隔絶する所定深さのエッチング溝を形成し
、次いで前記連結部位両側のエッチング溝間にてサイド
エッチを進行させ、該連結部位の一部に前記薄肉部を構
成した後、前記シリコン基板の表面側から、前記エッチ
ング溝の相当部分全長に亘ってプラズマエッチングを実
施し、前記エッチング溝を表面側に貫通させ、これの周
縁側に前記台座を、また内側に前記カンチレバー及び前
記重錘を構成することを特徴とする請求項1記載の加速
度センサの製造方法。
(2) Perform anisotropic etching from the back side of the silicon substrate to form an etching groove of a predetermined depth that isolates the periphery of the back side from the inside except for some connecting parts, and then After side etching is performed between the etching grooves on both sides of the connection part to form the thin part in a part of the connection part, plasma is applied from the surface side of the silicon substrate over the entire length of a considerable portion of the etching groove. 2. Manufacturing the acceleration sensor according to claim 1, wherein etching is performed to penetrate the etched groove on the surface side, and the pedestal is formed on the peripheral side of the pedestal, and the cantilever and the weight are formed on the inside. Method.
JP2220654A 1990-08-20 1990-08-20 Acceleration sensor and its manufacture Pending JPH04102066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220654A JPH04102066A (en) 1990-08-20 1990-08-20 Acceleration sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220654A JPH04102066A (en) 1990-08-20 1990-08-20 Acceleration sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH04102066A true JPH04102066A (en) 1992-04-03

Family

ID=16754359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220654A Pending JPH04102066A (en) 1990-08-20 1990-08-20 Acceleration sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH04102066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239570A (en) * 1996-03-07 1997-09-16 Seiko Instr Inc Micro fabricating method and micro fabricating structure
EP1270504A1 (en) * 2001-06-22 2003-01-02 Nanoworld AG Semiconductor device joint to a wafer
WO2004030102A1 (en) * 2002-09-24 2004-04-08 Hamamatsu Photonics K.K. Photodiode array and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239570A (en) * 1996-03-07 1997-09-16 Seiko Instr Inc Micro fabricating method and micro fabricating structure
EP1270504A1 (en) * 2001-06-22 2003-01-02 Nanoworld AG Semiconductor device joint to a wafer
WO2004030102A1 (en) * 2002-09-24 2004-04-08 Hamamatsu Photonics K.K. Photodiode array and method for manufacturing same
JPWO2004030102A1 (en) * 2002-09-24 2006-01-26 浜松ホトニクス株式会社 Photodiode array and manufacturing method thereof
CN100399570C (en) * 2002-09-24 2008-07-02 浜松光子学株式会社 Photodiode array and method for manufacturing same
JP4554368B2 (en) * 2002-09-24 2010-09-29 浜松ホトニクス株式会社 Photodiode array and manufacturing method thereof
EP2506305A1 (en) * 2002-09-24 2012-10-03 Hamamatsu Photonics K. K. Photodiode array and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5725729A (en) Process for micromechanical fabrication
US6743654B2 (en) Method of fabricating pressure sensor monolithically integrated
EP1012552B1 (en) 5 micron high acute cavity with channel by oxidizing fusion bonding of silicon substrates and stop etching
US5616523A (en) Method of manufacturing sensor
EP0899574B1 (en) Acceleration sensor element and method of its manufacture
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0349267A (en) Semiconductor type acceleration sensor and its manufacture
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
JPS6197572A (en) Manufacture of semiconductor acceleration sensor
US5172205A (en) Piezoresistive semiconductor device suitable for use in a pressure sensor
EP1433199B1 (en) Method for forming a cavity structure in an soi substrate and cavity structure formed in an soi substrate
KR20000028948A (en) Method for manufacturing an angular rate sensor
JPH04102066A (en) Acceleration sensor and its manufacture
JP2000124465A (en) Manufacture of semiconductor dynamical amount sensor
US7179668B2 (en) Technique for manufacturing silicon structures
JPH02218172A (en) Manufacture of semiconductor acceleration sensor
JPH0797643B2 (en) Method for manufacturing pressure transducer
JPH10300605A (en) Method for manufacturing semiconductor pressure sensor and sensor chip
JP3744217B2 (en) Manufacturing method of semiconductor pressure sensor
JPS63237482A (en) Semiconductor pressure sensor
JPH049770A (en) Semiconductor strain-sensitive sensor and manufacture thereof
JPH08248061A (en) Acceleration sensor and manufacture thereof
US9233836B2 (en) Semiconductor device including accelerometer devices
JP3021905B2 (en) Manufacturing method of semiconductor acceleration sensor
JP2002039892A (en) Semiconductor pressure sensor and method of manufacturing it