JPH04102045A - Inundation sensor - Google Patents

Inundation sensor

Info

Publication number
JPH04102045A
JPH04102045A JP21825090A JP21825090A JPH04102045A JP H04102045 A JPH04102045 A JP H04102045A JP 21825090 A JP21825090 A JP 21825090A JP 21825090 A JP21825090 A JP 21825090A JP H04102045 A JPH04102045 A JP H04102045A
Authority
JP
Japan
Prior art keywords
transmission medium
movable part
case
water
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21825090A
Other languages
Japanese (ja)
Inventor
Wataru Katsurajima
渉 桂島
Hiroatsu Matsumoto
松本 裕敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21825090A priority Critical patent/JPH04102045A/en
Publication of JPH04102045A publication Critical patent/JPH04102045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To house a sensor in a thin cylindrical case by passing a light transmission medium through the case, fixing its both ends together with the case on movable parts respectively and supporting the movable parts freely removably in a direction of the passage of the light transmission medium. CONSTITUTION:Since an expanding material 16 absorbs water and expands at the time of inundation, a movable part 13 in contact with the expanding material 16 moves while it is being guided by a guide 17. As a result, a light transmission medium 12 fixed on the movable part 13 is pushed toward a handle part 19 and also a distance between the handle part 19 and the movable part 13 for fixing the light transmission medium 12 is shortened, whereby the light transmission medium 12 is bent. Thus transmission loss increases. Since the increase in the transmission loss is dependent on bending of the light transmission medium 12, the increase in the transmission loss can be specified in advance, wherein by inserting a spacer 20 into a stopper part 18, a moving amount of the movable part 13 can be regulated and the increase in the transmission loss can be set as desired. A sensor thus constituted can be housed in a housing case of a communication closure.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、水が浸入してきたことを検知できる浸水検知
センサに関し、特に通信用クロージャ内の浸水検知に用
いて好適なものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a water intrusion detection sensor that can detect the intrusion of water, and is particularly suitable for use in detecting water intrusion inside communication closures.

〈従来の技術〉 光ファイバを用いた光伝送システムは、大容量化、長距
離化、高信頼化に伴い、陸上中継伝送ばかりか海底中継
伝送にも使用されるに至った。
<Prior Art> As optical transmission systems using optical fibers have become larger in capacity, longer distance, and more reliable, they have come to be used not only for land relay transmission but also for submarine relay transmission.

ところが、光フアイバケーブルに水が浸入すると、水素
形成のために光学的損失が増大する。また、浸入した水
はファイバ表面の欠陥成長を速めるために光ファイバの
寿命を短くする等の種々の弊害がある。
However, when water enters a fiber optic cable, optical losses increase due to hydrogen formation. In addition, the infiltrated water causes various problems such as shortening the life of the optical fiber because it accelerates the growth of defects on the fiber surface.

そのため、光フアイバケーブルにはできる限り水が浸入
しないようにしなければならないが、もしケーブルが破
損して水が浸入した場合には、浸入箇所を検知する必要
がある。
Therefore, it is necessary to prevent water from entering the optical fiber cable as much as possible, but if the cable is damaged and water enters, it is necessary to detect the point of entry.

ケーブル内の浸水を検知するものとして、吸水性高分子
の膨潤を利用したものがある。第2図は、従来の光フア
イバ浸水センサの一例を示すものである。同図に示すよ
うに、この光フアイバ浸水センサ100は、ケース本体
101内に設けられ凹凸部102m、102b。
There is a method that uses the swelling of water-absorbing polymers to detect water intrusion inside a cable. FIG. 2 shows an example of a conventional optical fiber immersion sensor. As shown in the figure, this optical fiber water immersion sensor 100 is provided inside a case body 101 and has uneven parts 102m and 102b.

103a、103bを有する一対の嵌合板102、10
3の間隙に、光ファイバAを挾み込むと共に上記嵌合板
103はケース本体101内を吸水材104の水の吸収
による体積膨張力によって嵌合板102側へ接近できる
ものである。そして、ケーブル内に水が浸入して、該吸
水材104の体積膨張による抑圧によって、光ファイバ
Aが凹凸部によって波形に曲げられて、光損失が増加し
、この光損失から浸水点を検知するものである(特開昭
62−52433号公報)。
A pair of fitting plates 102, 10 having 103a, 103b
In addition to inserting the optical fiber A into the gap 3, the fitting plate 103 can approach the fitting plate 102 side within the case body 101 by the volumetric expansion force caused by the absorption of water by the water-absorbing material 104. Then, water enters the cable and is suppressed by the volumetric expansion of the water absorbing material 104, causing the optical fiber A to be bent into a waveform by the uneven portion, increasing optical loss, and the water intrusion point is detected from this optical loss. (Japanese Unexamined Patent Publication No. 62-52433).

また、他の従来例として第3図(a)、(blに示すよ
うな浸水検知センサが提案されている。
Further, as another conventional example, a water immersion detection sensor as shown in FIGS. 3(a) and 3(bl) has been proposed.

この浸水検知センサ110は、水と接触すると収縮する
収縮糸111の一端を保持具112゜112に保持され
た光ファイバAに、他端を固定物113に結びつけたも
ので、浸水時に収縮糸111によって局部的な曲がりを
発生させることにより伝送損失が増加するようにしたも
のである(特開昭62−28634号公報)。
This water immersion detection sensor 110 is constructed by connecting one end of a shrinkable thread 111 that contracts when it comes into contact with water to an optical fiber A held by a holder 112° 112, and the other end to a fixed object 113. The transmission loss is increased by causing local bending (Japanese Unexamined Patent Publication No. 62-28634).

〈発明が解決しようとする課題〉 しかしながら、前述した従来の技術には、次のような欠
点がある。
<Problems to be Solved by the Invention> However, the above-mentioned conventional technology has the following drawbacks.

■ 光ファイバの側面から曲げを与えている為に、光フ
ァイバと直交する方向に大きくなるのでセンサが大とな
り、通信用クロージャに収納するのが困難である。
■ Since the optical fiber is bent from the side, it becomes larger in the direction perpendicular to the optical fiber, making the sensor large and difficult to accommodate in a communication closure.

■ 嵌合部の凹凸で光ファイバを挾み込んだり、収縮糸
で引っ張ったりすることによって光ファイバを曲げてい
たため、動作のバラツキが大きいという欠点がある。
■ Since the optical fiber is bent by sandwiching it between the unevenness of the fitting part or by pulling it with a shrinkable thread, there is a drawback that the operation varies widely.

本発明は以上述べた事情に鑑み、浸水を簡単な手段で容
易且つ正確に検出でき、しかもコンパクトな浸水検知セ
ンサを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to provide a compact water intrusion detection sensor that can easily and accurately detect water intrusion using simple means.

く課題を解決するための手段〉 前記目的を達成するための本発明の浸水検知センサの構
成は、ケース内に光伝送媒体を貫通した状態で配し、該
ケース内に可動部を該光伝送媒体の貫通した方向に移動
可能に支持し、どの可動部を挾んで一方側を第1室とす
ると共に可動部を挾んで他方側を第2室とし、この一方
側の第1室内に水を吸収して形状変化を起こして該可動
部を押圧する膨張性材料を設け、上記可動部は形状変化
前の該膨張性材料に当接した状態で保持され且つその移
動量がストッパ部によって規制されており、第2室内に
配されている光伝送媒体の一端部はケースに固定されて
いると共に、光伝送媒体の他端部は可動部に固定されて
いることを特徴とする。
Means for Solving the Problems> The structure of the water immersion detection sensor of the present invention for achieving the above object is that the light transmission medium is disposed in a case with the light transmission medium passing through it, and the movable part is placed in the case so that the light transmission medium passes through the case. It is supported so as to be movable in the direction through which the medium penetrates, and which movable part is sandwiched to make one side a first chamber, and the other side is made to be a second chamber by sandwiching the movable part, and water is poured into the first chamber on this one side. An expandable material is provided that absorbs the material and causes a shape change to press the movable part, and the movable part is held in a state in contact with the expandable material before the shape change, and the amount of movement of the movable part is regulated by a stopper part. The optical transmission medium is characterized in that one end of the optical transmission medium disposed in the second chamber is fixed to the case, and the other end of the optical transmission medium is fixed to the movable part.

く作   用〉 光伝送媒体と一体の可動部が膨張性材料に当接しており
、この膨張性材料が浸水時に水を吸収すると形状変化を
起こし、可動部を押圧する結果、ケース内で両端が固定
されている光伝送媒体に曲げが生ずる。これにより、伝
送損失が増大し、この伝送損失の増大を検出して浸水が
あったことを判定する。
The movable part that is integrated with the optical transmission medium is in contact with an expandable material, and when this expandable material absorbs water during submergence, it changes shape and presses on the movable part, causing both ends to open inside the case. Bending occurs in the fixed optical transmission medium. As a result, transmission loss increases, and by detecting this increase in transmission loss, it is determined that there has been flooding.

〈実 施 例〉 以下、本発明の好適な一実施例を図面を参照して詳細に
説明する。
<Embodiment> Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.

第1図(aLTblは本実施例に係る浸水検知センサの
概略図である。これらの図面に示すように、ケース11
内に光伝送媒体12を貫通した状態で配すると共に、こ
のケース11内には、可動部13が該光伝送媒体・12
の貫通した方向に移動可能に支持されている。このケー
ス11内は該可動部13を挾んで一方側を第1室14に
すると共に、可動部13を挾んで他方側を第2室15に
区分している。
FIG. 1 (aLTbl is a schematic diagram of the water immersion detection sensor according to this embodiment. As shown in these drawings, case 11
The optical transmission medium 12 is disposed in the case 11 with the optical transmission medium 12 passing through it.
is supported so as to be movable in the penetrating direction. The inside of this case 11 is divided into a first chamber 14 on one side with the movable part 13 in between, and a second chamber 15 on the other side with the movable part 13 in between.

この一方側の第1室14内には水を吸収して形状変化を
起こして上記可動部13を押圧する膨張性材料16が内
包されている。この膨張性材料16としては例えば、ゴ
ム化に必要な加硫剤や酸化防止剤を含有したゴム材料に
、吸水剤を混ぜたものであり、更に必要に応じて発泡剤
やバインダ剤等を添加したものである。
The first chamber 14 on one side contains an expandable material 16 that absorbs water and changes its shape to press the movable portion 13 . The expandable material 16 is, for example, a rubber material containing a vulcanizing agent and an antioxidant necessary for rubberization, mixed with a water absorbing agent, and a blowing agent, a binder agent, etc. added as necessary. This is what I did.

上記ゴム材料とは天然ゴム及び合成ゴムの公知のゴム材
料をいう。また、吸水材としては水と接触して膨張する
例えば吸水パウダー(「スミカゲル5P−520J(商
品名):住人化学製)等をあげることができる。
The above-mentioned rubber material refers to known rubber materials such as natural rubber and synthetic rubber. The water-absorbing material may include, for example, water-absorbing powder ("Sumikagel 5P-520J (trade name), manufactured by Juju Chemical Co., Ltd.)" which expands upon contact with water.

この膨張性材料16の吸水後の膨張倍率は上記発泡材の
添加量によって任意に変えることができるが、一般に水
道水に対して約2倍(体積比8倍)、また市販の人工海
水(商品名:アクアマリン)に対して約1.2倍(体積
比1.7倍)程度のものをセンサとして用いるのが好適
である。
The expansion ratio of this expandable material 16 after water absorption can be arbitrarily changed depending on the amount of the foaming material added, but it is generally about twice that of tap water (8 times the volume ratio), and commercially available artificial seawater (commercially available artificial seawater). It is preferable to use a sensor that is about 1.2 times (volume ratio: 1.7 times) that of Aquamarine.

尚、人工海水に対し、体積膨張で約1.5〜8倍程度と
すれば、水道水に対して十分な特性が満足される。
In addition, if the volume expansion is about 1.5 to 8 times that of artificial seawater, sufficient characteristics will be satisfied for tap water.

また、上記可動部13は、水を吸収して形状が変化する
前の膨張性材料16に当接した状態で保持されており、
水の吸収によって膨張性材料16が膨張すると共にケー
ス11内に設けられたガイド部17にガイドされて移動
する。このときの可動部13の移動量はケース内に設け
られたストッパ部18によって規制されている。
Further, the movable part 13 is held in contact with the expandable material 16 before it absorbs water and changes its shape,
As the expandable material 16 expands due to absorption of water, it is guided by a guide section 17 provided inside the case 11 and moves. The amount of movement of the movable part 13 at this time is regulated by a stopper part 18 provided inside the case.

ケース11の第2室15内に配されている光伝送媒体1
2の一端部は、ケース11壁部11aに把持部19を介
して固定されていると共に、光伝送媒体12の他端部は
可動部13に一体化されて固定されている。よって、本
実施例においては、可動部13と把持部19とが光伝送
媒体12の長手方向線上に設けられている。
Optical transmission medium 1 arranged in second chamber 15 of case 11
One end of the optical transmission medium 2 is fixed to the wall 11a of the case 11 via a grip 19, and the other end of the optical transmission medium 12 is integrated and fixed to the movable part 13. Therefore, in this embodiment, the movable part 13 and the gripping part 19 are provided on the longitudinal direction of the optical transmission medium 12.

また、上記光伝送媒体12は、例えば光ファイバに紫外
線硬化樹脂等で被覆を施したものを2本以上並べて更に
紫外線硬化樹脂等で一括被覆を施したテープ心線であり
、弾性を有するものである。
Further, the optical transmission medium 12 is, for example, a ribbon core made by arranging two or more optical fibers coated with an ultraviolet curing resin or the like and then collectively coating them with an ultraviolet curing resin or the like, and is elastic. be.

このテープ心算は厚さ方向に曲り易いが幅方向に曲りに
くいため曲げの方向性がよいので特に、センサに用いて
信頼性が高い。
This tape core is easy to bend in the thickness direction but difficult to bend in the width direction, so it has good bending directionality and is particularly reliable when used in sensors.

このような構成の浸水検知センサは、例えば水の浸水時
には、膨張性材料16が水を吸収して膨張し、該膨張性
材料16に当接してし)る可動部13がガイド17にガ
イドされて移動し、該可動部13に一体に固定されてい
る光伝送媒体12を把持部19側に押すと同時に把持部
19と可動部13との光伝送媒体12を固定した距離が
狭くなる結果、該光伝送媒体12が曲げられる。この光
伝送媒体12の曲げによって伝送損失が増大することと
なる。この伝送損失増は光伝送媒体12の曲げによって
依存されるので、損失増をあらかじめ設定しておくこと
ができ、例えば可動部13の移動量をストッパ部18に
スペーサ20を挿入することによって、該移動量を規制
し、例えば0.2 dB / km〜2− OdB /
 k−となるように、任意に伝送損失の損失増を設定す
ることができる。
In a water immersion detection sensor having such a configuration, for example, when water floods, the expandable material 16 absorbs water and expands, and the movable part 13 (which comes into contact with the expandable material 16) is guided by the guide 17. When the optical transmission medium 12, which is integrally fixed to the movable part 13, is pushed toward the gripping part 19, the distance between the gripping part 19 and the movable part 13 over which the optical transmission medium 12 is fixed becomes narrower. The optical transmission medium 12 is bent. This bending of the optical transmission medium 12 increases transmission loss. Since this increase in transmission loss depends on the bending of the optical transmission medium 12, the increase in loss can be set in advance. Regulate the amount of movement, e.g. 0.2 dB/km to 2-OdB/
The increase in transmission loss can be arbitrarily set so that k-.

このような構成の浸水検知センサは、例えば細長い円筒
状の通信用クロージャ等の従来の収納ケースに容易に収
納することができる。
A water immersion detection sensor having such a configuration can be easily stored in a conventional storage case such as an elongated cylindrical communication closure.

これは従来の浸水検知センサのように、光伝送媒体の軸
方向に直交する方向に大がかりな構成したものに比べて
、本発明の浸水検知センサは単に光伝送媒体を長手方向
に押すことだけで該光伝送媒体を変形させており、横方
向のかさぼりが全くないからである。
This is because, compared to conventional water immersion detection sensors that are constructed in a large scale in a direction perpendicular to the axial direction of the optical transmission medium, the water immersion detection sensor of the present invention simply pushes the optical transmission medium in the longitudinal direction. This is because the optical transmission medium is deformed and there is no lateral bulk.

また、従来の浸水検知センサのように、光伝送体を挾み
込んだり、引っ張ったすせず、光伝送媒体の軸方向に押
すことで変形を与えていると共に、ガイド17とストッ
パ部18により、浸水後の光伝送媒体の変形は一息に決
まるため、浸水時の損失増を容易に見積ることができる
。但し、本発明は第2室15内での光伝送媒体12のケ
ース内への接触を否定するものではなく、例えば光伝送
媒体12とケース11内との摩擦力が十分に小さく、光
伝送媒体12の動きを防げない限り、本発明の主旨に反
しない。
In addition, unlike conventional water immersion detection sensors, the optical transmission medium is deformed by pushing it in the axial direction instead of being pinched or pulled, and the guide 17 and stopper part 18 Since the deformation of the optical transmission medium after being submerged in water is fixed in one breath, it is easy to estimate the increase in loss during submergence. However, the present invention does not deny contact of the optical transmission medium 12 with the case 11 inside the second chamber 15; for example, if the frictional force between the optical transmission medium 12 and the inside of the case 11 is sufficiently small, the optical transmission medium As long as the movement of 12 cannot be prevented, it does not go against the gist of the present invention.

尚、本実施例では膨張性材料として吸水すると形状が変
化するものを用いたが、例えばアクチエエータを用い水
を検知して可動部を押圧するものであればいずれのもの
を用いても適用可能である。
In this example, an expandable material that changes shape when it absorbs water was used, but any material that can detect water and press a movable part using an actuator, for example, can be used. be.

(試 験 例) 光伝送媒体12として、直径125μmの1.3μm帯
用シングルモード光ファイバの上に紫外線硬化樹脂を被
覆して、直径250μmにしたものを2本平行に並べて
更に紫外線硬化樹脂を一括被覆した厚さ0.4wm、幅
0.7wmの2心テープ心線を利用した。この2心テー
プ心線は厚さ方向に曲り易いものである。
(Test Example) As the optical transmission medium 12, two single mode optical fibers for the 1.3 μm band with a diameter of 125 μm are coated with an ultraviolet curable resin to a diameter of 250 μm, and two fibers are arranged in parallel and further coated with an ultraviolet curable resin. A two-core tape core wire having a thickness of 0.4 wm and a width of 0.7 wm that was coated all at once was used. This two-core tape cable is easily bent in the thickness direction.

ケース11として輻25m×厚さ13.5■×長さ80
■のプラスチック製のものを切削加工して、第1室14
.第2室15を形成し、更に金属で可動部13を作成し
た。
Case 11: Radius 25m x Thickness 13.5cm x Length 80cm
The first chamber 14 is made by cutting the plastic part of ■.
.. A second chamber 15 was formed, and a movable part 13 was also made of metal.

光伝送媒体12は、把持部19と可動部13にそれぞれ
エポキシ系接着剤で固定し、ケース11内に装着・保持
した。この際、光伝送媒体12の浸水時の光伝送媒体1
2の引き込み量が少なくなるように、あらかじめ光伝送
媒体12がある程度曲げられているように設定した、こ
の設定中も、波長1.3μmのモニタ波長で観測し、こ
の曲げによる損失増が0.01 dB / k鳳以下で
あるように注意した。
The optical transmission medium 12 was fixed to the grip part 19 and the movable part 13 with epoxy adhesive, and was mounted and held in the case 11. At this time, the optical transmission medium 1 when the optical transmission medium 12 is submerged in water
The optical transmission medium 12 was set in advance to be bent to some extent so as to reduce the amount of pull-in of the optical fiber 12.During this setting, observation was also made at a monitor wavelength of 1.3 μm, and it was determined that the increase in loss due to this bending was 0. Care was taken to keep it below 0.01 dB/k.

次に、浸水による損失増が1.0 dB / k+mに
なるように、可動部の移動量をモニタし、ストッパ部1
8にスペーサ19を挾んで調整した。
Next, the amount of movement of the movable part is monitored and the stopper part 1 is
Adjustments were made by inserting spacer 19 between 8 and 8.

膨張性材料としては、合成ゴムに吸水パウダー(「スミ
カゲル5P−520J(商品名):住人化学製)を添加
したものを用いた。この膨張性材料は水道水で10倍の
体積増2人工海水(アクアマリン:商品名)で3倍の体
積増となるものである。
As the expandable material, we used synthetic rubber with water-absorbing powder ("Sumikagel 5P-520J (trade name): manufactured by Juman Chemical Co., Ltd.") added.This expandable material increased in volume by 10 times with tap water.2 Artificial seawater (Aquamarine: trade name), which increases the volume by three times.

このような浸水検知センサの全体を浸水させた場合、水
道水で5分2人工海水で25分で設定の1. OdB 
/ k+mの伝送損失を得た。
When the entire submersion detection sensor is immersed in water, it takes 5 minutes with tap water and 25 minutes with artificial seawater to reach the setting of 1. OdB
/k+m transmission loss was obtained.

また、該浸水検知センサの1/3を浸水させた場合、水
道水で15分1人工海水で70分で設定の1.0dB/
kmの伝送損失を得た。これは、膨張性材料が水を吸い
上げるのに時間がかかったためである。
In addition, when 1/3 of the water immersion detection sensor is submerged in water, the set rate of 1.0 dB/
A transmission loss of km was obtained. This is because the expandable material took longer to wick water.

〈発明の効果〉 以上実施例と共に説明したように、本発明の浸水検知セ
ンサは、光伝送媒体を長手方向に押すことにより、該光
伝送媒体を変形させているために横方向にかさばらない
ので、通信用クロージャの様に細長い円筒状のケースに
入れることが可能である。また、浸水後の光伝送媒体の
変形も設定量以上−がらないので負担がかからず更に損
失増もあらかじめ任意に設定できるので信頼性の高いセ
ンサを提供できる。
<Effects of the Invention> As explained above in conjunction with the embodiments, the water immersion detection sensor of the present invention deforms the optical transmission medium by pushing the optical transmission medium in the longitudinal direction, so it is not bulky in the lateral direction. , it can be placed in an elongated cylindrical case like a communication closure. Furthermore, since the deformation of the optical transmission medium after being submerged in water does not exceed a predetermined amount, there is no burden on the optical transmission medium, and since the increase in loss can be set arbitrarily in advance, a highly reliable sensor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、(blは、本発明の一実施例にががる浸
水検知センサの概略図、第2図、第3図は各々従来技術
にががる浸水検知センサの概略図である。 図 i 中、 11はケース、 12は光伝送媒体、 13は可動部、 14は第1室、 15は第2室、 16は膨張性材料、 17はガイド、 18はストッパ部、 19は把持部、 20はスペーサである。 第 瞥 図 (b) 第 図 第 図 (Q) (bl
FIG. 1 (al, (bl) is a schematic diagram of a water immersion detection sensor according to an embodiment of the present invention, and FIGS. 2 and 3 are schematic diagrams of water immersion detection sensors according to the prior art, respectively. In Figure i, 11 is a case, 12 is an optical transmission medium, 13 is a movable part, 14 is a first chamber, 15 is a second chamber, 16 is an expandable material, 17 is a guide, 18 is a stopper part, 19 is a grip Part 20 is a spacer. Figure (b) Figure (Q) (bl

Claims (1)

【特許請求の範囲】 ケース内に光伝送媒体を貫通した状態で配し、該ケース
内に可動部を該光伝送媒体の貫通した方向に移動可能に
支持し、 この可動部を挾んで一方側を第1室とすると共に可動部
を挾んで他方側を第2室とし、 この一方側の第1室内に水を吸収して形状変化を起こし
て該可動部を押圧する膨張性材料を設け、 上記可動部は形状変化前の該膨張性材料に当接した状態
で保持され且つその移動量がストッパ部によって規制さ
れており、 第2室内に配されている光伝送媒体の一端部はケースに
固定されていると共に、光伝送媒体の他端部は可動部に
固定されていることを特徴とする浸水検知センサ。
[Claims] An optical transmission medium is disposed in a case so as to pass through the case, and a movable part is supported within the case so as to be movable in the direction in which the optical transmission medium passes through, and one side with the movable part sandwiched therebetween. is a first chamber, and the other side sandwiching the movable part is a second chamber, and an expandable material that absorbs water and changes shape to press the movable part is provided in the first chamber on one side. The movable part is held in contact with the expandable material before its shape changes, and its movement is regulated by a stopper part, and one end of the optical transmission medium disposed in the second chamber is attached to the case. A water immersion detection sensor characterized in that the optical transmission medium is fixed and the other end of the optical transmission medium is fixed to a movable part.
JP21825090A 1990-08-21 1990-08-21 Inundation sensor Pending JPH04102045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21825090A JPH04102045A (en) 1990-08-21 1990-08-21 Inundation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21825090A JPH04102045A (en) 1990-08-21 1990-08-21 Inundation sensor

Publications (1)

Publication Number Publication Date
JPH04102045A true JPH04102045A (en) 1992-04-03

Family

ID=16716946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21825090A Pending JPH04102045A (en) 1990-08-21 1990-08-21 Inundation sensor

Country Status (1)

Country Link
JP (1) JPH04102045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008210A (en) * 2008-06-26 2010-01-14 Fujikura Ltd Immersion sensor
JP2011013141A (en) * 2009-07-03 2011-01-20 Fujikura Ltd Immersion sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008210A (en) * 2008-06-26 2010-01-14 Fujikura Ltd Immersion sensor
JP2011013141A (en) * 2009-07-03 2011-01-20 Fujikura Ltd Immersion sensor

Similar Documents

Publication Publication Date Title
US5430815A (en) Optical fiber water sensor
US5082380A (en) Optical fibre cable
KR910010212A (en) Fiber optic splicing device
Socorro et al. Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film
EP1143272A2 (en) Mechanically induced, reversible, long period optical fiber gratings
JP2000502438A (en) Sensor device
Matias et al. Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings
US8556538B2 (en) Deployable optical fiber cartridge
US20140105554A1 (en) Reconfigurable Liquid Metal Fiber Optic Mirror
JPH04102045A (en) Inundation sensor
US6009217A (en) Optical fiber sensor for distinguishing between the presence of liquid and vapor phases of a substance
KR910008391A (en) Method and device for measuring optical attenuation according to bent optical fiber
GB2331374A (en) A Removably Coated Optical Fibre
Bravo et al. Nanofilms on hollow core fiber-based structures: an optical study
DE3136584A1 (en) OPTICAL DAMPER
JPH0926370A (en) Pressure sensor
KR940011962A (en) Water penetration detection device using optical fiber
JP2556573B2 (en) Infiltration detector
GB2243225B (en) Composite electric &amp; optical cable manufacture
ATE139850T1 (en) SENSOR IN THE FORM OF AN OPTICAL CABLE FOR HEAT SOURCE LOCATION
JP2006048030A (en) Optical fiber connecting apparatus and method
Cusano et al. Fiber Bragg gratings evanescent wave sensors: A view back and recent advancements
JPH09113402A (en) Wetting detection sensor and optical fiber using it
JPS62262804A (en) Optical fiber inundation detecting sensor
JP2721992B2 (en) Water sensor