JPH04102042A - Otdr type measurement method - Google Patents

Otdr type measurement method

Info

Publication number
JPH04102042A
JPH04102042A JP21948790A JP21948790A JPH04102042A JP H04102042 A JPH04102042 A JP H04102042A JP 21948790 A JP21948790 A JP 21948790A JP 21948790 A JP21948790 A JP 21948790A JP H04102042 A JPH04102042 A JP H04102042A
Authority
JP
Japan
Prior art keywords
length
optical fiber
optical fibers
distance resolution
measurement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21948790A
Other languages
Japanese (ja)
Inventor
Akira Tokushima
徳島 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP21948790A priority Critical patent/JPH04102042A/en
Publication of JPH04102042A publication Critical patent/JPH04102042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To improve distance resolution by arranging a plurality of optical fibers in N arrays in parallel within a length L determined by the distance resolution and connecting the N arrays of the optical fibers in series with a connection optical fiber of a length L/N. CONSTITUTION:For example two optical fibers 1 arranged in parallel are con nected in series by an optical fiber 6 of a length L/2. The optical fibers 1 are divided into lengths L (L0... L7) from an incident end of an incident pulse beam 2. Further each Ln (n = 0 to 7) is divided into half lengths and a half closer to the incident end is lna and a half farther to the incident end is lnb, so that l7b and l0b are at the same position. When a total amount of back-scattered light generated in Ln, lna, lnb sections are Pn, Pna, Pnb, p7a=P7-P0/2 is satisfied. Since P7, P0 are values that can be received by an OTDR type measurement apparatus, p7a can be calculated. In addition, since l7a and l1a are at the same position, p1b=P1-(P7-P0/2) is satisfied. Similarly, all values of pna, pnb can be calculated, from which distance resolution of L/2 can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はOTDR方式測定方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an OTDR measurement method.

[従来の技術] 従来のOT D R(0ptical Time Do
main Refractometry )方式測定方
法は第3図に示されているように、単心の光ファイバ1
にパルス光2を入射し、光ファイバーの各部分からの散
乱光3の−・部の後方散乱光4を入射端で受信し、例え
ば温度分布測定を行っている。なお同図は5は透過光で
ある。
[Conventional technology] Conventional OT DR (0ptical time do
As shown in Figure 3, the main refractometry method is a measurement method using a single optical fiber 1.
Pulsed light 2 is incident on the optical fiber, and the backscattered light 4 of the - part of the scattered light 3 from each part of the optical fiber is received at the input end to measure, for example, temperature distribution. Note that in the figure, 5 is transmitted light.

[発明が解決しようとする課題] 上記従来技術は、LAを距離分解能、王を入射パルス光
の時間幅、Cを光フアイバ内の光の速度とした場合に、
LA=TC/2・・・(1)で算出される距離分解能L
Aで決まる長さ内で発停する後光散乱光の総量を受信し
、測定を行っている。従って装置のサンプリング時間を
短くしても、距離分解能しAは(1)式で決まるので短
くならない。
[Problems to be Solved by the Invention] In the above-mentioned prior art, when LA is the distance resolution, K is the time width of the incident pulsed light, and C is the speed of light within the optical fiber,
LA=TC/2... Distance resolution L calculated by (1)
The total amount of backlight scattered light that starts and stops within the length determined by A is received and measured. Therefore, even if the sampling time of the device is shortened, the distance resolution A will not be shortened because it is determined by equation (1).

光の速度Cは物理的に決まる値であるから、距離分解能
L を高める即らLAを小さくするためには入射パルス
光の時間幅Tを短かくしなければならない。しかし、O
TDR方式測定装置では高い強度の入)1パルス光を必
要とし、時間幅Tを知かくするのは非常に困難である。
Since the speed of light C is a physically determined value, in order to increase the distance resolution L, that is, to reduce LA, the time width T of the incident pulsed light must be shortened. However, O
The TDR type measuring device requires one pulse of high-intensity light, and it is very difficult to control the time width T.

本発明は以上の点に鑑みなされたものであり、距離分解
能を大幅に高めることを可能とした○TDR方式測定方
法を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a ○TDR type measurement method that makes it possible to significantly improve distance resolution.

[課題を解決するための手段] 上記目的は、光ファイバを複数のN本並列に配列し、そ
の配列したN本の光ファイバを長さ[/Nの接続用光フ
ァイバで直列に接続して後方散乱光を測定することによ
り、達成される。
[Means for solving the problem] The above object is to arrange a plurality of N optical fibers in parallel, and connect the arranged N optical fibers in series with a connecting optical fiber of length [/N]. This is accomplished by measuring backscattered light.

[作用] 上記手段を設けたので、距離分解能で法談る長さLの1
/Nの長さの部分の後方散乱光が算出できるようになっ
て、L/Nの距離分解能の測定が可能となる。
[Operation] Since the above-mentioned means is provided, 1 of the length L of the sermon with distance resolution
The backscattered light of a portion with a length of /N can now be calculated, making it possible to measure a distance resolution of L/N.

[実施例] 以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。なお、従来
と同じ部品には同じ符号を付したので説明を省略する。
[Example] The present invention will be described below based on the illustrated example. FIG. 1 shows an embodiment of the invention. It should be noted that the same parts as in the prior art have been given the same reference numerals, so their explanation will be omitted.

本実施例では光ファイバ1を2本並列に配列し、その配
列した2本の光ファイバ1を長さ[/2の接続用光ファ
イバ6で直列に接続して後方散乱光を測定した。このよ
うにすることにより距離分解能で決まる長さ[の1/2
の長さの部分の後光散乱光が算出できるようになって、
Ll2の距離分解能の測定が可能となり、距離分解能を
大幅に高めることを可能としたOTDR方式測定方法を
得ることができる。
In this example, two optical fibers 1 were arranged in parallel, and the two arranged optical fibers 1 were connected in series with a connecting optical fiber 6 having a length of [/2] to measure backscattered light. By doing this, the length [1/2] determined by the distance resolution
It is now possible to calculate the backlight scattered light of the length of .
It becomes possible to measure the distance resolution of Ll2, and it is possible to obtain an OTDR measurement method that makes it possible to significantly improve the distance resolution.

すなわち2本の光ファイバーを同一経路に設置し、その
終端を距離分解能で決まる長さしのLl2の長さの接続
用光ファイバ6で光フアイバ接続点7を介して接続する
。このようにして直列に接続した光ファイバーを入射パ
ルス光2の入射端から距離分解能で決まる長さし毎に分
ける。同図では例として8区間に分けし。、Ll・・・
・・・・・・L7とする。さらに各L  (n=o、1
〜7)を半分の良さに分け、入射端に近い方’na、遠
い方を1゜。
That is, two optical fibers are installed on the same path, and their terminal ends are connected via an optical fiber connection point 7 with a connecting optical fiber 6 having a length Ll2 determined by the distance resolution. In this way, the optical fibers connected in series are divided into lengths determined by the distance resolution from the input end of the input pulsed light 2. In the figure, it is divided into eight sections as an example. , Ll...
......L7. Furthermore, each L (n=o, 1
Divide ~7) into halves, the one closer to the incident end 'na' and the one farther away 1 degree.

とする。終端の接続用光ファイバ6がLl2なので、’
7bと1゜bとは同図にも示されているように同じ位置
になる。
shall be. Since the connecting optical fiber 6 at the end is Ll2, '
7b and 1°b are at the same position as shown in the figure.

Loの区間に発生する後方散乱光の総量をP。The total amount of backscattered light generated in the section Lo is P.

とじ、’na、’nbの区間に発生する後方散乱光の総
量をpna、pnbとする。L。 (1o8、Job)
と’7bとの光ファイバーの状態を均一にし、そこで発
生する後方散乱光の量も同じになるようにすると、次の
(2)、(3)が成り立つ。
Let pna and pnb be the total amounts of backscattered light generated in the sections ``na'' and ``nb''. L. (1o8, Job)
If the conditions of the optical fibers and '7b are made uniform, and the amount of backscattered light generated therein is also the same, then the following (2) and (3) hold true.

pOa−pOb=PO/2−(2) p7b= p□b−−(3) また、一般に (4)式が成り立つ。pOa-pOb=PO/2-(2) p7b= p□b--(3) Further, in general, equation (4) holds true.

P  =pna+pnb・・・(4) n=7の場合、(4)式より (5)式が成り立つ。P=pna+pnb...(4) When n=7, equation (5) holds true from equation (4).

P  = p7a + p 7b・・・(5)(2) 
、(3) 、 (51式より (6))式が成り立つ。
P = p7a + p7b...(5)(2)
, (3) , (From equation 51, equation (6)) holds true.

p  =P   Po/2・・・・・・(6)7a  
  7 p、p7はOTDR方式測定装置が受信可能な値である
から、(6)式を使って距離分解能で決まる長さLの半
分の長さであるJ278の部分の後方散乱光p7aを算
出することができる。
p = P Po/2 (6) 7a
7 Since p and p7 are values that can be received by the OTDR measurement device, use equation (6) to calculate the backscattered light p7a of the portion J278, which is half the length L determined by the distance resolution. be able to.

また、1□、とfllaとは同じ位置なので、光ファイ
バ1の状態も同じと考えられるから、 (7)式が成り
立つ。
Furthermore, since 1□ and fla are at the same position, the state of the optical fiber 1 can be considered to be the same, so equation (7) holds true.

p1a=p7a   ・・・・・・(7)(4) 、(
6)、(7)、式より(8)式が成り立つ。
p1a=p7a ・・・・・・(7)(4) ,(
Equation (8) holds true from Equations 6) and (7).

p  =P  −(P  −Po/2)・ (8)1b
   1     7 同様にして全てのpnaSpobが算出でき、その値よ
りLl2の距離分解能の測定が可能となる。
p = P - (P - Po/2) (8) 1b
1 7 All pnaSpob values can be calculated in the same way, and the distance resolution of Ll2 can be measured from the calculated values.

このように本実施例の方を法用いると、従来のOTDR
方式測定方法の距離分解能を大幅に高めることができる
When the method of this embodiment is used in this way, the conventional OTDR
The distance resolution of the method measurement method can be greatly improved.

第2図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

本実施例は距離分解能をL/kに高める方法を示したも
のである。k本の光ファイバ1を同一経路に設置し、そ
のに本の光ファイバ1をL/にの長さの接続用光ファイ
バ8で直列に接続する。同図に示されている入射パルス
光2の入射端のLoと同じ位置にあるに本の光ファイバ
1を均一な状態にする。このようにすることにより上述
の場合と同じ方法でL/にの長さ毎の後方散乱光の算出
が可能となる。
This example shows a method for increasing the distance resolution to L/k. K optical fibers 1 are installed in the same path, and the optical fibers 1 are connected in series to them by a connecting optical fiber 8 having a length of L/. The optical fiber 1 is brought into a uniform state at the same position as the input end Lo of the input pulsed light 2 shown in the figure. By doing this, it becomes possible to calculate the backscattered light for each length of L/ using the same method as in the above case.

[発明の効果] 上述のように本発明は光ファイバを複数のN本並列に配
列し、その配列したN本の光ファイバを長さL/Nの接
続用光ファイバで直列に接続して後方散乱光を測定した
ので、距離分解能で決まる長さしの1/Nの長さの部分
の後光散乱光が算出比できるようになって、L/Nの距
離分解能の測定が可能となり、距離分解能を大幅に^め
ることを可能としたOTDR方式測定方法を得ることが
できる。
[Effects of the Invention] As described above, the present invention arranges a plurality of N optical fibers in parallel, and connects the arranged N optical fibers in series with a connecting optical fiber having a length of L/N. Since we have measured the scattered light, we can calculate the backscattered light at a length of 1/N of the length determined by the distance resolution, making it possible to measure the distance resolution of L/N. It is possible to obtain an OTDR measurement method that makes it possible to significantly increase the resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明のOTDR方式測定方沫の
夫々異なる実施例による光ファイバの接続を示す説明図
、第3図は従来のOTDR方式測定方法による測定を示
す説明図である。 1:光ファイバ、 2:入射パルス光、 4:後方散乱光、 6.8:接続用光ファイバ。
FIGS. 1 and 2 are explanatory diagrams showing the connection of optical fibers according to different embodiments of the OTDR measurement method of the present invention, and FIG. 3 is an explanatory diagram showing measurement by the conventional OTDR measurement method. 1: Optical fiber, 2: Incident pulsed light, 4: Backscattered light, 6.8: Optical fiber for connection.

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバにパルス光を入射し、距離分解能で決ま
る長さL内で発生する後光錯散乱光の総量を受信・測定
するOTDR方式測定方法において、前記長さL内に前
記光ファイバを複数のN本並列に配列し、その配列した
N本の光ファイバを長さL/Nの接続用光ファイバで直
列に接続して後方散乱光を測定するようにしたことを特
徴とするOTDR方式測定方法。
1. In an OTDR measurement method in which a pulsed light is input into an optical fiber and the total amount of backlight scattered light generated within a length L determined by the distance resolution is received and measured, the optical fiber is inserted into the optical fiber within the length L. An OTDR method characterized by arranging a plurality of N optical fibers in parallel and connecting the arranged N optical fibers in series with a connecting optical fiber having a length of L/N to measure backscattered light. Measuring method.
JP21948790A 1990-08-21 1990-08-21 Otdr type measurement method Pending JPH04102042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21948790A JPH04102042A (en) 1990-08-21 1990-08-21 Otdr type measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21948790A JPH04102042A (en) 1990-08-21 1990-08-21 Otdr type measurement method

Publications (1)

Publication Number Publication Date
JPH04102042A true JPH04102042A (en) 1992-04-03

Family

ID=16736217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21948790A Pending JPH04102042A (en) 1990-08-21 1990-08-21 Otdr type measurement method

Country Status (1)

Country Link
JP (1) JPH04102042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022073128A (en) * 2020-10-30 2022-05-17 アンリツ株式会社 Otdr measurement device and otdr measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022073128A (en) * 2020-10-30 2022-05-17 アンリツ株式会社 Otdr measurement device and otdr measurement method

Similar Documents

Publication Publication Date Title
CA1135547A (en) Optical waveguide mode scrambler
US4869570A (en) Fiber coupler and method and apparatus for manufacturing the same
ATE28939T1 (en) DISTRIBUTION RACK FOR FIBER OPTIC CABLE END.
ITMI940128A1 (en) OPTICAL ATTENUATION MEASUREMENT METHOD OF AN OPTICAL FIBER CABLE WITH OPTICAL DIRECTION
JP2019015584A (en) Method and device for measuring optical fiber emitted beam profile
US4990770A (en) Measuring arrangement for testing a plurality of light waveguides
JP6614875B2 (en) Optical fiber transmission body measuring component and measuring method
WO2022101958A1 (en) Device and method for evaluating characteristics of spatial multiplex optical transmission line
JPH04102042A (en) Otdr type measurement method
Dorsey Fiber optic rotary joints-a review
JPS63132139A (en) Liquid refractive index meter
CN210323602U (en) Optical fiber beam splitter simultaneously adapting to spectrometer entrance slit and point detector
US5263109A (en) Optical transmission paths and methods of measuring their optical transmission times
US6798946B2 (en) Method to deskew parallel optical links
JP3359150B2 (en) Optical component optical loss measurement method
US5042943A (en) Endface assessment
JP7020282B2 (en) Probe optical fiber and optical fiber side input / output device
JPH04104032A (en) Inspecting method for optical fiber cable with multifiber connector
KR100333092B1 (en) apparatus for collimator array
HUT57436A (en) Method for determining optical losses of optical light-conducting fibres in the reflected beam
JP7360694B2 (en) Optical connection device
Stern et al. The Characterization of Monomode Fibre Links Installed in Operational Duct
JP2817283B2 (en) Characteristic measuring device for cable with optical connector
WO2023204753A1 (en) A method and system for measurement of optical loss in wafer level testing via wavelength-route division
JPH037061B2 (en)