JPH04102031A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH04102031A
JPH04102031A JP22030990A JP22030990A JPH04102031A JP H04102031 A JPH04102031 A JP H04102031A JP 22030990 A JP22030990 A JP 22030990A JP 22030990 A JP22030990 A JP 22030990A JP H04102031 A JPH04102031 A JP H04102031A
Authority
JP
Japan
Prior art keywords
temperature
magnet
permanent magnet
fixed
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22030990A
Other languages
Japanese (ja)
Inventor
Yasuo Kasahara
笠原 保男
Shoji Usuda
臼田 昭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP22030990A priority Critical patent/JPH04102031A/en
Publication of JPH04102031A publication Critical patent/JPH04102031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To enable accurate detection of the temperature of an object of detection by a construction wherein a pair of permanent magnets holding a temperature-sensitive member therebetween are disposed separably so that the same pole sides thereof are opposite to each other. CONSTITUTION:A temperature-sensitive member 12 is made of a magnetism compensating material and a permanent magnet 11 is fixed to the upper end of the member 12, while a conductive leaf spring 14 is fixed in the vicinity of the other end thereof. Moreover, a permanent magnet 13 is fixed to the spring 14 at a position whereat it is opposite to the magnet 11 with the member 12 held therebetween, and these magnets 11 and 13 are disposed so that the same pole sides thereof are opposed to each other. In a state wherein the temperature of the surface 21 of a semiconductor element is lower enough than the Curie temperature of the member 12, the member 12 shows ferromagnetism and the magnet 13 is attracted magnetically to the member 12. When the temperature of the surface 21 rises, on the other hand, saturation magnetization of the member 12 decreases sharply, the magnet 13 and the magnet 11 repel each other at a prescribed temperature, and the magnet 13 separates from the member 12. When the temperature of the surface 21 lowers and the repellent forces of the magnets 11 and 13 lower below the resilience of the spring 14, the magnet 13 comes into contact with the member 12. In this way, it can be known whether the member 12 exceeds a set temperature or not.

Description

【発明の詳細な説明】 +8+産業上の利用分野 この発明は、温度検出対象が一定の温度になったことを
検出する温度センサに関し、特にMOSFET等のパワ
ー半導体素子を温度検出対象とする小型の温度センサに
関する。
[Detailed Description of the Invention] +8+ Industrial Application Field The present invention relates to a temperature sensor that detects when a temperature detection target has reached a certain temperature, and particularly relates to a small temperature sensor that detects a temperature detection target of a power semiconductor element such as a MOSFET. Regarding temperature sensors.

tb+従来の技術 一般に、温度検出対象が一定温度に達したことを検出す
る温度センサとして従来よりバイメタルを用いたものが
ある。このバイメタルを構成する金属材料の組成を適当
に選択するとともに、バイメタルの一方の側面に開閉接
点を構成する可動接点を固定し、温度変化によるバイメ
タルの変形によって接点を開閉し、この開閉接点を流れ
る電流の有無を検出することによって温度検出対象が所
定温度以上であるか否かを検出するようにしている。
tb+Prior Art In general, there are conventional temperature sensors that use bimetal as a temperature sensor that detects when a temperature detection target reaches a certain temperature. In addition to appropriately selecting the composition of the metal materials that make up this bimetal, a movable contact that makes up the opening/closing contact is fixed to one side of the bimetal, and the contact is opened and closed by deformation of the bimetal due to temperature changes, and flow flows through this opening/closing contact. By detecting the presence or absence of current, it is detected whether the temperature of the object to be detected is higher than a predetermined temperature.

(C1発明が解決しようとする課題 しかしながら、上記従来のバイメタルを用いた温度セン
サでは温度検出対象の温度変化に伴ってバイメタルが徐
々に変形するため、開閉接点を瞬間的に接続または開離
させることができず、温度検出対象の温度を正確に検出
することができない問題があった。また、バイメタルを
構成する金属材料の組成の組み合わせは限られており、
検出可能な温度が比較的狭い範囲に限定される問題があ
った。このように、比較的広い範囲について検出対象の
温度を正確に検出できる温度センサは、特に半導体素子
の分野において強く要請されていたものである。
(C1 Problem to be solved by the invention) However, in the above conventional temperature sensor using a bimetal, the bimetal gradually deforms as the temperature of the object to be detected changes, so it is difficult to connect or open the switching contact instantaneously. There was a problem that the temperature of the temperature detection target could not be detected accurately.Also, the combinations of compositions of the metal materials that make up the bimetal are limited.
There was a problem in that the detectable temperature was limited to a relatively narrow range. As described above, a temperature sensor that can accurately detect the temperature of a detection target over a relatively wide range is strongly desired, particularly in the field of semiconductor devices.

この発明の目的は、磁気補償材料において温度上昇とと
もにその飽和磁化が急激に減少することに着目してなさ
れたものであり、この磁気補償材料を素材とする感温部
材を挟んで対向する一対の永久磁石の磁力による吸引お
よび反発作用を利用して接点を開閉することにより、磁
気補償材料の選択によって比較的広い範囲に検出温度を
設定することができ、しかも設定温度を越えた時に瞬間
的に開閉動作を行うことができ、温度を正確に検出する
、ことができる小型の温度センサを提供することにある
The purpose of this invention was to focus on the fact that the saturation magnetization of a magnetic compensation material decreases rapidly as the temperature rises. By opening and closing contacts using the magnetic attraction and repulsion of permanent magnets, it is possible to set the detection temperature over a relatively wide range by selecting a magnetic compensation material, and when the set temperature is exceeded, the detection temperature can be set instantly. It is an object of the present invention to provide a small temperature sensor that can perform opening and closing operations and accurately detect temperature.

(d1課題を解決するための手段 この発明の温度センサは、磁気補償材料を素材とし、温
度検出対象に接触する感温部材を備え、この感温部材を
挟んで一対の永久磁石が互いの同極側が対向するように
接離自在に配置され、何れか一方の永久磁石は前記感温
部材に固定され、各永久磁石は開閉接点のそれぞれの接
点に電気的に接続したことを特徴とする。
(Means for Solving Problem d1) The temperature sensor of the present invention is made of a magnetic compensation material and includes a temperature-sensitive member that comes into contact with the object of temperature detection, and a pair of permanent magnets are placed in the same position with the temperature-sensitive member sandwiched therebetween. The permanent magnets are arranged so as to be movable toward and away from each other so that their pole sides face each other, one of the permanent magnets is fixed to the temperature-sensitive member, and each permanent magnet is electrically connected to a respective one of the opening/closing contacts.

また、前記感温部外の一部または全部を伝熱素子により
構成することができる。
Further, a part or all of the outside of the temperature-sensing section can be constituted by a heat transfer element.

(e)作用 この発明においては、磁気補償材料を素材とするW、 
A部材を挟んで一対の永久磁石が互いの同極側が対向す
るように配置され、何れか一方の永久磁石が感温部材に
固定される。第1図(A)に示すように、一方の永久磁
石1を固定した感温部材3が比較的低温度である場合に
は感温部材は強磁性を示し、この感温部材内に永久磁石
1および永久磁石2の磁束が吸収される。これによって
、永久磁石2は感温部材3に磁気吸着する。一方、感温
部材3の温度が丘昇していくとその飽和磁化が減少し、
第2図に示すように感温部材3の磁束密度Bが急激に減
少していき、予め設定された設定温度t。になると感温
部材3の磁束密度Bは略0になる。この時、永久磁石1
および永久磁石2の磁束は感温部材3に吸収されず、第
1図(B)に示すように永久磁石2は永久磁石lに反発
して感温部材3から開離する。また、第1図(B)に示
す状態から%Q部材3が冷却し、所定温度以下になった
場合には感温部材3の飽和磁化が増加していき、永久磁
石2は再び第11N (A)に示すように感温部材3に
吸着して自動復帰する。
(e) Effect In this invention, W made of magnetic compensation material,
A pair of permanent magnets are arranged with the A member in between so that the same polar sides face each other, and one of the permanent magnets is fixed to the temperature-sensitive member. As shown in FIG. 1(A), when the temperature-sensitive member 3 to which one permanent magnet 1 is fixed is at a relatively low temperature, the temperature-sensitive member exhibits ferromagnetism; 1 and permanent magnet 2 are absorbed. As a result, the permanent magnet 2 is magnetically attracted to the temperature-sensitive member 3. On the other hand, as the temperature of the temperature-sensitive member 3 rises, its saturation magnetization decreases,
As shown in FIG. 2, the magnetic flux density B of the temperature-sensitive member 3 rapidly decreases until it reaches a preset temperature t. Then, the magnetic flux density B of the temperature sensitive member 3 becomes approximately 0. At this time, permanent magnet 1
The magnetic flux of the permanent magnet 2 is not absorbed by the temperature-sensitive member 3, and the permanent magnet 2 is repelled by the permanent magnet 1 and separated from the temperature-sensitive member 3, as shown in FIG. 1(B). Furthermore, when the %Q member 3 cools down from the state shown in FIG. As shown in A), it adsorbs to the temperature sensing member 3 and returns automatically.

したがって、永久磁石lおよび感温部材3を永久磁石2
に対して相対的に接離自在にするとともに、この永久磁
石18よび永久磁石2のそれぞれを開閉接点の各接点に
設けることにより、感温部材3の温度状態を電気信号と
して検出することができる。この信号によって例えば半
導体のゲートのコントロールを行うこともできる。
Therefore, the permanent magnet l and the temperature-sensitive member 3 are connected to the permanent magnet 2.
The temperature state of the temperature-sensitive member 3 can be detected as an electrical signal by making the permanent magnet 18 and the permanent magnet 2 relatively movable toward and away from each other, and by providing each of the permanent magnet 18 and the permanent magnet 2 at each of the opening/closing contacts. . This signal can also be used to control the gate of a semiconductor, for example.

また、感温部材の一部または全部を伝熱素子により構成
することにより、感温部材は伝熱素子を介して温度検出
対象に接触することになり、温度検出対象の温度変化は
感温部材に直ちに伝導する。これによって、永久磁石は
温度検出対象の温度変化に追随して接離し、開閉接点を
開閉することができる。
In addition, by configuring part or all of the temperature sensing member with a heat transfer element, the temperature sensing member comes into contact with the temperature detection target via the heat transfer element, and the temperature change of the temperature detection target is detected by the temperature detection member. conducts immediately. As a result, the permanent magnet can move toward and away from the object in accordance with changes in the temperature of the object to be detected, thereby opening and closing the opening/closing contacts.

lfl実施例 第3図は、この発明の実施例である温度センサの構成を
示す側面図である。
lfl Embodiment FIG. 3 is a side view showing the configuration of a temperature sensor that is an embodiment of the present invention.

温度センサ10は半導体素子の表面21に絶縁部材18
を介して固定される。この絶縁部材18としては、熱伝
導性に優れた材質が選ばれる。この絶縁部材I8の上面
にはL字型に折曲された感温部材12が固定されている
。この感温部材12は例えばFeNi  (Ni30%
)等の磁気補償材料を素材として形成されている。この
感温部材12の上端には永久磁石11が固定されている
。また、感温部材12の他端近傍には絶縁部材17を介
して導電性の板ハネ14が固定されている。
The temperature sensor 10 has an insulating member 18 on the surface 21 of the semiconductor element.
Fixed via. As this insulating member 18, a material with excellent thermal conductivity is selected. A temperature sensing member 12 bent into an L-shape is fixed to the upper surface of this insulating member I8. This temperature-sensitive member 12 is made of, for example, FeNi (30% Ni).
) and other magnetic compensation materials. A permanent magnet 11 is fixed to the upper end of this temperature sensing member 12. Further, a conductive plate spring 14 is fixed near the other end of the temperature sensing member 12 via an insulating member 17.

この板バネ14は略馬蹄形を呈し、他端に可動接点16
を備えている。更に、板ハネ14において感温部材12
を挟んで永久磁石11と対向する位置に永久磁石13が
固定されている。この永久磁石11および永久磁石12
は互いの同極側が対向するようにして備えられている。
This leaf spring 14 has a substantially horseshoe shape, and has a movable contact 16 at the other end.
It is equipped with Furthermore, the temperature sensing member 12 in the plate blade 14
A permanent magnet 13 is fixed at a position opposite to the permanent magnet 11 with the permanent magnet 13 in between. These permanent magnets 11 and 12
are provided with their same polar sides facing each other.

なお、感温部材12には可動接点16に接触する固定接
点15が設けられており、板バネ14は可動接点16を
固定接点15側に付勢してりる。可動接点16が固定接
点15に接触した時、永久磁石13も感温部材12に接
触する。
The temperature sensing member 12 is provided with a fixed contact 15 that contacts the movable contact 16, and the leaf spring 14 biases the movable contact 16 toward the fixed contact 15. When the movable contact 16 contacts the fixed contact 15, the permanent magnet 13 also contacts the temperature sensing member 12.

このように構成された温度センサlOは感温部材IOお
よび板バネ14の一部において電源回路に接続される。
The temperature sensor IO configured in this way is connected to the power supply circuit at the temperature sensing member IO and a part of the leaf spring 14.

これによって感温部材12→固定接点15→可動接点1
6→板バネ4の電流路が構成される。半導体素子の表面
21の温度が感温部材12のキュリー温度より充分に低
い状態では、感温部材12は強磁性を示し、永久磁石1
3は感温部材12に磁気吸着する。これによって可動接
点16は固定接点15に接触し、前述の電流路が形成さ
れる。一方、半導体素子の表面21の温度が上昇し、こ
れが絶縁部材18を介して感温部材12に伝導すると、
感温部材12の飽和磁化は急激に減少し、感温部材12
のキュリー温度以下の所定温度で永久磁石13は永久磁
石11と反発し合い、感温部材12から開離する。これ
に伴って、可動接点16も固定接点15から開離し、前
述の電流路は開成される。この後、半導体素子の表面2
1の温度が低下すると、感温部材12の飽和磁化が増加
し始め、永久磁石11と永久磁石13との反発力が減少
していく。この反発力が板バネ14の弾性力を下回ると
永久磁石13は感温部材12に接触する。更に半導体素
子の表面21の温度が低下すると感温部材12の飽和磁
化が十分に増加し、永久磁石11.13の磁束が感温部
材12に吸収され、永久磁石13は感温部材12に磁気
吸着する。永久磁石13が感温部材12に接触した時点
で可動接点16が固定接点15に接触し、開閉接点は開
成される。したがって開閉接点は半導体素子の表面21
の温度低下により自動復帰する。
As a result, the temperature sensing member 12→fixed contact 15→movable contact 1
6→A current path of the leaf spring 4 is constructed. When the temperature of the surface 21 of the semiconductor element is sufficiently lower than the Curie temperature of the temperature sensing member 12, the temperature sensing member 12 exhibits ferromagnetism, and the permanent magnet 1
3 is magnetically attracted to the temperature sensing member 12. As a result, the movable contact 16 comes into contact with the fixed contact 15, and the aforementioned current path is formed. On the other hand, when the temperature of the surface 21 of the semiconductor element increases and this is conducted to the temperature sensing member 12 via the insulating member 18,
The saturation magnetization of the temperature sensing member 12 rapidly decreases, and the temperature sensing member 12
At a predetermined temperature below the Curie temperature of , the permanent magnet 13 repels the permanent magnet 11 and separates from the temperature-sensitive member 12 . Along with this, the movable contact 16 is also separated from the fixed contact 15, and the above-mentioned current path is opened. After this, the surface 2 of the semiconductor element
When the temperature of magnet 1 decreases, the saturation magnetization of temperature-sensitive member 12 begins to increase, and the repulsive force between permanent magnet 11 and permanent magnet 13 decreases. When this repulsive force becomes less than the elastic force of the leaf spring 14, the permanent magnet 13 comes into contact with the temperature sensing member 12. When the temperature of the surface 21 of the semiconductor element further decreases, the saturation magnetization of the temperature-sensitive member 12 increases sufficiently, and the magnetic flux of the permanent magnets 11 and 13 is absorbed by the temperature-sensitive member 12. Adsorb. When the permanent magnet 13 contacts the temperature-sensitive member 12, the movable contact 16 contacts the fixed contact 15, and the opening/closing contact is opened. Therefore, the opening/closing contact is the surface 21 of the semiconductor element.
Automatically resets when the temperature drops.

以上のようにして温度センサ10を流れる電流を検出す
ることにより、感温部材12が設定温度を越えたか否か
、即ち温度検出対象である半導体素子の表面21が設定
温度を越えたかどうかを知ることができる。
By detecting the current flowing through the temperature sensor 10 as described above, it is possible to know whether the temperature sensing member 12 has exceeded the set temperature, that is, whether the surface 21 of the semiconductor element, which is the temperature detection target, has exceeded the set temperature. be able to.

第4図(A)および(B)は、この発明の別の実施例に
係る温度センサを示すそれぞれ側面図および底面口であ
る。
FIGS. 4A and 4B are a side view and a bottom view, respectively, of a temperature sensor according to another embodiment of the present invention.

温度センサ31は絶縁部材40を介して半導体素子の表
面21に取り付けられる。温崩センサ31は円柱状の伝
熱素子37を有し、この伝熱素子37の上端近傍に感温
部材33が固定されている。この感温部材33は伝熱素
子37の側面から突出しており、この突出部に永久磁石
32が固定されている。また、永久磁石32には絶縁部
材36を介して板バ235の一端が固定されている。
Temperature sensor 31 is attached to surface 21 of the semiconductor element via insulating member 40 . The temperature decay sensor 31 has a cylindrical heat transfer element 37, and a temperature sensing member 33 is fixed near the upper end of the heat transfer element 37. This temperature sensing member 33 protrudes from the side surface of the heat transfer element 37, and a permanent magnet 32 is fixed to this protrusion. Further, one end of a plate bar 235 is fixed to the permanent magnet 32 via an insulating member 36.

この板ハ235の他端近傍には永久磁石34および可動
接点38が固定されている。可動接点38は感温部材3
3の突出部に固定された固定接点39に接離自在にされ
ており、永久磁石34は感温部材33を挟んで永久磁石
32と互いの同極側が対向するように設置されている。
A permanent magnet 34 and a movable contact 38 are fixed near the other end of the plate 235. The movable contact 38 is the temperature sensing member 3
The permanent magnet 34 is attached to and detached from a fixed contact 39 fixed to a protruding portion of the magnet 3, and the permanent magnet 34 is installed with the temperature sensing member 33 in between and the permanent magnet 32 and the same polarity sides facing each other.

また、板ハネ35は可動接点38を固定接点39側に付
勢している。
Further, the plate spring 35 urges the movable contact 38 toward the fixed contact 39 side.

以上のように構成することによって感温部材33には半
導体素子の表面21の温度が伝熱素子37を介して伝導
され、第3図に示した実施例と同様の動作により半導体
素子の表面21の温度変化によって可動接点3日を固定
接点39に対して接離することができる。この伝熱素子
としては、下方に受熱部、E方に放熱部を有する公知の
と一ドパイブを用いることができる。このように伝熱素
子37としてヒートパイプを用いることにより、受熱部
と放熱部との温度差が小さいことがら温度検出対象であ
る半導体素子の表面21の温度を時延的ではあるが充分
に感温部材33に伝導することができ、温度検出対象の
温度変化を検出することができる。また、円筒状のヒー
トパイプを用いることによって温度検出対象への設置面
積を小さくすることができ、半導体素子に温度センサを
設ける場合の要請を満足することができる。また、この
場合において温度センサ全体の高さをも規制される場合
には第5図に示すように、伝熱素子37を屈曲させるこ
とにより、温度センサ31の全高を低くして要請を満足
することができる。
With the above configuration, the temperature of the surface 21 of the semiconductor element is transmitted to the temperature sensing member 33 via the heat transfer element 37, and the temperature of the surface 21 of the semiconductor element is transferred to the temperature sensing member 33 through the heat transfer element 37. The movable contact 39 can be brought into contact with and separated from the fixed contact 39 by the temperature change. As this heat transfer element, a known double pipe having a heat receiving part on the lower side and a heat dissipating part on the E side can be used. By using a heat pipe as the heat transfer element 37 in this way, since the temperature difference between the heat receiving part and the heat radiation part is small, it is possible to sufficiently sense the temperature of the surface 21 of the semiconductor element, which is the object of temperature detection, although it is delayed. The heat can be conducted to the heating member 33, and a change in temperature of the object to be detected can be detected. Further, by using a cylindrical heat pipe, the installation area for the temperature detection target can be reduced, and the requirements for providing a temperature sensor in a semiconductor element can be satisfied. In this case, if the overall height of the temperature sensor is also restricted, the overall height of the temperature sensor 31 can be lowered to satisfy the requirement by bending the heat transfer element 37, as shown in FIG. be able to.

なお、感温部材の素材となる磁気補償材料としては、感
温フェライトやアモルファス材料を用いることができる
。また、伝熱素子としてはヒートパイプに限るものでは
ない。
Note that a temperature-sensitive ferrite or an amorphous material can be used as the magnetic compensation material that is the material of the temperature-sensitive member. Further, the heat transfer element is not limited to a heat pipe.

(幻発明の効果 この発明によれば、温度上昇による感温部材の磁気特性
の変化によって一対の永久磁石間に生じる反発力を利用
して開閉接点を瞬間的に開閉させることができ、温度検
出対象の温度変化を比較的広い温度範囲について正確に
検出できる利点がある。また、上記の開閉接点によりパ
ワーMO3FETのゲート回路を直接開閉することが可
能で、ゲート開閉回路の縮小化などこの種の温度センシ
ング機能を考える上で有利となる。
(Effects of the Phantom Invention According to this invention, the switching contacts can be instantaneously opened and closed by using the repulsive force generated between a pair of permanent magnets due to changes in the magnetic properties of the temperature-sensitive member due to temperature rise, and the temperature can be detected. It has the advantage of being able to accurately detect temperature changes in a relatively wide temperature range.Also, it is possible to directly open and close the gate circuit of the power MO3FET using the above-mentioned switching contacts, making it possible to reduce the size of the gate switching circuit. This is advantageous when considering temperature sensing functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)および(B)はこの発明の詳細な説明する
概略の構成図、第2図は同温度センサにおける感温部材
の温度に対する特性変化を示す図である。また、第3図
はこの発明の実施例である温度センサの構成を示す側面
図、第4図(A)および(B)はこの発明の別の実施例
に係る温度センサのそれぞれ側面図および底面図、第5
図はこれの発明の更に別の実施例に係る温度センサの側
面図である。 2.11,13.32.34−永久磁石、12.33−
感温部材1 .39−固定接点、16.38−可動接点、−伝熱素子
、 半導体素子の表面(温度検出対象)。
FIGS. 1A and 1B are schematic configuration diagrams explaining the present invention in detail, and FIG. 2 is a diagram showing changes in characteristics of the temperature sensing member in the same temperature sensor with respect to temperature. Further, FIG. 3 is a side view showing the configuration of a temperature sensor according to an embodiment of the present invention, and FIGS. 4(A) and (B) are a side view and a bottom view, respectively, of a temperature sensor according to another embodiment of the present invention. Figure, 5th
The figure is a side view of a temperature sensor according to yet another embodiment of the invention. 2.11, 13.32.34-Permanent magnet, 12.33-
Temperature-sensitive member 1. 39 - Fixed contact, 16. 38 - Movable contact, - Heat transfer element, Surface of semiconductor element (temperature detection target).

Claims (2)

【特許請求の範囲】[Claims] (1)磁気補償材料を素材とし、温度検出対象に接触す
る感温部材を備え、この感温部材を挟んで一対の永久磁
石が互いの同極側が対向するように接離自在に配置され
、何れか一方の永久磁石は前記感温部材に固定され、各
永久磁石は開閉接点のそれぞれの接点に電気的に接続し
たことを特徴とする温度センサ。
(1) A temperature-sensitive member made of magnetic compensation material and in contact with the temperature detection target is provided, and a pair of permanent magnets are arranged with the temperature-sensitive member in between so that the same polar sides face each other so that they can move toward and away from each other, A temperature sensor characterized in that one of the permanent magnets is fixed to the temperature sensing member, and each permanent magnet is electrically connected to a respective contact of the opening/closing contact.
(2)前記感温部外の一部または全部を伝熱素子により
構成した請求項(1)記載の温度センサ。
(2) The temperature sensor according to claim (1), wherein a part or all of the outside of the temperature sensing section is constituted by a heat transfer element.
JP22030990A 1990-08-21 1990-08-21 Temperature sensor Pending JPH04102031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22030990A JPH04102031A (en) 1990-08-21 1990-08-21 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22030990A JPH04102031A (en) 1990-08-21 1990-08-21 Temperature sensor

Publications (1)

Publication Number Publication Date
JPH04102031A true JPH04102031A (en) 1992-04-03

Family

ID=16749126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22030990A Pending JPH04102031A (en) 1990-08-21 1990-08-21 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH04102031A (en)

Similar Documents

Publication Publication Date Title
US20040150504A1 (en) Resettable ferromagnetic thermal switch
EP1667187A1 (en) Passive magnetic latch
EP0055729B1 (en) Thermostat
US2255638A (en) Overload relay
US4039993A (en) Over temperature limit switch
JPH04102031A (en) Temperature sensor
US2322069A (en) Relay
US3665360A (en) Thermostat
US4325042A (en) Thermo-magnetically operated switches having two different operating temperatures
US1499112A (en) Thermal control system and switch
US4454491A (en) Temperature sensing circuit breaker or switch
CN111149185B (en) Improved switch
US3284736A (en) Temperature-responsive thermally adjustable control device
US2953660A (en) Magnetic contact device
EP4125109A1 (en) Overcurrent protection device based on thermo magnetically-shiftable material
KR950004794Y1 (en) Automatic temperature control switch
JPS5924114Y2 (en) Thermal response switch
JPS5840502Y2 (en) temperature detection element
SU993353A1 (en) Thermal relay
JPS6313490Y2 (en)
JPS5853005Y2 (en) thermal responsive switch
JP2022049446A (en) Overcurrent switch and circuit breaker with overcurrent switch
JPH0420352Y2 (en)
JPH0214105Y2 (en)
JPS6116587Y2 (en)