JPH04101630A - Control of system voltage stabilizing relay - Google Patents

Control of system voltage stabilizing relay

Info

Publication number
JPH04101630A
JPH04101630A JP2215508A JP21550890A JPH04101630A JP H04101630 A JPH04101630 A JP H04101630A JP 2215508 A JP2215508 A JP 2215508A JP 21550890 A JP21550890 A JP 21550890A JP H04101630 A JPH04101630 A JP H04101630A
Authority
JP
Japan
Prior art keywords
current
voltage
route
voltage drop
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215508A
Other languages
Japanese (ja)
Inventor
Akira Ono
昭 小野
Tadahiro Aida
合田 忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2215508A priority Critical patent/JPH04101630A/en
Publication of JPH04101630A publication Critical patent/JPH04101630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To prevent the decay of a system voltage by calculating in advance the product of a runaround current value and a transmission impedance of a route where the current runs around to determine a voltage drop which is caused by the fact that power runs around the remaining route of a loop system after the loop is cut off. CONSTITUTION:It is basically considered that a voltage drop is caused by a runaround current. In the case that a generator is located midway through a route where the current runs around, an increase in current of the generator is compensated in expectation of a voltage maintaining capability of the generator. When a section in which a pre-current is caused to flow in the opposite direction to the runaround current exists in the route where the current runs around, a voltage is compensated for that section, supposing that a voltage is maintained to such a current value as is same with that of the initial reverse current. Therefore, the voltage drop V is determined by the following formula: V=1 (IO-Ic)XZO- the corrected voltage value ¦. Nextly, a current pulled by the load after the route is cut off is reduced by load cutoff to raise the dropped voltage to a target value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統における事故後の緊急制御に用い
る系統電圧安定化リレーの制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling a system voltage stabilization relay used for emergency control after an accident in a power system.

〔従来の技術〕[Conventional technology]

従来、電力系統の潮流計算方法(後述の1.1式〜1.
5式)としては、たとえば、関根泰次著、オーム社、昭
和59年1月20日発行、「電力系統過渡解析論」ペー
ジ276〜287がある。電力系統は発電機、送電線、
変圧器、開閉器、負荷などが複雑に組み合わされたシス
テムである。発電機は有効電力、無効電力を供給し、負
荷はこれを消費する。発電機と負荷の間をむすぶ送配電
系統はこの発電機からの供給電力を消費地に送る。従っ
て、発電機で発電された有効電力、無効電力がどの送電
線、配電線を通って負荷に流れて行くか、またこの際送
電系統内の各点における電圧や電流はどのような分布を
しているか否かを知ることは電力系統を運用したり、新
たに設備を追加する場合に知る必要がある。しかし、電
力系統では発電機や負荷のつながれた母線の電圧、もし
くは電流(何れもベクトル量)が与えられることはまれ
であって通常知り得るのは発電機母線では発電機の有効
電力Pと端子電圧の大きさ■であり、負荷母線では負荷
が消費する有効電力Pと無効電力Qである。そこで、こ
れらの既知量をもとに電力系統内のいろいろな電気量を
求めることが行われている。
Conventionally, power flow calculation methods for power systems (Equations 1.1 to 1.
5), for example, "Power System Transient Analysis Theory," written by Taiji Sekine, published by Ohmsha, January 20, 1980, pages 276-287. The power system consists of generators, transmission lines,
It is a system that is a complex combination of transformers, switches, loads, etc. The generator supplies active power and reactive power, which is consumed by the load. A power transmission and distribution system connecting the generator and the load transmits the power supplied from the generator to the point of consumption. Therefore, it is important to know through which transmission lines and distribution lines the active power and reactive power generated by the generator flow to the load, and how the voltage and current are distributed at each point in the transmission system. It is necessary to know whether or not the system is installed when operating the power system or adding new equipment. However, in a power system, it is rare that the voltage or current (both vector quantities) are given to the bus to which the generator or load is connected, and what is usually known is the generator's active power P and the terminal terminals on the generator bus. The magnitude of the voltage is ■, and the active power P and reactive power Q consumed by the load on the load bus. Therefore, various amounts of electricity within the power system are determined based on these known amounts.

次に従来から行われている方法で、各ノード電圧の大き
さを決める方法について説明する。まず(以下、Qと記
す)、または各ノ、−ドの有効電力Pと端子電圧(以下
、■)である。
Next, a conventional method for determining the magnitude of each node voltage will be described. First, the active power P and the terminal voltage (hereinafter referred to as ■) of each node (hereinafter referred to as Q) or each node.

各ノードに流れるPm、Qkは一般に、Pk +jQk
−9、×i、   ・・・・・・・・・ (1,2)(
注、iはIの複素共役を示す) で与えられるから、(1,1)式は有効電力Pと無効電
力Qが指定されると、 ただし、kはPQ指定 pvが指定されると、 用いて(1,1)式のように表わされる。
Pm and Qk flowing to each node are generally Pk +jQk
-9, ×i, ...... (1, 2) (
(Note: i indicates the complex conjugate of I) Therefore, equation (1, 1) is expressed as follows: When active power P and reactive power Q are specified, k is used as It is expressed as equation (1,1).

+ =YX</  又は i、−Σ Y、、XQ、・・
・(1,1)ただし、k;ノード番号で1,2.・・・
N(1,1)式の変数のうち、通常知り得る値は各ノー
ドの有効電力(以下、Pと記す)と無効電力Vz−IQ
zl         ・・・・・・・・・・・・ (
1,5)ただし、2はpv指定 となる。
+ = YX</ or i, -Σ Y,, XQ,...
・(1, 1) where k: 1, 2 . in node number. ...
Among the variables of the N(1,1) equation, the values that can usually be known are the active power (hereinafter referred to as P) and the reactive power Vz-IQ of each node.
zl ・・・・・・・・・・・・ (
1, 5) However, 2 is pv specified.

なお、(1,4)式中R,()は複素数の実部を得る関
数である。
Note that R and () in equations (1, 4) are functions that obtain the real part of a complex number.

ここで、 (1,3)、 (1,4L (1,5)式は
、左辺が既知量であり、右辺のノード電圧を未知数とす
る非線形方程式となることが分かる。潮流計算はこれら
の非線形方程式を解くことにあり、その手法はいろいろ
提案(たとえば、高橋−弘著、昭和52年1月25日発
行「電力システム工学」ページ69〜80)されている
Here, (1, 3), (1, 4L) It can be seen that equation (1, 5) is a nonlinear equation in which the left side is a known quantity and the right side is the node voltage as an unknown quantity.Power flow calculation is based on these nonlinear equations. The purpose is to solve equations, and various methods have been proposed (for example, "Power System Engineering" by Hiroshi Takahashi, published January 25, 1970, pages 69-80).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の系統電圧安定化リレーの制御方法は以上のように
行われているので、発電機情報、負荷情報及び系統各所
の情報が必要であり、目的解を得るまで(収束するまで
)繰り返し非線形方程式の計算を行うことになり誤差の
蓄積が大になること、また計算時間も大になるなどの課
題があった。さらに非線形方程式の解が複数ある場合に
は必ずしも目的解に収束するとは限らない等の課題があ
った。
The conventional control method for grid voltage stabilization relays is performed as described above, so generator information, load information, and information on each part of the system are required, and nonlinear equations are repeatedly applied until the desired solution is obtained (until convergence). There were problems such as a large accumulation of errors and a long calculation time. Furthermore, when there are multiple solutions to a nonlinear equation, there is a problem that it does not necessarily converge to the target solution.

この発明は上記のような課題を解消するためになされた
もので、電力系統保護リレーで用いている現有のマイク
ロ・プロセッサを採用して精度良く、かつ高速に少ない
情報量と単純な式で事前に負荷しゃ断量を算出できる系
統電圧安定化リレーの制御方法を得ることを目的とする
This invention was made in order to solve the above-mentioned problems, and it uses the existing microprocessor used in power system protection relays to perform advance processing with high precision, high speed, a small amount of information, and simple formulas. The purpose of this study is to obtain a control method for a system voltage stabilization relay that can calculate the amount of load cutoff.

〔課題を解決するための手段] この発明に係る系統電圧安定化リレーの制御方法は、上
位系統に接続され、負荷及び発電機を有するループ送電
線系統のループ断発生後に、該ループ送電系統の残ルー
トへ周り込んで生ずるルートの電圧低下を周り込む電流
値と周り込みルートのライン・インピーダンスとより事
前に電圧低上申推定計算式により推定して求め、その推
定計算式で求めた電圧低上申推定値から電圧低下巾の目
標電圧を制御量計算式を用いて算出し、前記制御量計算
式の計算結果が電圧低下巾の目標電圧設定値以上の電圧
低下時にループ断検出後、負荷遮断を実施して系統保護
を行うように構成したものである。
[Means for Solving the Problems] A method for controlling a system voltage stabilizing relay according to the present invention is a method for controlling a system voltage stabilizing relay that is connected to a higher-level system and that controls a loop power transmission system after a loop disconnection occurs in a loop power system that has a load and a generator. The voltage drop in the route that occurs due to the bypass to the remaining route is estimated in advance from the bypass current value and the line impedance of the bypass route using a voltage drop estimation calculation formula, and the voltage drop increase calculated using the estimation formula is calculated. The target voltage of the voltage drop width is calculated from the estimated value using a control amount calculation formula, and when the calculation result of the control amount calculation formula is a voltage drop greater than or equal to the target voltage setting value of the voltage drop width, the load is cut off after detecting a loop break. This system is configured to perform system protection by implementing this system.

(作 用) この発明における系統電圧安定化リレーの制御方法は、
ループ断後に電力がループ系統の残ったルートへ周り込
むことによって生ずる電圧低下を、周り込む電流値と周
り込むルートの送電系統インピーダンスの積とL7で事
前に算出し、算出した結果が設定値以上の大幅な電圧低
下の場合に、ループ断量、早期に負荷しゃ断を実施して
、系統電圧崩壊に至るのを防止する。
(Function) The method for controlling the grid voltage stabilizing relay in this invention is as follows:
The voltage drop caused by the power going around to the remaining route of the loop system after the loop is disconnected is calculated in advance by the product of the current value going around and the power transmission system impedance of the route going around, and L7, and the calculated result is higher than the set value. In the event of a significant voltage drop, the loop is disconnected and the load is cut off early to prevent system voltage collapse.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。最初
に具体的な説明を行う前にこの発明の根底にある理論(
原理)式を第3図のフローチャー1・を参照して記述す
る。まず、この発明に係る系統電圧安定化リレ一方法は
、電圧低下巾及び負荷しゃ新葉を次のようにして算出す
る。
An embodiment of the present invention will be described below with reference to the drawings. First, before giving a concrete explanation, let us explain the theory underlying this invention (
The formula (principle) will be described with reference to flowchart 1 in FIG. First, the system voltage stabilization relay method according to the present invention calculates the voltage drop width and the load capacity as follows.

(1)電圧低上申推定計算(ステップ5TI)電圧低下
がルート断に伴うループ周り込み電流によるため、次の
式で示すように周り込み電流と周り込みルートのライン
・インピーダンスを用いて電圧低下巾を推定する。
(1) Voltage drop estimation calculation (Step 5TI) Since the voltage drop is due to loop current due to route breakage, the voltage drop width is calculated using the wraparound current and the line impedance of the wraparound route as shown in the following formula. Estimate.

〔基本式〕電圧低上申−1周り込み電流×周り込めルー
トのライン・インピーダンスここで、周り込み電流は以
下の考えに基づき算出する。
[Basic formula] Voltage drop increase - 1 surrounding current x line impedance of surrounding route Here, the surrounding current is calculated based on the following idea.

■ 基本的には、ルート断回線の事前電流が定電流特性
負荷に引っ張られて健全ルートを周り込み、事前の電流
に重畳するものとする。そして、電圧低下はこの周り込
み電流分により引き起こされると考える(ステップ5T
IA)。
■ Basically, it is assumed that the preliminary current of the route disconnection is pulled by the constant current characteristic load, wraps around the healthy route, and is superimposed on the preliminary current. It is assumed that the voltage drop is caused by this wrap-around current (step 5T).
IA).

■ 次に、周り込みルート中(末端を含む)に発電機が
ある場合は、発電機のAVR効果(電圧維持能力)を見
込んで、発電機電流増加分補正を行う(ステップ5TI
B)。
■ Next, if there is a generator on the wrap-around route (including the end), take into account the generator's AVR effect (voltage maintenance ability) and make a correction for the generator current increase (Step 5TI
B).

■ さらに、周り込みルート中に事前電流方向が周り込
み電流方向と逆向き(打ち消す)方向の区間がある場合
は、当初の逆向き電流と同量の電流値までは電圧維持さ
れると考え、その分の電圧補正を行う(ステップST 
I C)。
■ Furthermore, if there is a section in the wrap-around route where the preliminary current direction is opposite to (cancels) the wrap-around current direction, consider that the voltage will be maintained until the current value is the same as the original reverse current. Correct the voltage accordingly (step ST
IC).

したがって電圧低下巾(△V)算出式は以下となる。Therefore, the voltage drop width (ΔV) calculation formula is as follows.

ΔV = l (1,−[G)XZo−V、、lil 
−・・・・−(2,1)(2,1)式中の容量の意味は
次の通りである。
ΔV = l (1,-[G)XZo-V,, lil
-...-(2,1) The meaning of the capacitance in the formula (2,1) is as follows.

Io :ループ断ルートの事前電流ヘクトル絶対(直 1G =周り込みルート中の発電機電流増加分補正値 Zo :周り込みルートインピーダンスヘクトル■補:
電圧補正値 なお、1文[はヘクトル量文−x+jyの絶対値−Jx
2+y”を意味する。
Io: Preliminary current hector of loop break route absolute (direct 1G = generator current increase correction value during wrap-around route Zo: wrap-around route impedance hector ■Supplementary:
Voltage correction value Note that 1 sentence [is the hector quantity sentence - x + absolute value of jy - Jx
2+y".

(2)制御量計算(ステップST2,5T3)次に、ル
ート断量に負荷が引っ張る電流を負荷しゃ断することで
滅じ、電圧低下状態から目標電圧まで引き上げる制御を
実施する。したがって、制御量算出方式原理は電圧低上
申推定方式と基本的な考えは同じであり、負荷しゃ断量
の周り込み電流による電圧低下巾が目標電圧となるよう
に制御量を求める。
(2) Calculation of control amount (steps ST2, 5T3) Next, control is performed to eliminate the current drawn by the load when the route is interrupted by cutting off the load, and to raise the voltage from the voltage drop state to the target voltage. Therefore, the principle of the control amount calculation method is basically the same as the voltage drop escalation estimation method, and the control amount is determined so that the voltage drop width due to the sneak current of the load cutoff amount becomes the target voltage.

基本式は次の通りである。The basic formula is as follows.

IC=1(νt  VO+ΔV) /Z、 l   ・
・−・・(2,2)(2,2)式中の容量の意味は次の
通りである。
IC=1(νt VO+ΔV) /Z, l ・
...(2,2) The meaning of the capacity in the formula (2,2) is as follows.

z、:周り込みルートインピーダンス ■o :事前電圧値 Δ■:電圧電圧低下山算 出値:制御目標電圧値 IC=負荷しゃ断電流ベクトル絶対値 なお、発電機電流増加分補正Nc)と電圧補正(V補)
の具体的算出は以下の通りである。
z,: Surrounding route impedance ■o: Prior voltage value Δ■: Voltage voltage drop peak calculation value: Control target voltage value IC = Absolute value of load cutoff current vector Note that generator current increase correction Nc) and voltage correction (V Supplementary)
The specific calculation of is as follows.

(A)発電機電流増加分補正(ステップ5TIB)発電
機の事前出力P6と発電機固有の出力限界曲線から得ら
れる無効電力出力限界Qc*axおよび発電機端子電圧
■。から事前に力率1.0で運転ししていたと想定して
次式で求める。
(A) Generator current increase correction (Step 5TIB) Reactive power output limit Qc*ax and generator terminal voltage ■ obtained from the generator's preliminary output P6 and the output limit curve specific to the generator. It is calculated using the following formula, assuming that the power factor has been operated at a power factor of 1.0.

rc=圧ハ―匠(QG、、、/VG)”−PG/VG 
−・−・・−(2,3)(B)逆向き電流分の電圧補正
(ステップ5TCI)ルート断に伴う周り込み電流と逆
向きの電流がルート新前のループ中にある場合は当初の
逆向き電流と同量の電流値までは電圧維持されると考え
、その回線の電圧低下分を補正する。
rc=Pressure Haru Takumi (QG,,,/VG)”-PG/VG
−・−・・−(2, 3) (B) Voltage correction for reverse current (Step 5TCI) If a current in the opposite direction to the wrap-around current due to route breakage is in the loop before the new route, the original It is assumed that the voltage will be maintained until the current value is the same as the reverse current, and the voltage drop in that line is corrected.

電圧補正値(V bi )は次の通りである。The voltage correction value (Vbi) is as follows.

・・・・・・・・・ (2,4) K:補正係数−2 次に、この発明の一実施例を図について説明する。まず
、第2図(a)は送電系統のインピーダンス値を示し、
第2図(b)は同系統のループ新前の電流分布を示す。
(2, 4) K: correction coefficient -2 Next, an embodiment of the present invention will be described with reference to the drawings. First, Figure 2 (a) shows the impedance value of the power transmission system,
Figure 2(b) shows the current distribution before the new loop in the same system.

ただし、ノード随2とノード階3間のループ断を想定し
た時に本装置が必要とする電流値のみ図中に記している
。なお、各母線に矢印で示した部分は、そこに負荷が存
在することを意味している。また、第2図(a) 、 
(b)共にノードNα9は、本実施例で示すループ系統
が接続している上位系統を示しており、電圧変動のない
無限大母線と考えて良い。さらに、特に、ノード階10
とノードNCLIIは発電機Gl、G2を示している。
However, only the current value required by this device when assuming a loop break between node No. 2 and node floor 3 is shown in the diagram. Note that the portion indicated by an arrow on each bus line means that a load is present there. Also, Fig. 2(a),
(b) In both cases, the node Nα9 indicates the upper system to which the loop system shown in this embodiment is connected, and can be considered as an infinite bus with no voltage fluctuation. Furthermore, in particular, node floor 10
and node NCLII indicate generators Gl and G2.

次に動作について説明する。第2図(b)において、ノ
ードNα2とノードNα3間が、事故又はその他により
ループ断となった場合、ループ新前にこの送電線を流れ
て負荷へ供給されていた電流は、ノード随8から隘7→
陥、6→階5→Nα4→Nα3と周り込むことになる。
Next, the operation will be explained. In Figure 2(b), if the loop between node Nα2 and node Nα3 is broken due to an accident or other reason, the current that was flowing through this transmission line and being supplied to the load before the loop was replaced will be transferred from node No. 8 to No. 7→
In the end, it will go around 6 → floor 5 → Nα4 → Nα3.

したがって、周り込みルートのインピーダンス合計Z。Therefore, the total impedance Z of the wrap-around route.

は以下となる。is as follows.

Z、=0.343 +j 1.553 また、周り込みルート中には、ノードN[1L11のG
2なる発電機があり、さらにループ新前の電流が周り込
み電流と逆向きの区間がノード漱5とノード階6にある
ので、各々について補正を行い、(2,1)式を算出す
ると、以下となる。
Z, = 0.343 +j 1.553 Also, in the wraparound route, there is a node N [1L11 G
There are two generators, and there are sections at node 5 and node 6 where the current before the loop is in the opposite direction to the wrap-around current, so if we correct each and calculate equation (2, 1), The following is true.

I o  =0.314 1、:(2,3)式において、 P c−0,356,Qc−□=0.267、 V、=
1.0いずれも1000MVAヘースp、u、(力率)
値、電圧は定格ベースp、u、値とし、QGmaKは発
電機固有の値であり、事前設定入力された値を用いる。
I o =0.314 1,: In formula (2,3), P c-0,356,Qc-□=0.267, V,=
1.0 All 1000MVA Heas p, u, (power factor)
The values and voltages are the rated base p, u, and values, and QGmaK is a value specific to the generator, and a preset input value is used.

したがって、(2,3)式は、 Ic−(PG/VG)”+(QG、、、/VG)2− 
PG/VG= 0.089 Zo = 0.343 + j 1.291v補;逆向
きルートのインピーダンスは第2図(a)より、0.1
86+jo、486、また逆向き電流値は第2図(b)
に示すように0.04、したがって(2,4)式より、 ■補−0・04X(0・IE16+30・486) X
 2以上を(2,1)式に代入すると、 ΔV−(0,314−0,089)X(0,343+j
1.291)0.04X (0,186+jO,486
) X 2ζ0.259 [p、u、] この算出値は、第2図(a) 、 (b)で示す系統の
ノードNα2とに3のループ断を動的安定度計算したシ
ミュレーション結果(第4図)と良く合致している。
Therefore, the formula (2,3) is Ic-(PG/VG)"+(QG, , /VG)2-
PG/VG = 0.089 Zo = 0.343 + j 1.291v complement; From Figure 2 (a), the impedance of the reverse route is 0.1
86+jo, 486, and the reverse current value is shown in Figure 2 (b)
As shown in 0.04, therefore, from formula (2,4), ■Supplementary −0・04X (0・IE16+30・486) X
Substituting 2 or more into equation (2,1), ΔV-(0,314-0,089)X(0,343+j
1.291) 0.04X (0,186+jO,486
) Figure) agrees well.

次に、(2,2>式を用いて制御量を算出すると以下と
なる。まず、第2図(b)のノードNα3の事前電圧は
定格1.0 p、u、、制御目標電圧は0.85p、u
、とじ、(2,2)式に代入すると、以下となる。
Next, the control amount is calculated using the formula (2, 2>) as follows. First, the preliminary voltage of the node Nα3 in FIG. 2(b) is rated 1.0 p, u, and the control target voltage is 0. .85p, u
, and substituting it into equation (2,2) yields the following.

IC= l (0,85−1,0+0.259)/(0
,343+j1.291!; 0.0815 求まった制御1量について、第4図のシミュレーション
と同様に、ノードNo、 3の負荷の約20%をしゃ断
するシミュレーションを実施した結果を第5図に示す。
IC= l (0,85-1,0+0.259)/(0
,343+j1.291! 0.0815 Regarding the obtained control quantity, FIG. 5 shows the results of a simulation in which approximately 20% of the load on node No. 3 is cut off, similar to the simulation in FIG. 4.

第5図が示すように、制御目標電圧o、ssp、u、に
対して精度良く制御されたことが分かる。この時の制御
条件は次の通りである。零秒時に無事故開放によるルー
プ断発生、10.8秒経過後制御実施。
As shown in FIG. 5, it can be seen that the control target voltages o, ssp, and u were accurately controlled. The control conditions at this time are as follows. Loop breakage occurred due to accident-free opening at 0 seconds, and control was implemented after 10.8 seconds had elapsed.

なお、第4図のシミュレーション条件は以下の通り。The simulation conditions in Figure 4 are as follows.

負荷特性;定電流100%とし、基準周波数からの偏差
Δf(Hz)に対して 有効分:4%/Hz、無効分ニー2 %/Hz とした。
Load characteristics: Constant current was 100%, effective component was 4%/Hz, and reactive component was 2%/Hz with respect to the deviation Δf (Hz) from the reference frequency.

発電機モデル;同期機凸極性、界磁巻線の過渡現象を考
慮したモデルに等測的なダ ンパー効果を付与したモデルを用い た。
Generator model: A model that takes into account the convex polarity of the synchronous machine and the transient phenomenon of the field winding, and adds an isometric damper effect was used.

発電機制御系、AVRは励磁機一般モデル、ガバナはシ
ングルシャフトガバナ 計算条件;零秒時にノードNl12と隘3間を無事故開
放し、0.3秒まで0.01秒きざみで演算、以後0.
05秒きざみで演算 なお、上記実施例では、系統構成によって決まるループ
断量の周り込みルートインピーダンスを−・通りしか与
えなかったが、この発明の方法によれば、全て事前に演
算が可能なために、系統構成情報を入力するだけで、予
め設定した各送電線や変圧n個々のインピーダンスを直
並列合成し、自動的に算出するようにしても良い。
Generator control system, AVR is a general exciter model, and the governor is a single shaft governor. Calculation conditions: Accident-free opening between node Nl12 and No. 3 at 0 seconds, calculation in 0.01 second increments until 0.3 seconds, and 0.0 seconds thereafter.
Calculated in 0.05 second increments. In the above embodiment, only -. route impedances for loop breakage determined by the system configuration were given; however, according to the method of the present invention, all can be calculated in advance. Alternatively, by simply inputting system configuration information, the impedances of each power transmission line and transformer n set in advance may be combined in series and parallel and automatically calculated.

また、発電機電流増加分補正量の算出において用いた式
(2,3)は、発電機がループ新前に力率1.0で運転
していたものと想定したが、これは発電機情報として、
有効電力P、と同時に無効電力出力Q、も得られるなら
、次の(2,5)式を用いて、さらに精度良く求めるこ
とができる。いずれにしても、ルニプ新前の出力電流か
ら発電機出力限度まで増加するとして算出するものであ
り、(2,4)弐と同様の原理による。
In addition, formulas (2, 3) used in calculating the generator current increase correction amount assume that the generator was operating at a power factor of 1.0 before the new loop, but this is based on the generator information. As,
If active power P and reactive power output Q can be obtained at the same time, it can be determined with even higher precision using the following equation (2, 5). In any case, the calculation is based on the assumption that the output current increases from the previous output current to the generator output limit, and is based on the same principle as (2, 4) 2.

I c −(Pc/Vc) ”+ (QGIIIIX/
VG) ”   (Pc/Vc) ”+ (Qt、/V
c) ”・・・・・・・・・ (2,5) また、実施例ではノードNα2とノードNt13の間の
ループ断について説明したが、これに限ることはなく、
ループ中との区間がループ断しても同様の原理で発電低
下中と制御量が算出できることは申すまでもない。
I c −(Pc/Vc) ”+ (QGIIIIX/
VG) ” (Pc/Vc) ”+ (Qt, /V
c) ”・・・・・・・・・ (2,5) In addition, although the loop breakage between the node Nα2 and the node Nt13 has been explained in the embodiment, the loop breakage is not limited to this.
Needless to say, even if the loop is broken in the loop section, the control amount can be calculated as if the power generation is decreasing using the same principle.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、ループ系統におけるル
ープ断量の電圧低下をループ断箇所の事前電流値と、ル
ープ送電系統の残ルートへ周り込んだ電流が通るルート
のインピーダンスとを用いて電圧低下山推定計算式によ
り推定し、その電圧低上申推定値から電圧低下巾の目標
電圧を制御量計算式を用いて算出したので、演算式が単
純化され、現有の保護リレーで用いるマイクロプロセッ
サで容易に演算制御を実現できる効果がある。また、周
り込みルート中の電圧補正や発電機電流増加分補正をし
たので、高精度の事前演算式による電圧安定化リレーの
制御方法を得ることができる効果がある。
As described above, according to the present invention, the voltage drop due to a loop disconnection in a loop power system is calculated by using the prior current value at the loop disconnection point and the impedance of the route through which the current that has detoured to the remaining route of the loop power transmission system passes. The calculation formula is used to estimate the drop peak, and the target voltage for the voltage drop width is calculated from the voltage drop estimation value using the control amount calculation formula.The calculation formula is simplified, and the microprocessor used in the existing protection relay can be used to calculate the target voltage. This has the effect of easily realizing calculation control. Furthermore, since the voltage during the wrap-around route and the increase in generator current are corrected, it is possible to obtain a voltage stabilizing relay control method using a highly accurate pre-calculated formula.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例を説明するためのル
ープ新前の系統の電流方向を示す説明図、同図(b)は
ループ断量の電流方向を示す説明図、第2図(a)はこ
の発明の一実施例を適用する電力系統のインピーダンス
図、同図(b)は同し電力系統のループ新前の正相電流
分布と発電機出力および負荷を示す電流分布図、第3図
はこの発明の詳細な説明するためのフローチャート、第
4図はこの発明の実施例で算出した電圧低下巾の精度を
確認するために実施した安定度計算によるシミュレーシ
ョン結果の電圧変動波形図、第5図はこの発明で算出し
た制御量の制御効果を確認するための安定度計算による
シミュレーション結果の電圧変動波形図である。 図において、STIは電圧低上申推定計算、ST2は制
御量計算、ST3は負荷しゃ断器決定である。 なお、図中、同一符号は同一、又は相当部分を示す。 第1図 (a) (b) (外Zる) 第 図 (a) [Φ位=1000MVAへ゛−スp、uイ直〕第 図 第 図 (b) 0に)印IJ電滴の向き 第 図
FIG. 1(a) is an explanatory diagram showing the current direction of the system before loop breakage for explaining one embodiment of the present invention, FIG. 1(b) is an explanatory diagram showing the current direction of the loop disconnection, and FIG. Figure (a) is an impedance diagram of a power system to which an embodiment of the present invention is applied, and Figure (b) is a current distribution diagram showing the positive-sequence current distribution, generator output, and load before loop renewal in the same power system. , FIG. 3 is a flowchart for explaining the present invention in detail, and FIG. 4 is a voltage fluctuation waveform of a simulation result from a stability calculation performed to confirm the accuracy of the voltage drop range calculated in the embodiment of the present invention. 5A and 5B are voltage fluctuation waveform diagrams of simulation results obtained by stability calculation for confirming the control effect of the control amount calculated according to the present invention. In the figure, STI is voltage drop escalation estimation calculation, ST2 is control amount calculation, and ST3 is load breaker determination. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 1 (a) (b) (outward) Figure (a) [Φ position = 1000MVA, straight] Figure Figure 1 (b) 0) Direction of the IJ droplet figure

Claims (1)

【特許請求の範囲】[Claims] 上位系統に接続され負荷及び発電機を有するループ送電
系統のループ断発生後に、該ループ送電系統の残ルート
へ周り込んで生ずるルートの電圧低下を周り込む電流値
と周り込みルートのライン・インピーダンスとより事前
に電圧低下巾推定計算式により推定して求め、前記推定
計算式で求めた電圧低下巾推定値から電圧低下巾の目標
電圧を制御量計算式を用いて算出し、前記制御量計算式
の計算結果が前記電圧低下巾の目標電圧設定値以上の電
圧低下時にループ断検出後負荷遮断を実施して系統保護
を行う系統電圧安定化リレーの制御方法。
After a loop break occurs in a loop power transmission system that is connected to the upper system and has a load and a generator, the current value that flows around to the remaining route of the loop power transmission system and the voltage drop that occurs in the route, and the line impedance of the roundabout route. The voltage drop width is estimated and determined in advance using the voltage drop width estimation formula, and the target voltage of the voltage drop width is calculated using the control amount calculation formula from the voltage drop width estimated value obtained using the above estimation calculation formula. A control method for a system voltage stabilization relay that performs load shedding after detecting a loop break to protect the system when the calculation result of the voltage drop exceeds a target voltage setting value of the voltage drop width.
JP2215508A 1990-08-15 1990-08-15 Control of system voltage stabilizing relay Pending JPH04101630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215508A JPH04101630A (en) 1990-08-15 1990-08-15 Control of system voltage stabilizing relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215508A JPH04101630A (en) 1990-08-15 1990-08-15 Control of system voltage stabilizing relay

Publications (1)

Publication Number Publication Date
JPH04101630A true JPH04101630A (en) 1992-04-03

Family

ID=16673567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215508A Pending JPH04101630A (en) 1990-08-15 1990-08-15 Control of system voltage stabilizing relay

Country Status (1)

Country Link
JP (1) JPH04101630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279200A (en) * 2009-05-29 2010-12-09 Chugoku Electric Power Co Inc:The Device and method for stabilizing power system
CN107565554A (en) * 2017-09-21 2018-01-09 昆明理工大学 A kind of power service extension voltage estimating and measuring method based on equivalent load square

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162830A (en) * 1979-06-04 1980-12-18 Tokyo Shibaura Electric Co Overload eliminating control device
JPS5734731A (en) * 1980-08-11 1982-02-25 Meidensha Electric Mfg Co Ltd Automatic control system for power distribution equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162830A (en) * 1979-06-04 1980-12-18 Tokyo Shibaura Electric Co Overload eliminating control device
JPS5734731A (en) * 1980-08-11 1982-02-25 Meidensha Electric Mfg Co Ltd Automatic control system for power distribution equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279200A (en) * 2009-05-29 2010-12-09 Chugoku Electric Power Co Inc:The Device and method for stabilizing power system
CN107565554A (en) * 2017-09-21 2018-01-09 昆明理工大学 A kind of power service extension voltage estimating and measuring method based on equivalent load square

Similar Documents

Publication Publication Date Title
EP0746078B1 (en) Method and apparatus for detecting islanding operation of dispersed generator
JP4094206B2 (en) Power system stabilizer
Ribeiro Minimum excitation limiter effects on generator response to system disturbances
EP0771059B1 (en) Method and apparatus for transferring between electrical power sources with adaptive blocks transfer until load voltage decays to safe value
MXPA96005115A (en) Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value
JPH04101630A (en) Control of system voltage stabilizing relay
JP3350265B2 (en) Power system stabilizer
EP1702392B1 (en) A method and a device for selecting and dimensioning measures in case of instability in an electrical power system
JP2000092714A (en) Power system stabilization device and power supply limitation method therefor
JP7106348B2 (en) System stabilizer
Etezadi-Amoli On underfrequency load shedding schemes
Van Eyssen Introducing a new application philosophy for out-of-step protection
JP3629324B2 (en) Synchronous generator isolated operation detection method
JP2603929B2 (en) Power system preventive control device
JPH0382337A (en) System stabilizing apparatus
JPH04275029A (en) Load interrupting device at time of parallel off fault
RU2072603C1 (en) Method for protection of electric load unit against power faults and device which implements said method
JPS6117222B2 (en)
JPS60255019A (en) System stabilizer
JP2002218658A (en) Reverse tidal current preventive device
JPS61106027A (en) System stabilizer
JPH02266831A (en) System stabilizer
JPH0429295B2 (en)
JP2001339862A (en) Power system stabilization method, power system stabilization apparatus and recording medium
RU2009594C1 (en) Device for leading division of supply line