JPH04101603A - Underwater linear transportation system - Google Patents

Underwater linear transportation system

Info

Publication number
JPH04101603A
JPH04101603A JP2163475A JP16347590A JPH04101603A JP H04101603 A JPH04101603 A JP H04101603A JP 2163475 A JP2163475 A JP 2163475A JP 16347590 A JP16347590 A JP 16347590A JP H04101603 A JPH04101603 A JP H04101603A
Authority
JP
Japan
Prior art keywords
vehicle
induction motor
linear induction
track
buoyancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2163475A
Other languages
Japanese (ja)
Other versions
JP2986854B2 (en
Inventor
Kinjiro Yoshida
吉田 欣二郎
Hirobumi Inoguchi
猪ノ口 博文
Toshio Matsumoto
敏雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2163475A priority Critical patent/JP2986854B2/en
Priority to EP91910839A priority patent/EP0487744B1/en
Priority to PCT/JP1991/000831 priority patent/WO1991019621A1/en
Publication of JPH04101603A publication Critical patent/JPH04101603A/en
Application granted granted Critical
Publication of JP2986854B2 publication Critical patent/JP2986854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To improve the transportation efficiency by disposing the primary and the secondary of a linear induction motor, respectively, on an underwater rail and a vehicle having watertight structure while opposing to each other and driving the vehicle with the difference between the net weight of the vehicle and the buoyancy thereof being set at a low value. CONSTITUTION:A rail 2 is laid on the top of a support 3 planted on the bottom of a water tank 11. The rail 2 is constructed in waterproof structure having reverse trapezoidal cross section in which the primary 4 of a linear induction motor comprising a slotted core 9 applied with a three-phase winding 10 is disposed in the longitudinal direction of the rail 2. A unit controller comprising an inverter 12 and a control section 13 feeds the rail 2 with power through the hollow section of the support 3 and further communicates control signals therewith. Secondary 6 of the linear induction motor composed of a nonmagnetic body such as a copper board or an aluminum board is disposed oppositely to the primary 4 in the body of the vehicle 1. The vehicle 1 comprises an axle 7 supporting the body during stoppage and guide wheels 8, and the weight thereof is set slightly larger than the buoyancy thereof. According to the constitution, transportation efficiency is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中あるいは液体中における水中リニア輸送
システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater linear transportation system in water or in a liquid.

〔従来の技術〕[Conventional technology]

最近、車両を水中又は海中に走行させる構想が本発明者
らより提案されている。
Recently, the inventors of the present invention have proposed a concept of driving a vehicle underwater or under the sea.

具体的には、水中又は海中に軌道を敷設し、この軌道に
沿ってリニアモータカーを走らせようとするものである
Specifically, the idea is to lay a track underwater or under the sea, and run a linear motor car along this track.

従来の地上における磁気浮上形リニアモータカーは、移
動子あるいは可動子を浮上、推進させる力をそれぞれ独
立の要素によって構成している。
In a conventional magnetically levitated linear motor car on the ground, the force for levitating and propelling the movable element or movable element is constituted by independent elements.

例えば、特開平1−206805号公報や特開平1−2
38405号公報には、電磁石の吸引力あるいはマグネ
ットの反発力によって移動子を浮上させ、各種のりニア
モータを使って移動子を推進させる方式が開示されてい
る。
For example, JP-A-1-206805 and JP-A-1-2
Japanese Patent No. 38405 discloses a method in which a moving element is levitated by the attractive force of an electromagnet or a repulsive force of a magnet, and the moving element is propelled using various linear motors.

ところが、このような方式では、浮上力は電磁石、推進
力はりニアモータといったように別々の要素から構成さ
れているため、装置の構造が複雑となり、コストアップ
となる。
However, in such a system, the levitation force is composed of separate elements such as an electromagnet and a propulsion force near motor, which complicates the structure of the device and increases costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明では、水中又は海中における車両の走行であるこ
とを考慮し、浮力によって車両の自重の大部分を相殺し
、推進力をリニアモータによって得ることを目的とする
The present invention takes into consideration the fact that the vehicle travels underwater or under the sea, and aims to offset most of the vehicle's own weight using buoyancy and obtain propulsive force using a linear motor.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明の水中リニア輸送シス
テムは、水中に設けた軌道と、自重が浮力に対してわず
かな差を有し、前記軌道に沿って走行自在に架設された
密閉構造の車両と、前記軌道に配置されたリニアインダ
クションモータの一次側と、前記車両に設けられ、前記
リニアインダクションモータの一次側に対向して配置さ
れたリニアインダクションモータの二次側と、これらの
一次側と二次側によって形成されるリニアインダクショ
ンモータによって推進力を与える走行制御手段と、前記
車両の自重と浮力との差を前記軌道に対して支持する車
輪を設けたことを特徴とする。
In order to achieve this objective, the underwater linear transportation system of the present invention has a track installed underwater and a closed structure whose self-weight has a slight difference in buoyancy compared to the buoyancy, and which is constructed so as to be freely movable along the track. A vehicle, a primary side of a linear induction motor arranged on the track, a secondary side of a linear induction motor provided on the vehicle and arranged opposite to a primary side of the linear induction motor, and their primary sides. The present invention is characterized in that the vehicle is provided with travel control means for applying propulsive force by a linear induction motor formed by a secondary side of the vehicle, and wheels that support the difference between the vehicle's own weight and buoyancy with respect to the track.

この場合、車輪に掛かる自重と浮力との差をさらに軽減
するために、リニアインダクションモータによって前記
車両の自重と浮力との差に見合う電磁力を発生させて車
両を軌道に対して非接触で走行させる制御手段を設ける
こともできる。
In this case, in order to further reduce the difference between the vehicle's own weight and the buoyancy force applied to the wheels, the linear induction motor generates an electromagnetic force corresponding to the difference between the vehicle's own weight and the buoyancy force, and the vehicle runs without contact with the track. It is also possible to provide control means for causing the

〔作用〕[Effect]

リニアモータカーでは、地上機の場合には車両の自重が
軌道にそのまま掛かるため、その自重を相殺するための
磁気浮上手段が大掛かりとなる。
When a linear motor car is a ground vehicle, the weight of the vehicle is directly applied to the track, so magnetic levitation means is required to offset the weight.

本発明では、水中での走行を目的としており、その場合
には浮力が車両に作用することに着目し、車両の自重と
浮力との間に少しだけ差を設けてその差分だけを車輪又
はリニアインダクションモータの磁気反発力ないし磁気
吸引力で補うこととしている。
The purpose of the present invention is to drive underwater, and in that case, focusing on the fact that buoyancy acts on the vehicle, a slight difference is created between the vehicle's own weight and buoyancy, and only that difference is applied to the wheels or linear This is supplemented by the magnetic repulsion or magnetic attraction force of the induction motor.

リニアインダクションモータによる磁気反発力及び磁気
吸引力について概略説明する。
The magnetic repulsion force and magnetic attraction force caused by the linear induction motor will be briefly explained.

第1図は本発明における磁気浮上の原理を示すものであ
り、リニアインダクションモータの一次巻線に三相交流
電流を流すと非磁性導体で構成された二次導体に渦電流
が流れ、垂直方向に磁気反発力F、が、移fJJ m界
の進行方向に推進力F8がそれぞれ発生する。この磁気
反発力F、と推進力F。
Figure 1 shows the principle of magnetic levitation according to the present invention. When a three-phase alternating current is passed through the primary winding of a linear induction motor, an eddy current flows through the secondary conductor made of a non-magnetic conductor, and the eddy current flows in the vertical direction. A magnetic repulsion force F, and a propulsive force F8 are generated in the traveling direction of the shifting fJJ m field. This magnetic repulsion force F and propulsive force F.

は、電流I、−次巻線のターン数N1エアギャップの面
vIS及びギヤツブ長g1スリップS等の関数として表
される。
is expressed as a function of the current I, the number of turns N1 of the negative winding, the surface vIS of the air gap, the gear length g1, the slip S, etc.

この磁気反発力F8 を移動子、すなわち車両の浮上力
に利用し、推進力F、を車両の推進力に利用する。この
磁気反発力は空気中では車両を浮上するには小さ過ぎる
が、水中において車両の自重が浮力に対してわずか大き
くなるようにしておけば、小さな浮上力でも車両を浮上
させることが可能となる。
This magnetic repulsion force F8 is used for the floating force of the moving element, that is, the vehicle, and the propulsive force F is used for the propulsive force of the vehicle. This magnetic repulsion force is too small to levitate a vehicle in the air, but if the vehicle's own weight is slightly greater than the buoyancy force in water, it becomes possible to levitate the vehicle even with a small levitation force. .

また、第2図のように二次導体の裏側に磁気ヨークを設
けると、−次巻線と二次導体との間には吸引力F 、/
と推進力F8′が発生する。
Furthermore, if a magnetic yoke is provided on the back side of the secondary conductor as shown in Figure 2, an attractive force F, /
A propulsive force F8' is generated.

そこで、車両の自重を浮力よりも小さくしておき、吸引
力F 、Lによって浮力との差を相殺するようにすれば
、見掛けの重量が零になり、磁気浮上する。
Therefore, if the weight of the vehicle is made smaller than the buoyancy force and the difference between the buoyancy force and the buoyancy force is offset by the attraction forces F and L, the apparent weight becomes zero and magnetic levitation occurs.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on Examples.

第3図は第1図の磁気反発力による磁気浮上を適用した
水中リニア輸送システムの試験装置を示す断面図である
FIG. 3 is a sectional view showing a test device for an underwater linear transportation system to which magnetic levitation using magnetic repulsion of FIG. 1 is applied.

水中リニアモータは、浮力より少し重い重量に設計、製
造された車両1と軌道2と支柱3と軌道内に配置された
リニアインダクションモータの一次側4の巻線に電流を
供給するコントローラ5によって構成されている。前記
車両1は銅板又はアルミニウム板等の非磁性導電体から
なるリニアインダクションモータの二次側6が車両本体
に軌道2の内部に配置されたリニアインダクションモー
タの一次側4に対向するように配置固定されている。ま
た、浮上を行わない場合に車体を支持する車輪7と浮上
走行時の偏揺れを防止し、さらに案内用として車輪8を
装備している。車両1の大きさはそれが液体から受ける
浮力に比べ、少し重量が重くなる程度に構造設計及び調
整を行う。なお、本実施例においては、前記車輪8は軌
道2の両側部が斜めであるため斜めに設けているが、こ
れを垂直車輪と水平車輪の二つに分割し、軌道も垂直部
と水平部とを設けて一箇所で支持することもできる。
The underwater linear motor is composed of a vehicle 1 designed and manufactured to have a weight slightly heavier than the buoyancy, a track 2, a support 3, and a controller 5 that supplies current to the primary winding 4 of the linear induction motor placed within the track. has been done. The vehicle 1 is arranged and fixed such that the secondary side 6 of a linear induction motor made of a non-magnetic conductor such as a copper plate or an aluminum plate faces the primary side 4 of a linear induction motor placed inside the track 2 in the vehicle body. has been done. In addition, wheels 7 are provided to support the vehicle body when the vehicle is not floating, and wheels 8 are provided to prevent yawing during floating motion, and for guiding purposes. The size of the vehicle 1 is designed and adjusted to the extent that it is slightly heavier than the buoyant force it receives from the liquid. In this embodiment, the wheels 8 are provided diagonally because both sides of the track 2 are oblique, but they are divided into two, a vertical wheel and a horizontal wheel, and the track also has a vertical part and a horizontal part. It is also possible to provide support at one location.

軌道2は、スロットを有する鉄心9とそのスロット内に
三相の巻線10を配置して構成されたリニアインダクシ
ョンモータの一次側4が配置、固定されている。また軌
道2は水あるいは液体から内部に配置されたリニアイン
ダクションモータの一次側4を保護するため防水構造と
なっている。
A primary side 4 of a linear induction motor is arranged and fixed on the track 2, and is configured by an iron core 9 having a slot and a three-phase winding 10 disposed within the slot. Further, the track 2 has a waterproof structure to protect the primary side 4 of the linear induction motor disposed inside from water or liquid.

支柱3は、軌道2を支持するもので、その内部には空洞
部が設けられ、リニアインダクションモータの巻線やセ
ンサの信号線が配線できるようになっている。
The support column 3 supports the track 2, and has a hollow section inside thereof, into which the windings of the linear induction motor and the signal lines of the sensor can be wired.

コントローラ5は軌道2に配置されたリニアインダクシ
ョンモータの一次巻線10に電流を供給するインバータ
12とその制御回路13を有している。
The controller 5 has an inverter 12 that supplies current to a primary winding 10 of a linear induction motor arranged on the track 2 and a control circuit 13 thereof.

インバータ120制御回路13を第4図に示す。この制
御回路13は周波数制御部20と出力電流制御部30と
から構成されている。周波数制御部20には一定周波数
の周波数指令が与えられ、2相電圧制御発振器21で周
波数指令の大きさに応じた周波数の2相の交流信号が生
成され、電流振幅調整器22に与えられ、2相−3相変
換器23で3相の交流信号に変換され、パルス幅変調ア
ンプ24で位相変換され、インバータ12に与えられて
リニアインダクションモータの各相に電力が供給されて
オーブンループの制御がなされる。一方、電流制御部3
0では電流振幅演算回路31でリニアインダクションモ
ータの一次電流ベクトルの振幅に相当した電圧が演算さ
れ、電流指令との偏差が比例・積分制御器32に与えら
れて前記の電流振幅調整器22において振幅制御が行わ
れる。この電流制御部30により、電流フィードバック
ループが形成される。
The inverter 120 control circuit 13 is shown in FIG. This control circuit 13 includes a frequency control section 20 and an output current control section 30. A frequency command with a constant frequency is given to the frequency control unit 20, and a two-phase voltage controlled oscillator 21 generates a two-phase AC signal with a frequency corresponding to the magnitude of the frequency command, which is given to the current amplitude regulator 22, It is converted into a 3-phase AC signal by the 2-phase to 3-phase converter 23, phase-converted by the pulse width modulation amplifier 24, and supplied to the inverter 12 to supply power to each phase of the linear induction motor to control the oven loop. will be done. On the other hand, the current control section 3
0, the current amplitude calculation circuit 31 calculates a voltage corresponding to the amplitude of the primary current vector of the linear induction motor, the deviation from the current command is given to the proportional/integral controller 32, and the current amplitude regulator 22 calculates the amplitude. Control takes place. This current control section 30 forms a current feedback loop.

また、リニアインダクションモータの一次巻線に供給す
る電力は、軌道が長い場合、−次巻線は複数のブロック
に分割されるため、第5図に示すようにインバータ12
−1〜12−mを複数台用意し、どのブロックに車両1
があるかを車両位置検出器(図示せず)により検出し、
どのインバータを通電するかスイッチ14−1〜14−
mにより切り換えを行う。
In addition, when the track is long, the power supplied to the primary winding of the linear induction motor is divided into multiple blocks, so the power is supplied to the inverter 12 as shown in FIG.
-1 to 12-m are prepared, and in which block is the vehicle 1
A vehicle position detector (not shown) detects whether there is a
Switches 14-1 to 14- determine which inverter is energized.
Switching is performed by m.

車両1を浮上、走行させるためには、インバータ12の
周波数をある値に固定し、車両1が軌道2に車輪で接触
した状態から浮上ギャップをある指令値になるまでの電
流指令のパターンを第6図(a)に示すようにシミ5レ
ーシヨンで求め、その結果に基づいてインバータ12に
周波数と電流の指令を制御回路から与える。これによっ
てインバータ12からリニアインダクションモータの一
次巻線4に電流が流れ、軌道2に車輪7で接触していた
車両1に浮上力と推進力が作用し、所定のギャップ長に
浮上し、推進する。そのときの車両1の浮上、速度、移
動距離を時間に対して求めた例を第6図ら)に示す。
In order to levitate and run the vehicle 1, the frequency of the inverter 12 is fixed at a certain value, and a current command pattern is set from the state where the vehicle 1 contacts the track 2 with its wheels until the levitation gap reaches a certain command value. As shown in FIG. 6(a), frequency and current commands are given to the inverter 12 from the control circuit based on the results. As a result, current flows from the inverter 12 to the primary winding 4 of the linear induction motor, and levitation force and propulsion force act on the vehicle 1, which was in contact with the track 2 with its wheels 7, so that it levitates to a predetermined gap length and is propelled. . An example in which the levitation, speed, and moving distance of the vehicle 1 at that time are determined with respect to time is shown in FIG. 6 et al.

なお、第1図に示した磁気反発力を利用する他の方法と
して、リニアインダクションモータの一次側を軌道の下
面に向けて設け、車両に設ける二次側をこの一次側に対
向してさらに下面に設け、車両の自重を浮力よりも少し
軽くすることにより、走行時に下側から吸引する状態で
車両を下降させることもできる。
In addition, as another method of utilizing the magnetic repulsion shown in Fig. 1, the primary side of the linear induction motor is provided facing the lower surface of the track, and the secondary side provided on the vehicle is opposite to this primary side and further lower surface. By providing a buoyancy system that makes the vehicle's own weight a little lighter than the buoyancy, it is possible to lower the vehicle while it is being sucked in from below while driving.

第7図は第2図の磁気吸引力を利用した水中リニア輸送
システムの試験装置を示す断面図である。
FIG. 7 is a sectional view showing the testing device for the underwater linear transportation system using magnetic attraction shown in FIG.

本システムでは、リニアインダクションモータの二次側
6の上部に二次鉄心として磁気ヨーク15を設け、車両
1の自重を浮力よりも少し小さくして通常は車輪8が軌
道2に接するようにし、走行時に磁気吸引力で車体の見
掛は重量を零にして推進力で走行させるようにしたもの
である。この場合の磁気吸引力は第1図の場合の磁気反
発力よりも絶対値が大きいため、比較的小さな電力で車
両1の重量を零にすることができる。その他の構成及び
制御回路は前記実施例と同様であるので説明を省略する
In this system, a magnetic yoke 15 is provided as a secondary iron core on the upper part of the secondary side 6 of the linear induction motor, and the weight of the vehicle 1 is made slightly smaller than the buoyancy, so that the wheels 8 are normally in contact with the track 2, and the vehicle is running. At times, magnetic attraction is used to reduce the apparent weight of the vehicle to zero, allowing it to travel with propulsion. Since the magnetic attraction force in this case has a larger absolute value than the magnetic repulsion force in the case of FIG. 1, the weight of the vehicle 1 can be reduced to zero with a relatively small amount of electric power. The other configurations and control circuits are the same as those in the previous embodiment, so their explanations will be omitted.

本ンステムにおける電流指令パターンを第8図(a)に
、車両1の浮上、速度、移動距離を時間に対して求めた
例を第8図(b)に示す。
FIG. 8(a) shows the current command pattern in this system, and FIG. 8(b) shows an example of the levitation, speed, and moving distance of the vehicle 1 versus time.

なお、第2図に示した磁気吸引力を利用する他の方法と
して、リニアインダクションモータの一次側を軌道の下
面に向けて設け、車両に設ける二次側をこの一次側に対
向してさらに下面に設け、車両の自重を浮力よりも少し
重くすることにより、走行時に下側から持ち上げる状態
で車両を浮上させることもできる。この場合、二次側の
裏面に磁気ヨークを設けておくことは勿論である。
In addition, as another method of utilizing the magnetic attraction shown in Fig. 2, the primary side of the linear induction motor is provided facing the lower surface of the track, and the secondary side provided on the vehicle is opposite to this primary side and further lower surface. By making the weight of the vehicle slightly heavier than the buoyancy, it is possible to levitate the vehicle by lifting it from below while driving. In this case, it goes without saying that a magnetic yoke is provided on the back surface of the secondary side.

なお、以上の実施例では、リニアインダクションモータ
の磁気反発力ないし磁気吸引力によって車両の自重と浮
力との差に見合う力を相殺するようにしているが、この
ような浮上制御を行わず、リニアインダクションモータ
を単なる推進力を得る手段として用い、車両の自重と浮
力との差の力は車輪で支持するようにしても、本実施例
と同様な効果を充分期待できるとともに、制御装置も著
しく簡素化することができる。
In the above embodiments, the magnetic repulsion or magnetic attraction force of the linear induction motor is used to offset the force corresponding to the difference between the vehicle's own weight and the buoyancy force. Even if the induction motor is simply used as a means of obtaining propulsive force, and the difference between the vehicle's own weight and buoyancy is supported by the wheels, the same effects as in this example can be expected, and the control device is also significantly simpler. can be converted into

〔発胡の効果〕[Effect of Hathu]

以上に説明したように、本発明によれば、水中における
車両に掛かる浮力を利用することにより、水中における
車両のリニア輸送を軌道に対して軽負荷ないし非接触で
行うことができ、摩擦等のエネルギー損失をなくして効
率的な輸送を行うことができる。
As explained above, according to the present invention, by utilizing the buoyancy force exerted on the vehicle underwater, linear transportation of the vehicle underwater can be performed with a light load or without contact with the track, thereby reducing friction etc. Efficient transportation can be achieved by eliminating energy loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の推進力と磁気反発力の発生原理を説明
する概略図、第2図は本発明の推進力と磁気吸引力の発
生原理を説明する概略図、第3図は第1図の磁気反発力
による磁気浮上を適用した水中リニア輸送システムの試
験装置を示す断面図、第4図はインバータの制御回路の
構成例を示すブロック図、第5図はリニアインダクショ
ンモータのブロック運転の説明図、第6図は第1実施例
における電流指令パターン、ギャップ長等のタイムチャ
ート、第7図は第2図の磁気吸引力を利用した第2実施
例を示す断面図、第8図は第2実施例における電流指令
パターン、ギャップ長等のタイムチャートである。 1:車両       2:軌道 3:支柱 4:リニアインダクションモータの一次側5:コントロ
ーラ 6 ニ ア。 10 : 12 : 15 : リニアインダクションモータの二次側 8:車輪     9ニ一次鉄心 一次巻線     11:水槽 インバータ    13:制御回路 1〜14−m :スイッチ 磁気ヨーク 特許出願人 株式会社 安用電機製作所代  理  人
   小  堀   益第 図 第 図 坪勧凪存の進行Tm 第 図 筑6図 1ろ 閉 (ネタ) +1)) 11 MI  1秒) 筑 図
Figure 1 is a schematic diagram illustrating the principle of generation of propulsive force and magnetic repulsive force of the present invention, Figure 2 is a schematic diagram illustrating the principle of generation of propulsive force and magnetic attraction force of the present invention, and Figure 3 is a schematic diagram illustrating the principle of generation of propulsive force and magnetic attraction force of the present invention. Figure 4 is a cross-sectional view showing a test device for an underwater linear transportation system that applies magnetic levitation using magnetic repulsion, Figure 4 is a block diagram showing an example of the configuration of an inverter control circuit, and Figure 5 is a block diagram of a linear induction motor block operation. An explanatory diagram, FIG. 6 is a time chart of the current command pattern, gap length, etc. in the first embodiment, FIG. 7 is a sectional view showing the second embodiment using the magnetic attraction force of FIG. 2, and FIG. It is a time chart of a current command pattern, gap length, etc. in a 2nd example. 1: Vehicle 2: Track 3: Strut 4: Primary side of linear induction motor 5: Controller 6 Near. 10: 12: 15: Secondary side of linear induction motor 8: Wheel 9 Primary core primary winding 11: Water tank inverter 13: Control circuit 1 to 14-m: Switch magnetic yoke Patent applicant Anyo Electric Manufacturing Co., Ltd. Rihito Kobori Masu Diagram Diagram Tsubo Kannagi's Progress Tm Diagram Chiku 6 Diagram 1 Ro Close (Network) +1)) 11 MI 1 sec) Chikuzu

Claims (1)

【特許請求の範囲】 1、水中に設けた軌道と、自重が浮力に対してわずかな
差を有し、前記軌道に沿って走行自在に架設された密閉
構造の車両と、前記軌道に配置されたリニアインダクシ
ョンモータの一次側と、前記車両に設けられ、前記リニ
アインダクションモータの一次側に対向して配置された
リニアインダクションモータの二次側と、これらの一次
側と二次側によって形成されるリニアインダクションモ
ータによって推進力を与える走行制御手段と、前記車両
の自重と浮力との差を前記軌道に対して支持する車輪を
設けたことを特徴とする水中リニア輸送システム。 2、水中に設けた軌道と、自重が浮力に対してわずかな
差を有し、前記軌道に沿って走行自在に架設された密閉
構造の車両と、前記軌道に配置されたリニアインダクシ
ョンモータの一次側と、前記車両に設けられ、前記リニ
アインダクションモータの一次側に対向して配置された
リニアインダクションモータの二次側と、これらの一次
側と二次側によって形成されるリニアインダクションモ
ータによって推進力とともに、前記車両の自重と浮力と
の差に見合う電磁力を発生させて車両を軌道に対して非
接触で走行させる制御手段を設けたことを特徴とする水
中リニア輸送システム。 3、請求項2記載の水中リニア輸送システムにおいて、
車両の自重を浮力よりもわずかに大きくし、リニアイン
ダクションモータによって車両に浮上力を与えることを
特徴とする水中リニア輸送システム。 4、請求項2記載の水中リニア輸送システムにおいて、
車両の自重を浮力よりもわずかに小さくし、リニアイン
ダクションモータによって車両に降下する力を与えるこ
とを特徴とする水中リニア輸送システム。
[Scope of Claims] 1. A track provided in water, a vehicle with a closed structure whose own weight has a slight difference from buoyancy, and which is installed so that it can run freely along the track, and a vehicle disposed on the track. a primary side of a linear induction motor provided on the vehicle and arranged opposite to the primary side of the linear induction motor; and a primary side and a secondary side of these linear induction motors. What is claimed is: 1. An underwater linear transportation system, comprising: travel control means for applying propulsion by a linear induction motor; and wheels that support the difference between the vehicle's own weight and buoyancy with respect to the track. 2. A track installed in the water, a vehicle with a closed structure whose own weight has a slight difference from the buoyancy force, and is built so that it can run freely along the track, and a primary linear induction motor placed on the track. a secondary side of a linear induction motor provided on the vehicle and arranged opposite to the primary side of the linear induction motor, and a linear induction motor formed by these primary and secondary sides. An underwater linear transportation system characterized by further comprising a control means for generating an electromagnetic force corresponding to the difference between the vehicle's own weight and buoyancy to cause the vehicle to travel without contacting the track. 3. In the underwater linear transportation system according to claim 2,
This underwater linear transportation system is characterized by making the vehicle's own weight slightly larger than its buoyancy, and applying levitation force to the vehicle using a linear induction motor. 4. The underwater linear transportation system according to claim 2,
An underwater linear transportation system that makes the vehicle's own weight slightly smaller than its buoyancy and uses a linear induction motor to provide the vehicle with the force to descend.
JP2163475A 1990-06-20 1990-06-20 Underwater linear transportation system Expired - Fee Related JP2986854B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2163475A JP2986854B2 (en) 1990-06-20 1990-06-20 Underwater linear transportation system
EP91910839A EP0487744B1 (en) 1990-06-20 1991-06-20 Underwater linear transport system
PCT/JP1991/000831 WO1991019621A1 (en) 1990-06-20 1991-06-20 Underwater linear transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2163475A JP2986854B2 (en) 1990-06-20 1990-06-20 Underwater linear transportation system

Publications (2)

Publication Number Publication Date
JPH04101603A true JPH04101603A (en) 1992-04-03
JP2986854B2 JP2986854B2 (en) 1999-12-06

Family

ID=15774581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2163475A Expired - Fee Related JP2986854B2 (en) 1990-06-20 1990-06-20 Underwater linear transportation system

Country Status (1)

Country Link
JP (1) JP2986854B2 (en)

Also Published As

Publication number Publication date
JP2986854B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
KR101544383B1 (en) Magnetic levitation system having switch for guide elctromagnetic and stoping method thereof
CA1270913A (en) Magnetic power system for low-friction transportation of loads
US6684794B2 (en) Magnetically levitated transportation system and method
CA1311282C (en) Levitation, propulsion and guidance mechanism for inductive repulsion-type magnetically levitated railway
JPS6122521B2 (en)
US4793263A (en) Integrated linear synchronous unipolar motor with controlled permanent magnet bias
KR100583677B1 (en) Arrangement for operating a transportation system with a magnetic levitation vehicle
KR20150068092A (en) Magnetic levitation system comprising propulsion electromagnet having guiding function
KR940005452A (en) Maglev Transfer Device
KR101009465B1 (en) Magnetic levitation system and magnetic levitation method using halbach array
JPS5810921B2 (en) Electromagnetic levitation guidance control device for floating traveling objects
US5253592A (en) Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
KR101999790B1 (en) Maglev train having energy havester and infrastructure-system
US5275112A (en) Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
KR0123025B1 (en) Ac magnetic floating conveyor and operation method thereof
JP2010252413A (en) Magnetic levitation mobile system
KR20220014544A (en) Apparatus for Controlling Magnetic Levitation Train
KR101672897B1 (en) Magnetic levitation train having controller
JPH04101603A (en) Underwater linear transportation system
JP3092723B2 (en) Underwater linear transportation system
KR100832587B1 (en) Magnetic levitation train using linear synchronous reluctance motor
JPH0728483B2 (en) Magnetic levitation carrier
WO1991019621A1 (en) Underwater linear transport system
KR101544382B1 (en) Magnetic levitation system having invertor for current angle
Weh Linear Synchronous motor development for urban and rapid transit systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees