JPH04100654A - Surface treating method for casting mold - Google Patents

Surface treating method for casting mold

Info

Publication number
JPH04100654A
JPH04100654A JP21603290A JP21603290A JPH04100654A JP H04100654 A JPH04100654 A JP H04100654A JP 21603290 A JP21603290 A JP 21603290A JP 21603290 A JP21603290 A JP 21603290A JP H04100654 A JPH04100654 A JP H04100654A
Authority
JP
Japan
Prior art keywords
mold
medium
casting
fluidized bed
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21603290A
Other languages
Japanese (ja)
Other versions
JP2866166B2 (en
Inventor
Yuji Sakakibara
雄二 榊原
Hiroaki Hayashi
宏明 林
Yasuo Takada
保夫 高田
Yoshiro Hayashi
芳郎 林
Kiyoshi Iwata
清 岩田
Kazuaki Inaba
稲葉 一顕
Masahiro Taguchi
田口 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP21603290A priority Critical patent/JP2866166B2/en
Publication of JPH04100654A publication Critical patent/JPH04100654A/en
Application granted granted Critical
Publication of JP2866166B2 publication Critical patent/JP2866166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Devices For Molds (AREA)

Abstract

PURPOSE:To remove an excess coating material on a mold surface and to obtain the casting mold for manufacturing a product having good casting surface and releasing from the mold, etc., by fluidizing the medium material of the specific grain diameter of powdery body as main substance, arranging the mold in this fluidized bed, bringing it into contact with the medium material and removing a surface layer on the mold. CONSTITUTION:The medium materials 2 consisting essentially of the granular bodies having the average grain diameter to more than half of average hole diameter of gaps, which is present on the surface 4 in the casting mold, and smooth surface at least on a part of the surface, are fluidized with fluidized gas to form a fluidized bed. In the formed fluidized bed, the casting mold is arranged and the mold and the fluidized medium material 2 are relatively shifted and by bringing the mold into contact with the medium material 2, the surface layer 4 on the mold is removed. Then, as the furidized gas, air, nitrogen, oxygen or inert gas is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳造用鋳型の表面層を除去することによって
その製品の鋳肌、型離れ等をよくするための鋳造用鋳型
の表面処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for surface treatment of a casting mold for improving the casting surface and mold separation of the product by removing the surface layer of the casting mold. Regarding.

(従来技術) 金属鋳造用の鋳型、例えば、砂型では、型の強度、通気
性などから使用する砂の大きさは比較的、粗いものが用
いられている。そのため、鋳造時に金属溶湯が鋳型表面
の鋳物砂のすきまに差し込み、「めざし」が発生したり
、鋳肌が荒れ、型離れも悪くなる。また、鋳物によって
は鋳造したままの表面、すなわち、鋳肌のままで製品と
なすものがあり、鋳肌表面の荒さがその価値を左右する
場合もある。そして、一般にはきめの細かい方が精度、
外観とも良好とされている。
(Prior Art) In molds for metal casting, for example, sand molds, the size of sand used is relatively coarse in view of the strength of the mold, air permeability, etc. Therefore, during casting, the molten metal is inserted into the gaps in the molding sand on the surface of the mold, causing "aiming", rough casting surfaces, and poor release from the mold. Furthermore, some castings are made into products with the surface as cast, that is, with the cast surface as is, and the roughness of the surface of the casting may affect its value. In general, the finer the grain, the more accurate it is.
The appearance is said to be good.

しかしながら、複雑な形状の鋳型表面を均一に処理し、
きめが細かく、精度のよい鋳型を得る手段はこれまでに
なかった。
However, it is possible to uniformly process the complex-shaped mold surface,
Until now, there was no way to obtain fine-grained, high-precision molds.

そこで、細かい砂などにアルコール、水等を加え、さら
に必要に応じて、バインダーを加えてスラリー状とした
ものを塗型のようにはけ塗り、スプレー、浸漬などによ
り湿式で鋳型表面に被覆し、鋳肌を良くする方法か一般
に行われている。
Therefore, we add alcohol, water, etc. to fine sand, etc., and if necessary, add a binder to form a slurry, which is coated onto the surface of the mold in a wet manner by brushing, spraying, dipping, etc. This is a commonly used method to improve the casting surface.

しかしながら、鋳型表面に被覆材を湿式で被覆すると、
鋳肌はきれいになるが、乾燥工程か必要となり、また乾
燥中に被覆材に割れやブリスタ等が発生し、被覆材か剥
離しやすくなる。さらに水分等を吸着しやすい被覆材の
場合は乾燥工程に手間かかかり、工程か増えるとともに
、コストか高くなる。更に乾燥が不十分であると鋳造時
に被覆材の中に吸着されていた水分等が気化し、ガス欠
陥が発生する可能性もある。また、被覆材が型のエツジ
部で表面張力によりタレを生じ、被覆材の厚みが均一に
なりかたく、製品の寸法精度に影響するという問題かあ
った。
However, when coating the mold surface with a wet coating material,
Although the casting surface becomes clean, a drying process is required, and cracks and blisters occur in the coating material during drying, making it easy for the coating material to peel off. Furthermore, in the case of a coating material that easily absorbs moisture, etc., the drying process is time-consuming, increasing the number of steps and increasing costs. Furthermore, if drying is insufficient, moisture etc. adsorbed in the coating material during casting may evaporate and gas defects may occur. In addition, there was a problem in that the coating material sagged at the edges of the mold due to surface tension, making it difficult for the coating material to have a uniform thickness, which affected the dimensional accuracy of the product.

また、常温硬化性樹脂あるいは熱硬化性樹脂(以下、単
に樹脂という)を被覆した鋳物砂により鋳型を作製する
方法かある。しかしながら、この場合にはアルミニウム
、マグネシウムおよびこれらの合金のごとく、比較的鋳
造温度の低い溶湯で鋳造を行うと、これら樹脂の分解が
不十分となり、ヤニか発生する。これらヤニはガス抜き
用のベント等に付着し、目詰まりを起こし、更には発生
したガスがキャビティ側へ流れて鋳造欠陥へとつながる
。これを防ぐためにはベントに付着したヤニの清掃を頻
繁に行わなければならず、保全に大きな負担かかかると
いう問題かあった。
Another method is to prepare a mold using molding sand coated with a room temperature curable resin or a thermosetting resin (hereinafter simply referred to as resin). However, in this case, if casting is performed using a molten metal such as aluminum, magnesium, or an alloy thereof, which has a relatively low casting temperature, the decomposition of these resins will be insufficient and tar will be generated. These resins adhere to gas vents and the like, causing clogging, and furthermore, the generated gas flows toward the cavity, leading to casting defects. In order to prevent this, the resin adhering to the vents must be cleaned frequently, which poses a problem of placing a heavy burden on maintenance.

これらの問題を解決するために含水珪酸マグネシウム、
活性炭あるいは活性アルミナ等の多孔性物質、粘土鉱物
、天然鉱物、人造鉱物等の粉末からなる被覆材とこれよ
りも大径の被覆媒体を混合して流動させ、その中で鋳型
を上下方向、前後方向あるいは左右方向に動かし、鋳型
表面に被覆材を被覆し、鋳肌を向上させ、さらにヤニの
発生を低減させる方法があり(特開平1−202336
)、現段階における最も有力な手段となっている。
To solve these problems, hydrated magnesium silicate,
A coating material made of a porous material such as activated carbon or activated alumina, a powder of clay minerals, natural minerals, artificial minerals, etc. is mixed with a coating medium of a larger diameter and made to flow, and the mold is moved vertically and back and forth within the coating material. There is a method of moving the mold in the direction or left and right to coat the surface of the mold with a coating material to improve the casting surface and further reduce the occurrence of tar (Japanese Patent Application Laid-Open No. 1-202336).
), is the most powerful means at this stage.

しかしなから、この方法では流動層内の被覆材の量が多
くなりすぎると鋳型表面に被覆材か過剰に被覆され、鋳
型表面に被覆材の層を形勢する場合かあった。これは流
動層中の被覆媒体による過剰被覆材に対する除去作用が
ほとんど生じないためである。これら過剰な被覆物はバ
インダーを用いていないため、剥離あるいは脱落しやす
い。これら過剰被覆物は鋳造時に金属溶湯により削り取
られ金型面まで押し流され、金型と接する鋳肌か荒れる
という問題を生じる。
However, in this method, if the amount of coating material in the fluidized bed becomes too large, the mold surface may be coated with excess coating material, resulting in a layer of coating material being formed on the mold surface. This is because the coating medium in the fluidized bed hardly removes the excess coating material. Since no binder is used in these excessive coatings, they tend to peel off or fall off. These excess coatings are scraped away by the molten metal during casting and washed away to the mold surface, causing the problem that the casting surface in contact with the mold becomes rough.

これまでは過剰に被覆された場合、過剰な被覆物をブラ
シで落とすか、あるいは圧縮空気を吹きつけて除去して
いた。しかし、ブラシでは落とした後の被覆むらが太き
(、圧縮空気では吹きつけ方法の調整が困難で、過剰被
覆物が取れなかったり、取れ過ぎて鋳型表面の砂粒間の
すきまに充填被覆されていた被覆材までも除去するとい
う問題か生じていた。
Previously, excess coatings were removed by brushing or blowing with compressed air. However, with a brush, the coating is uneven after removal (and with compressed air, it is difficult to adjust the blowing method, so the excess coating may not be removed, or it may be too much and the coating may fill the gaps between the sand grains on the mold surface). This caused the problem of removing even the covering material.

従って、前記出願の方法を最大限に生かすためにも、何
らかの方法で鋳型表面を処理することか必要であった。
Therefore, in order to make the most of the method of the above-mentioned application, it was necessary to treat the surface of the mold in some way.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、鋳型表面の砂粒間のすきまの深部まで
被覆材を充填した鋳造用鋳型を過剰に被覆した被覆物そ
の他の表面層を均一、簡便に除去する表面処理方法を提
供することにある。
An object of the present invention is to provide a surface treatment method for uniformly and easily removing excessive coatings and other surface layers from a casting mold filled with a coating material deep into the gaps between sand grains on the mold surface. be.

〔発明の構成〕[Structure of the invention]

本発明の鋳造用鋳型の表面処理方法は流動化ガスにより
、鋳造用鋳型の表面に存在するすきまの平均孔径の半分
以上の平均粒子径を有する少なくとも表面の一部に滑ら
かな面を有する粒状体を主成分とする媒体を流動化させ
て流動層を形成する工程と、 前記形成した流動層中に前記鋳造用鋳型を配置しこれを
保持するとともに該鋳型と前記流動化した媒体とを相対
的に移動させることにより、前記鋳型と前記媒体との接
触によって前記鋳型の表面層を除去する工程とからなる
The surface treatment method for a casting mold according to the present invention uses a fluidizing gas to form particles having a smooth surface on at least a part of the surface and having an average particle size that is half or more of the average pore size of the gaps existing on the surface of the casting mold. a step of fluidizing a medium containing as a main component to form a fluidized bed; arranging and holding the casting mold in the formed fluidized bed, and relative to the mold and the fluidized medium; and removing a surface layer of the mold by bringing the mold into contact with the medium.

本発明の媒体には前記平均孔径の半分以下の微粉末状の
鉱物を1重量%以下含んでいてもよい。
The medium of the present invention may contain 1% by weight or less of a finely powdered mineral having a diameter of less than half the average pore diameter.

微粉末を1重量%以上含む場合は流動層の除去作用が低
下する。
If 1% by weight or more of fine powder is contained, the removal effect of the fluidized bed is reduced.

本発明の流動化ガスとしては、空気、窒素、酸素あるい
は不活性ガスなどが用いられる。
As the fluidizing gas of the present invention, air, nitrogen, oxygen, or an inert gas is used.

また、媒体の平均粒子径は鋳型表面に存在するすきまの
平均孔径の半分以上が好適である。これより小さいと、
粒子の質量が小さいため作用力が弱くなるとともに、鋳
型表面の小さなすきまやくぼみにトラップされることが
多くなるため、除去作用を示さなくなる。
Further, the average particle diameter of the medium is preferably at least half the average pore diameter of the gaps existing on the mold surface. If smaller than this,
Since the mass of the particles is small, the acting force is weak, and they are often trapped in small gaps and depressions on the mold surface, so they do not have a removal effect.

本発明では、除去媒体からなる流動層の中に、鋳型を配
置し、保持するとともに、これを媒体に対し相対的に移
動させることにより鋳型と接触する媒体の作用力を利用
して、鋳型の表面層を均一に除去する。
In the present invention, a mold is placed and held in a fluidized bed made of a removal medium, and the mold is moved relative to the medium to utilize the acting force of the medium in contact with the mold. Remove the surface layer uniformly.

すなわち、鋳型の表面層を除去するにあたっては、流動
化している媒体の流動層中に鋳型を配置する。この配置
は、鋳型を吊り下げることなどにより行い、均一な処理
を行うため、主として上下方向に繰り返し移動させる。
That is, to remove the surface layer of the mold, the mold is placed in a fluidized bed of fluidized media. This arrangement is performed by hanging the mold, etc., and in order to perform uniform processing, the mold is repeatedly moved primarily in the vertical direction.

また、上下方向のみならず、前後方向、左右方向にも動
かす。さらに、形状の複雑な鋳型を処理する場合には、
未処理部分が生じないように、一方向だけでなく、多く
の動きを組み合わせる。また、鋳型の移動が困難な場合
は、流動層自身を移動させてもよい。なお、流動層中へ
の鋳型の配置は、前記のごとく、流動層形成後のみなら
ず、流動化ガス導入前の流動層形成前であっても良い。
In addition, it can be moved not only in the vertical direction, but also in the front-back and left-right directions. Furthermore, when processing molds with complex shapes,
Combine many movements, not just one direction, to avoid any backlogs. Furthermore, if it is difficult to move the mold, the fluidized bed itself may be moved. Note that the mold may be placed in the fluidized bed not only after the formation of the fluidized bed as described above, but also before the formation of the fluidized bed before introducing the fluidizing gas.

また、本発明か適用できる鋳物表面としては、通常のシ
ェル鋳型あるいは被覆材を充填被覆した鋳型等、特に限
定されない。
Further, the casting surface to which the present invention can be applied is not particularly limited, such as a normal shell mold or a mold filled with a coating material.

被覆材充填型のものに対しては次に示すようにどのよう
な表面性状のものでも適用可能である。
For the coating material filling type, any surface texture can be applied as shown below.

すなわち、被覆材か鋳型表面のくぼみ部のみに充填され
たもの、被覆材が、鋳型表面のくぼみ部に充填被覆され
て、さらにくぼみ部局外の表面層部の少なくとも一部に
被覆材が充填被覆されたもの、被覆材か鋳型表面の(は
み部を含む鋳型表面の所望部全体にわたり充填被覆され
、薄い被覆層か形成されたもの等である。
In other words, the coating material is filled only into the depressions on the mold surface, and the coating material is filled into the depressions on the mold surface, and the coating material is further filled into at least part of the surface layer outside the depressions. The coating material is filled and coated over the entire desired part of the mold surface (including the fillet area) to form a thin coating layer.

〔発明の作用・効果〕[Action/effect of the invention]

本発明により過剰な被覆物が除去できるメカニズムにつ
いては、明らかではないが、大略添付図面に示すような
メカニズムが考えられる。図中番号lは被覆材、2は媒
体、3は鋳物砂および4は鋳型表面を示す。
The mechanism by which excess coating can be removed by the present invention is not clear, but a mechanism roughly shown in the accompanying drawings is conceivable. In the figure, number 1 indicates the covering material, 2 indicates the medium, 3 indicates the molding sand, and 4 indicates the mold surface.

媒体を流動化させ、その中で鋳型を動かすと、図(a)
−1−(b)−+ (C)に示すごとく、鋳型表面4と
媒体2とが接触し、摩擦力、衝撃力等の作用力が働き、
この作用力により過剰な被覆物が除去されると考えられ
る。そして、媒体が鋳型表面と接しながら進行している
ため、過剰な被覆物は媒体といっしょに媒体の進行方向
に押し進められたり、くほみ中に押し込まれるため、く
ぼみ内には被覆材がさらにち密に押し込められるととも
に、媒体が通り過ぎたあとのくほみの上部は過剰な被覆
物のみが取り除かれるので、被覆材か凝固に埋設された
平滑な面を形成する。
When the medium is fluidized and the mold is moved within it, Figure (a)
-1-(b)-+ As shown in (C), the mold surface 4 and the medium 2 come into contact, and acting forces such as frictional force and impact force act,
It is believed that this force removes excess coating. Since the medium is progressing in contact with the mold surface, excess coating material is pushed along with the medium in the direction of movement of the medium or pushed into the cavity, so there is more coating material in the cavity. As well as being compacted, only the excess coating is removed from the top of the cavity after the medium has passed, thus forming a smooth surface embedded in the coating or coagulation.

本発明による鋳型の表面処理を行えば、図(b)に示す
ごと(、鋳型表面4が滑らかで寸法精度の良い鋳型が得
られる。したかって、かかる鋳型を用いて鋳造を行えば
、被覆材により発生する金型面と接する鋳肌の荒れが起
こらず、鋳肌のきれいな鋳物を得ることができる。
If the surface treatment of the mold according to the present invention is carried out, a mold with a smooth mold surface 4 and good dimensional accuracy can be obtained as shown in FIG. The roughening of the casting surface in contact with the mold surface that occurs due to this process does not occur, and a casting with a clean casting surface can be obtained.

また、本発明によれば複雑な形状の鋳型の表面層もむら
なく均一に除去できる。
Further, according to the present invention, even the surface layer of a mold having a complicated shape can be removed evenly and uniformly.

さらに、本発明では、乾燥工程を要しない。Furthermore, the present invention does not require a drying step.

〔その他の発明〕[Other inventions]

本発明に用いられる媒体の粒径は70μm〜5順のもの
か好ましい。
The particle size of the medium used in the present invention is preferably 70 μm to 5 μm.

70μm以下の時には流動化しにくく表面層を除去する
能力が低下するだけでなく、流動化ガス量か少ないので
表面層中に媒体か付着、残留しゃすく、鋳肌、溶湯に対
しかえって悪影響を及はす。
When the diameter is less than 70 μm, it is difficult to fluidize and the ability to remove the surface layer is reduced, and since the amount of fluidizing gas is small, there is no adverse effect on the adhesion of media in the surface layer, residual slag, casting surface, and molten metal. vinegar.

流動化ガス量か増加すると、ガスによるチャンネリング
が生じ、不均一な流動状態となり除去力が激減する。
When the amount of fluidizing gas increases, channeling occurs due to the gas, creating a non-uniform fluidization state and drastically reducing the removal power.

また、粒径か5mmよりも大きいと媒体を流動させるた
めの流動化ガスの供給量が多くなり、鋳型に加わる力が
大きくなるとともに、鋳型を破損しやすくなる。また、
粒状の媒体か流動層外へ飛散しやすくなる。さらには、
鋳型の移動が困難となる。
Furthermore, if the particle size is larger than 5 mm, the amount of fluidizing gas to be supplied for fluidizing the medium will be large, and the force applied to the mold will be large, and the mold will be easily damaged. Also,
Particulate media tends to scatter out of the fluidized bed. Furthermore,
It becomes difficult to move the mold.

本発明の媒体に1重量%以下含むことができる微粉末の
粒径は50μm以下が適当と考えられる。
The particle size of the fine powder that can be contained in the medium of the present invention at 1% by weight or less is considered to be suitably 50 μm or less.

媒体を鋳型表面の過剰な被覆材を除去するために用いる
場合、媒体の密度は被覆材と同程度かそれ以上で、粒度
については被覆媒体と同程度か、それ以上の物質を用い
ることが好ましい。粒子径50μm以下の粉末状の鉱物
を含む場合はその含有率が1重量%以下であることが望
ましい。
When a medium is used to remove excess coating material from the mold surface, it is preferable to use a material with a density similar to or greater than that of the coating material and a particle size comparable to or greater than that of the coating medium. . When powdered minerals with a particle size of 50 μm or less are included, the content is preferably 1% by weight or less.

本発明の流動層は媒体を流動層式処理装置の中に入れ、
流動化ガスを導入して媒体を流動化させることによって
形成される。
In the fluidized bed of the present invention, the medium is placed in a fluidized bed processing apparatus,
It is formed by introducing a fluidizing gas to fluidize the medium.

流動化ガスは0.03〜0.15 m/secの空塔速
度で導入するとよい。流動化ガス量は媒体の粒径および
除去された粘土鉱物の含有率等によって異なるか、作用
力を最も効果的に働かせるためには、このような条件に
かかわらず、流動開始点近傍のガス量になるように流動
化ガスを流すのか望ましい。
The fluidizing gas is preferably introduced at a superficial velocity of 0.03 to 0.15 m/sec. The amount of fluidizing gas varies depending on the particle size of the medium and the content of removed clay minerals, etc.In order to make the acting force work most effectively, regardless of these conditions, the amount of gas near the starting point of fluidization must be adjusted. It is desirable to flow the fluidizing gas so that

流動化ガスか0.03 m/sec以下の空塔速度であ
ると媒体は流動化せず、0.15 m/sec以上であ
ると、流動が激しすぎて逆に除去力が低下する。
If the superficial velocity of the fluidizing gas is less than 0.03 m/sec, the medium will not be fluidized, and if it is more than 0.15 m/sec, the fluidization will be too intense and the removal power will be reduced.

流動化ガスとしては空気、窒素、酸素あるいは不活性ガ
スなどを用い流動装置下方より送入する。
Air, nitrogen, oxygen, or an inert gas is used as the fluidizing gas and is introduced from below the fluidizing device.

この際、被覆材が大気中の水分等を吸着しないようにす
る。このために乾燥空気や熱風を用いてもよい。
At this time, make sure that the covering material does not absorb moisture in the atmosphere. Dry air or hot air may be used for this purpose.

本発明の媒体としては粘土鉱物、天然鉱物、人造鉱物、
活性炭の一種または二種以上の粉末が用いられる。
The medium of the present invention includes clay minerals, natural minerals, artificial minerals,
One or more powders of activated carbon are used.

会 本発明に用いる粘土鉱物としては、セピオライト、
パリゴルスカイト、珪藻土、ゼオライト、バーミキュラ
イト等、天然鉱物としては、珪砂、クロマイトサンド、
ジルコンサンド、シリカフラワー等、人造鉱物としては
アルミナ、合成ムライト、溶融シリカ等が適当である。
The clay minerals used in the present invention include sepiolite,
Natural minerals such as palygorskite, diatomaceous earth, zeolite, and vermiculite include silica sand, chromite sand,
Suitable artificial minerals such as zircon sand and silica flour include alumina, synthetic mullite, and fused silica.

媒体の形状としては、表面層を除去する能力を高めるた
めには摩擦力の大きくなる破砕状等、表面性状か粗なも
のがよいが、鋳型の穴に充填されている被覆材をも削り
取る恐れかある。過剰の被覆材を除去するとともに、滑
らかな鋳型表面を得るためには、一部に滑らかな部分の
ある媒体が望ましい。さらに被覆材を強固に充填し、滑
らかな鋳型表面を得るためには球状のものが好適である
In order to improve the ability to remove the surface layer, it is best to use a medium with a coarse surface texture, such as a crushed one, which increases frictional force, but there is a risk that it will also scrape off the coating material filled in the holes of the mold. There is. A medium with some smooth areas is desirable to remove excess coating material and to obtain a smooth mold surface. Further, in order to firmly fill the coating material and obtain a smooth mold surface, a spherical shape is suitable.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

(実施例1) 二台の流動層式処理装置(以下、流動装置という)を用
い、一方を被覆用流動装置、他方を除去用流動装置とし
た。被覆材としてセピオライト粉末(比表面積 約28
0rd/g)を用いて、鋳型の表面処理を行った。
(Example 1) Two fluidized bed processing devices (hereinafter referred to as fluidized devices) were used, one of which was a coating fluidized device and the other was a removal fluidized device. Sepiolite powder (specific surface area approx. 28
0rd/g) to perform surface treatment of the mold.

すなわち、被覆用流動装置で被覆を行い、除去用流動装
置で過剰な被覆物を除去する。被覆用流動装置は被覆材
と被覆媒体からなる混合粉末を入れ、空気等の流動化ガ
スにより流動化する。そして、この中で鋳型を上下方向
、さらには前後左右方向に動かし、鋳型表面のくぼみに
被覆材を充填する。除去用流動装置は、中に除去媒体を
入れ、これを空気等の流動化ガスにより流動化する。そ
して、除去用流動装置で被覆を終えた鋳型をこの中で上
下方向、さらには前後、左右方向に動かし、鋳型表面の
過剰な被覆物を除去する。
That is, coating is performed using a coating flow device, and excess coating material is removed using a removal flow device. A fluidizing device for coating contains a mixed powder consisting of a coating material and a coating medium, and fluidizes it with a fluidizing gas such as air. Then, the mold is moved in the vertical direction, and also in the front, back, left and right directions, and the coating material is filled into the depressions on the surface of the mold. A fluidizing device for removal has a removing medium placed therein and fluidizes it with a fluidizing gas such as air. Then, the coated mold is moved in the removal flow device in the up-down direction, furthermore, in the front-back and left-right directions to remove the excess coating on the mold surface.

上記に関して、以下に具体例を示す。まず、樹脂被覆鋳
物砂(珪砂100重量部、フェノール樹脂2重量部、粒
度6号)を用いて、上部外径73世、下部外径80mm
、高さ110mm、厚さ10mmの中空円筒体の鋳型を
作製した。
Concerning the above, specific examples are shown below. First, using resin-coated foundry sand (100 parts by weight of silica sand, 2 parts by weight of phenolic resin, particle size No. 6), the outer diameter of the upper part was 73 mm and the outer diameter of the lower part was 80 mm.
A hollow cylindrical mold having a height of 110 mm and a thickness of 10 mm was prepared.

次に、被覆材として粒径50μm以下のセピオライト3
重量部と、被覆助材として粒径か150〜380μmの
球状ムライト100重量部を混合した。そして、この混
合物を、内寸が縦300mm、横300皿、高さ400
−の前記流動装置に入れ、流動化ガスとしての圧縮空気
を送入し、上記混合物の流動層を形成し、次いて、この
中に上記鋳型を入れ、20ないし30回上下動した。
Next, sepiolite 3 with a particle size of 50 μm or less was used as a coating material.
parts by weight and 100 parts by weight of spherical mullite having a particle size of 150 to 380 μm were mixed as a coating aid. Then, this mixture was prepared into a dish with internal dimensions of 300mm in length, 300mm in width, and 400mm in height.
- The mold was placed in the fluidizing device, and compressed air was introduced as a fluidizing gas to form a fluidized bed of the mixture.Then, the mold was placed therein and moved up and down 20 to 30 times.

次に除去用流動装置の中で上記被覆処理鋳型の過剰な被
覆物を除去した。
Excess coating from the coated mold was then removed in a removal fluidizer.

除去媒体としては鋳型のくほみの平均穴径60μmの半
分より大きな粒子径をもつ球状ムライト(粒径100〜
500μm)だけからなるもの(第1表Nα1〜3)、
球状ムライトに前記セピすライトを0,4重量%混合し
たもの(第1表N04〜6)、球状ムライトにセピオラ
イトを0.6重量%混合したもの(第1表N07〜9)
、0.8重量%混合したもの(第1表Nα10)を用い
、流動化ガスとして圧縮空気を送入して流動化した。こ
の中に上記被覆処理鋳型を入れ、5ないし50回上下動
させた。過剰被覆物の処理前後の被覆量を測定した結果
および除去量を第1表に示す。
As a removal medium, spherical mullite (particle size 100~
500 μm) (Table 1 Nα1 to 3),
Spherical mullite mixed with 0.4% by weight of the sepiolite (Table 1 N04-6), spherical mullite mixed with 0.6% sepiolite (Table 1 N07-9)
, 0.8% by weight (Nα10 in Table 1) was used, and compressed air was introduced as a fluidizing gas to fluidize it. The above-mentioned coated mold was placed in this and moved up and down 5 to 50 times. Table 1 shows the results of measuring the amount of excess coating before and after treatment and the amount removed.

また、比較例として球状ムライトにセピオライトを1.
0重量%混合した除去用流動層を用いて、上記と同じよ
うに過剰被覆物の除去処理を行った。
In addition, as a comparative example, 1.0% sepiolite was added to spherical mullite.
Excess coating material was removed in the same manner as above using a fluidized bed for removal containing 0% by weight of the mixture.

その結果も併せて第1表に示す。The results are also shown in Table 1.

なお、表中、roJは処理後の鋳型表面か「良好」、「
△」は表面に「多少過剰被覆物か残っている」、「×」
は表面に「かなり多くの過剰被覆物が残っている」を示
す。
In addition, in the table, roJ indicates whether the mold surface after treatment is "good" or "
△” indicates that “some excess coating remains” on the surface, “×”
indicates that there is "significant excess coating remaining" on the surface.

本実施例から明らかなように50μm以下のセピオライ
トの含有量力月重量%以下の時、本実施例の流動層は鋳
型の表面層を10g/rr?以上除去することが可能で
あり、これにより、均一で清らかであり、しかも寸法精
度のよい鋳型を得ることかできた。
As is clear from this example, when the content of sepiolite with a diameter of 50 μm or less is less than 1% by weight, the fluidized bed of this example has a surface layer of 10 g/rr of the mold. As a result, it was possible to obtain a mold that was uniform, clean, and had good dimensional accuracy.

比較例の流動層を用いた場合は除去作用より付着作用か
働くため、除去法としての用をなさなかった。
When the fluidized bed of the comparative example was used, it was useless as a removal method because it had more of an adhesion effect than a removal effect.

また、本実施例において、表面処理回数100回後の除
去用流動層内のセピオライト量は約0.04重量%であ
り、これは全除去量の約1割に相当していた。
Further, in this example, the amount of sepiolite in the fluidized bed for removal after 100 surface treatments was about 0.04% by weight, which corresponded to about 10% of the total amount removed.

これより、本実施例の除去用流動層は実施可能回数が約
2500回の寿命性能を有することとなる。
From this, the fluidized bed for removal of this example has a service life of about 2,500 times.

(実施例2) 実施例1と同様の方法で被覆処理鋳型を作製した後、被
覆用流動装置内から上記鋳型を取り出し、除去用流動装
置の中で過剰な被覆物を除去した。
(Example 2) After producing a coating mold in the same manner as in Example 1, the mold was taken out of the coating flow device, and excess coating material was removed in the removal flow device.

除去用流動装置は被覆用流動装置と同じ構造で寸法も同
じものを用いた。除去媒体としては鋳型表面のすきまの
孔径の平均値60μmの半分より大きな粒径の球状ムラ
イト(粒径100〜500μm)、球状ムライト(粒径
0,5〜InIn)および破砕状の珪砂(粒径30〜5
00μm)の3種類を用い、流動化ガスとして圧縮空気
を送入して流動化し、この中で実施例1と同様の方法で
被覆処理した被覆処理鋳型を入れ、1ないし10回上下
動させた。
The fluidizing device for removal had the same structure and dimensions as the fluidizing device for coating. As removal media, spherical mullite (particle size 100 to 500 μm) with a particle size larger than half of the average pore size of 60 μm in the mold surface, spherical mullite (particle size 0.5 to InIn), and crushed silica sand (particle size 30-5
Compressed air was introduced as a fluidizing gas to fluidize the mold, and a coating mold coated in the same manner as in Example 1 was placed in the mold and moved up and down 1 to 10 times. .

過剰被覆材の除去前後の被覆量を測定した結果を除去媒
体、流動化ガスとしての空気流量、除去処理中の鋳型の
上下動回数の各条件とともに第2表に示す。
The results of measuring the amount of coating before and after removing the excess coating material are shown in Table 2 together with the conditions of the removal medium, the flow rate of air as a fluidizing gas, and the number of vertical movements of the mold during the removal process.

本実施例により得られた鋳型の表面はいずれの場合も過
剰な被覆物か均一に除去され、平滑な鋳型面を形成して
いた。
In all cases, excess coating was uniformly removed from the surface of the mold obtained in this example, and a smooth mold surface was formed.

本発明はその要旨を越えない限り、これら実施例により
何等制限されるものではない。
The present invention is not limited in any way by these Examples unless it goes beyond the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

図(a)は過剰に表面被覆された鋳型の表面、図(b)
は前記鋳型表面に対する媒体の作用および図(C)は処
理後の前記鋳型の表面を表した模式図である。 (a) (b) (c)
Figure (a) is the surface of the mold with excessive surface coating, Figure (b)
is a schematic diagram showing the effect of the medium on the mold surface, and FIG. (a) (b) (c)

Claims (1)

【特許請求の範囲】 流動化ガスにより、鋳造用鋳型の表面に存在するすきま
の平均孔径の半分以上の平均粒子径を有する少なくとも
表面の一部に滑らかな面を有する粒状体を主成分とする
媒体を流動化させて流動層を形成する工程と、 前記形成した流動層中に前記鋳造用鋳型を配置しこれを
保持するとともに該鋳型と前記流動化した媒体とを相対
的に移動させることにより、前記鋳型と前記媒体との接
触によって前記鋳型の表面層を除去する工程と、 からなる鋳造用鋳型の表面処理方法。
[Claims] The main component is a granular material that is produced by a fluidizing gas and has a smooth surface on at least a portion of the surface and has an average particle diameter that is half or more of the average pore diameter of the gaps existing on the surface of a casting mold. a step of fluidizing a medium to form a fluidized bed, and arranging and holding the casting mold in the formed fluidized bed and relatively moving the mold and the fluidized medium. , a step of removing a surface layer of the mold by contacting the mold with the medium; and a method for surface treatment of a casting mold.
JP21603290A 1990-08-15 1990-08-15 Surface treatment method for casting mold Expired - Lifetime JP2866166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21603290A JP2866166B2 (en) 1990-08-15 1990-08-15 Surface treatment method for casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21603290A JP2866166B2 (en) 1990-08-15 1990-08-15 Surface treatment method for casting mold

Publications (2)

Publication Number Publication Date
JPH04100654A true JPH04100654A (en) 1992-04-02
JP2866166B2 JP2866166B2 (en) 1999-03-08

Family

ID=16682226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21603290A Expired - Lifetime JP2866166B2 (en) 1990-08-15 1990-08-15 Surface treatment method for casting mold

Country Status (1)

Country Link
JP (1) JP2866166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137232A1 (en) * 2014-03-12 2015-09-17 三菱重工業株式会社 Method for manufacturing core, and method for manufacturing turbine member in which core is acquired by said core manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137232A1 (en) * 2014-03-12 2015-09-17 三菱重工業株式会社 Method for manufacturing core, and method for manufacturing turbine member in which core is acquired by said core manufacturing method
JP2015171725A (en) * 2014-03-12 2015-10-01 三菱重工業株式会社 Core manufacturing method and method of manufacturing turbine member for acquiring core by core manufacturing method
US10245636B2 (en) 2014-03-12 2019-04-02 Mitsubishi Heavy Industries, Ltd. Method for manufacturing core, and method for manufacturing turbine member in which core is acquired by said core manufacturing method

Also Published As

Publication number Publication date
JP2866166B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
KR101576821B1 (en) Foundry coating composition
JP5590518B2 (en) Molding material mixture containing borosilicate glass
JP2003251434A (en) Sand for mold and production method thereof
KR880002679B1 (en) A method of making a ceramic shell mould
EP0052997B1 (en) Method of casting using expendable patterns
US3433284A (en) Method of casting a pitted surface
US3362463A (en) Method of making a porous investment mold
JPH04100654A (en) Surface treating method for casting mold
JP2007030027A (en) Method for forming water soluble core, and method for casting aluminum alloy
US3673293A (en) Manufacture of plaster of paris mold having sprayed metal oxide linings and product
US4995443A (en) Process for evaporative pattern casting
AU588257B2 (en) Molding medium, method for making same and evaporative pattern casting process
AU633077B2 (en) Shape casting in mouldable media
JP2639977B2 (en) Surface treatment method of casting mold and casting mold
JP2023532539A (en) 3D ceramic printing
EP0306841B1 (en) Mold surface treatment process and mold
US2914823A (en) Casting mold and pattern and process
GB2148760A (en) Casting metal in a sand backed shell mould
Campbell et al. Molding and casting processes
JPH0433540B2 (en)
JPS6043824B2 (en) Foundry sand recycling method
US2923990A (en) Casting mold for fusible pattern
JPS56119641A (en) Production of mold for quick precision casting
US11440061B2 (en) Method for removing adhering matter
US5372179A (en) Mold surface treatment process and mold