JPH0410043B2 - - Google Patents

Info

Publication number
JPH0410043B2
JPH0410043B2 JP59103971A JP10397184A JPH0410043B2 JP H0410043 B2 JPH0410043 B2 JP H0410043B2 JP 59103971 A JP59103971 A JP 59103971A JP 10397184 A JP10397184 A JP 10397184A JP H0410043 B2 JPH0410043 B2 JP H0410043B2
Authority
JP
Japan
Prior art keywords
optical fiber
reinforced
whiskers
coating layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59103971A
Other languages
Japanese (ja)
Other versions
JPS60247609A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59103971A priority Critical patent/JPS60247609A/en
Publication of JPS60247609A publication Critical patent/JPS60247609A/en
Publication of JPH0410043B2 publication Critical patent/JPH0410043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は強化被覆光フアイバに関するものであ
る。 従来技術 光フアイバは、例えば光通信伝送路として利用
する場合過酷な条件で使用されることが多いた
め、優れた機械的特性が要求され、しかも伝送損
失の小さいことが必要である。このため従来で
は、例えば第1図に示すようにコア及びクラツド
から成る光フアイバ1の外周面にプラスチツク製
の緩衝層2(一次被覆)を形成し、更に緩衝層2
の外周面に、熱可塑性樹脂より成る強化被覆層3
(二次被覆)を形成することにより強化被覆光フ
アイバを構成するようにしていた。しかしながら
このような構造の強化被覆光フアイバは、機械的
特性がそれ程よくない上、ガラスと樹脂との線膨
張係数が1桁から2桁異なるため温度変化により
光フアイバに大きなストレスがかかり、光フアイ
バを構成するガラスにマイクロペンデイングを生
じ伝送損失が大きくなることがあつた。 このようなことから最近において、第2図に示
すように緩衝層2の外周面に多数のローピンク状
態のガラス繊維41を縦添えし、この繊維41に
含浸させた熱硬化性樹脂42を加熱手段により加
熱して強化被覆層4を形成することが行われてい
る。このようにして得られた強化被覆光フアイバ
は、ガラス繊維41の線膨張係数が小さいことか
ら、ガラス繊維の含有割合を多くするにしたがつ
て強化被覆層4の線膨張係数が光フアイバ1の線
膨張係数に近似するようになり、このため相互の
膨張収縮差が小さくなるので温度変化により光フ
アイバ1に大きなストレスが生ずるおそれがな
い。しかしながら第2図に示す強化被覆光フアイ
バにおいては、この強化被覆層の線膨張係数を十
分に低下させるにはガラス繊維を相当多く用いな
ければならず、このため薄肉化が困難になつた
り、可撓性が損われるようになり、しかもガラス
繊維を多量に用いるため脆弱化して樹脂とガラス
繊維との界面剥離が生じたり樹脂にクラツクが生
じたりするおそれが多いという欠点があつた。更
にこのような欠点に加えて高い作業能率で生産を
行うことが困難であるという問題点もあつた。そ
の理由は、電気ヒータ等を有する加熱装置内に光
フアイバ及び樹脂を含浸したガラス繊維を通しそ
の樹脂を硬化させるようにして強化被覆光フアイ
バが生産されるが、熱硬化性樹脂は熱伝導率が悪
く且つガラス繊維も熱容量が大きいため、短時間
で樹脂を熱硬化させることが困難だからである。
その上製造装置についても長尺なガラス繊維の供
給装置、熱硬化用の加熱装置、或いは熱硬化性樹
脂の液槽等の装置を必要とし、製造装置が複雑で
且つ高価なものとなつていた。 発明の目的 本発明はこのような事情のもとになされたもの
であり、伝送特性を維持し、しかも薄肉構造とし
ながら可撓性に富み、引張強度が大きいという優
れた機械的特性を有し、その上高い能率で生産す
ることのできる強化被覆光フアイバを提供するこ
とを目的とするものである。 発明の概要 本発明は、ウイスカーと呼ばれる単結晶の微小
繊維を用い、緩衝層の外周面に、このウイスカー
を多数含有した熱可塑性樹脂より成る強化被覆層
を形成した点に特徴がある。 実施例 以下図面によつて本発明の実施例を説明する。
本発明の一実施例に係る強化被覆光フアイバは、
第3図に示すように光フアイバ1を被覆した緩衝
層2の外周面に強化被覆層5を設けて成り、この
強化被覆層5は、光フアイバ1の長さ方向に各々
配向した多数のウイスカー6を含有する熱可塑性
樹脂7により構成される。 ここでウイスカーとは単結晶の微小繊維であ
り、チタン酸カリウム、炭化珪素、窒化珪素、ポ
リオキシメチレン等より成る。ウイスカーを用い
るにあたつては、1種例えばチタン酸カリウムよ
り成るウイスカーのみを使用してもよいし、或い
は2種以上を組み合わせて例えばチタン酸カリウ
ムのウイスカー及び炭化珪素のウイスカーを組み
合わせて使用してもよいが、線膨張係数が、光フ
アイバを構成するガラスのそれに近いもの例えば
チタン酸カリウムやチツ化ケイ素等の無機物より
成るウイスカーを用いることがより好ましい。ウ
イスカーの一例として6チタン酸カリウム
(K2O・6TiO2)の白色針状結晶をあげると、こ
れは平均繊維長10〜20μm、繊維径0.2〜0.5μmと
いう微細なものであり、しかも樹脂との相溶性も
極めてよいものである。強化被覆層5におけるウ
イスカー6の含有割合は、十分な線膨張係数の低
下をねらうという点で2〜60重量%が好ましく、
10〜40重量%がより好ましい。そして強化被覆層
5の形成については、予め熱可塑性樹脂7にウイ
スカー6を練り込んでペレツト化したものを使用
し、これを緩衝層2の外周面に被覆していくこと
が、ウイスカーの散在の均一性や環境衛生上の問
題から好ましい。更に本発明ではウイスカー6を
光フアイバ1の長さ方向に配向することに限定さ
れるものではないが、ウイスカーを長さ方向に配
向させれば、強化被覆層の線膨張係数のより低下
につながるという点で好ましい。ウイスカー6を
光フアイバ1の長さ方向に配向した状態は、ウイ
スカーを含んだ樹脂を押し出し機により10倍程度
の引き落とし倍率で引き落とし押し出し被覆する
ことで容易に得られる。 前記熱可塑性樹脂7としては、ポリエステル樹
脂、ポリアミド樹脂、ポリアセタール樹脂等から
成り、線膨張係数の他に要求される特性に基づい
て適宜選択される。 次に本発明の具体例を、ウイスカーを含まない
ものと比較して説明する。 <具体例 1> 光フアイバに緩衝層を被覆して外径を0.4mmφ
とし、緩衝層の外周面に、6チタン酸カリウムの
ウイスカーを5重量%含有した熱可塑性のナイロ
ン12を積層し、これを押し出し延伸率20倍で引
き落として強化被覆層を形成し、外径0.9mmφの
強化被覆光フアイバを得た。これを「光フアイバ
1」とする。 <具体例 2> 6チタンン酸カリウムのウイスカーの含有率を
10重量%とした他は、具体例1と全く同様にして
同様の大きさの強化被覆光フアイバを得た。これ
を「光フアイバ2」とする。 <比較例> 上記のウイスカーをナイロン12に含有させなか
つた他は<具体例1>と全く同様にして同様の寸
法の強化被覆光フアイバを得た。これを「比較光
フアイバ」とする。 上記の光フアイバ1〜3を、引張強度、成形収
縮率、線膨張係数及び成形状態について調べた結
果を次表に示す。
TECHNICAL FIELD This invention relates to reinforced coated optical fibers. Prior Art Optical fibers are often used under harsh conditions when used, for example, as optical communication transmission lines, so they are required to have excellent mechanical properties and low transmission loss. For this reason, conventionally, for example, as shown in FIG. 1, a plastic buffer layer 2 (primary coating) is formed on the outer peripheral surface of an optical fiber 1 consisting of a core and a cladding, and then a buffer layer 2 (primary coating) is formed.
A reinforced coating layer 3 made of thermoplastic resin is provided on the outer peripheral surface of the
By forming a (secondary coating), a reinforced coated optical fiber was constructed. However, reinforced coated optical fibers with such a structure do not have very good mechanical properties, and the linear expansion coefficients of glass and resin differ by one to two orders of magnitude, which causes large stress to be placed on the optical fiber due to temperature changes, causing the optical fiber to deteriorate. In some cases, micropending occurred in the glass constituting the device, resulting in increased transmission loss. For this reason, recently, as shown in FIG. 2, a large number of low-pink glass fibers 41 are attached vertically to the outer peripheral surface of the buffer layer 2, and the thermosetting resin 42 impregnated into the fibers 41 is heated. The reinforcing coating layer 4 is formed by heating by means. In the thus obtained reinforced coated optical fiber, since the linear expansion coefficient of the glass fiber 41 is small, as the content ratio of glass fiber increases, the linear expansion coefficient of the reinforced coat layer 4 becomes lower than that of the optical fiber 1. The coefficient of linear expansion becomes close to that of the optical fiber 1, and therefore the difference in expansion and contraction between them becomes small, so there is no risk of large stress being caused to the optical fiber 1 due to temperature changes. However, in the reinforced coated optical fiber shown in Figure 2, it is necessary to use a considerable amount of glass fiber in order to sufficiently reduce the linear expansion coefficient of the reinforced coat layer, which makes it difficult to reduce the thickness or The flexibility is impaired, and since a large amount of glass fiber is used, the resin becomes brittle and there is a high risk of peeling at the interface between the resin and the glass fiber or cracking the resin. In addition to these drawbacks, there was also the problem that it was difficult to carry out production at high efficiency. The reason for this is that reinforced coated optical fibers are produced by passing optical fibers and resin-impregnated glass fibers through a heating device with an electric heater or the like and curing the resin, but thermosetting resins have a low thermal conductivity. This is because it is difficult to heat-cure the resin in a short time because the heat capacity of the glass fiber is poor and the heat capacity of the glass fiber is large.
Furthermore, the manufacturing equipment required equipment such as a feeding device for long glass fibers, a heating device for thermosetting, or a liquid tank for thermosetting resin, making the manufacturing equipment complicated and expensive. . Purpose of the Invention The present invention has been made under these circumstances, and has excellent mechanical properties such as maintaining transmission characteristics, having a thin structure, being highly flexible, and having high tensile strength. It is an object of the present invention to provide a reinforced coated optical fiber that can be produced with high efficiency. Summary of the Invention The present invention is characterized in that a reinforcing coating layer made of a thermoplastic resin containing a large number of whiskers is formed on the outer peripheral surface of the buffer layer using single-crystal microfibers called whiskers. Embodiments Embodiments of the present invention will be described below with reference to the drawings.
A reinforced coated optical fiber according to an embodiment of the present invention includes:
As shown in FIG. 3, a reinforcing coating layer 5 is provided on the outer peripheral surface of a buffer layer 2 covering the optical fiber 1, and this reinforcing coating layer 5 includes a large number of whiskers each oriented in the longitudinal direction of the optical fiber 1. The thermoplastic resin 7 contains 6. The whiskers herein are single-crystal microfibers made of potassium titanate, silicon carbide, silicon nitride, polyoxymethylene, or the like. When using whiskers, one type, for example, a whisker made of potassium titanate may be used alone, or two or more types may be used in combination, such as a whisker of potassium titanate and a whisker of silicon carbide. However, it is more preferable to use a whisker made of an inorganic material such as potassium titanate or silicon nitride, which has a coefficient of linear expansion close to that of the glass constituting the optical fiber. An example of a whisker is the white needle-like crystals of potassium hexatitanate (K 2 O.6TiO 2 ).These are fine particles with an average fiber length of 10 to 20 μm and a fiber diameter of 0.2 to 0.5 μm. The compatibility is also extremely good. The content ratio of whiskers 6 in the reinforcing coating layer 5 is preferably 2 to 60% by weight in order to achieve a sufficient reduction in the coefficient of linear expansion.
More preferably 10 to 40% by weight. Regarding the formation of the reinforcing coating layer 5, the whiskers 6 are kneaded into the thermoplastic resin 7 in advance and made into pellets, and this is coated on the outer peripheral surface of the buffer layer 2 to prevent scattering of whiskers. This is preferable from the viewpoint of uniformity and environmental hygiene. Furthermore, although the present invention is not limited to oriented the whiskers 6 in the length direction of the optical fiber 1, oriented the whiskers in the length direction leads to a further reduction in the linear expansion coefficient of the reinforcing coating layer. It is preferable in this respect. A state in which the whiskers 6 are oriented in the longitudinal direction of the optical fiber 1 can be easily obtained by extruding and coating the resin containing the whiskers at a drawdown ratio of about 10 times using an extruder. The thermoplastic resin 7 is made of polyester resin, polyamide resin, polyacetal resin, etc., and is appropriately selected based on required properties in addition to linear expansion coefficient. Next, a specific example of the present invention will be described in comparison with one that does not contain whiskers. <Specific example 1> Coating the optical fiber with a buffer layer and reducing the outer diameter to 0.4 mmφ
Thermoplastic nylon 12 containing 5% by weight of potassium hexatitanate whiskers was laminated on the outer peripheral surface of the buffer layer, and this was extruded and drawn down at a stretching rate of 20 times to form a reinforced coating layer, and the outer diameter was 0.9. A reinforced coated optical fiber of mmφ was obtained. This will be referred to as "optical fiber 1". <Specific example 2> The whisker content of potassium hexatitanate
A reinforced coated optical fiber of the same size was obtained in exactly the same manner as in Example 1, except that the amount was 10% by weight. This will be referred to as "optical fiber 2". <Comparative Example> A reinforced coated optical fiber having the same dimensions was obtained in exactly the same manner as in <Specific Example 1> except that the above-mentioned whiskers were not contained in nylon 12. This will be referred to as the "comparison optical fiber." The results of examining the above optical fibers 1 to 3 in terms of tensile strength, molding shrinkage rate, linear expansion coefficient, and molding state are shown in the following table.

【表】 この表からわかるように、樹脂にウイスカーを
含有させたものは、含有させないものに比べて、
引張強度が大きく、更に成形収縮率、線膨張係数
が小さい。また樹脂表面に荒れはなく、樹脂とウ
イスカーとの間にクラツクの原因となる界面剥離
も認められなかつた。 ここで本発明の強化被覆光フアイバを、長尺の
ガラス繊維を縦添えして用いた従来の強化被覆光
フアイバと、ガラスの微小繊維をウイスカーの代
りに用いた強化光フアイバとに対して比較して説
明すると、長尺のガラス繊維を縦添えして用いた
ものでは、長尺のガラス繊維の強化被覆層におけ
る含有割合が60〜80%でなければ線膨張係数の低
い強化被覆層を得られなかつたが、本発明におい
ては、ガラス繊維の縦添えをせずに強化被覆層の
線膨張係数を低下できるということから従来のも
のと比較して可塑性に富み、また強化被覆層の肉
厚を小さくすることもできる。 またガラスの微小繊維を用いた場合では強化被
覆層の表面荒れが問題となり、特に薄肉化のとき
大きな問題となつてくるが、ウイスカーはガラス
の微小繊維に比べてサイズが1/50〜1/100と小さ
いため成形時の表面荒れはない。また引張強度を
比較してみてもウイスカーを用いた強化被覆層の
方が大きな引張強度を得ることができる。 また本発明では、第4図に示すように光フアイ
バ1の外周面に緩衝層2を形成したものを2つ並
べ、これらの外周面に前記強化被覆層5を形成し
て2本の光フアイバ1を一体化するようにしても
よく、或いはまた第5図に示すように2本の光フ
アイバ1の外周面に、これらが一体化するよう緩
衝層2を形成し、この緩衝層2の外周面に前記強
化被覆層5を形成するようにしてもよい。 発明の効果 以上のように本発明によれば強化被覆層に単結
晶の微小繊維であるウイスカーを用いているた
め、強化被覆層の線膨張係数が小さくなつて温度
変化による光フアイバのストレスを抑えることが
でき、伝送損失増を防ぐことができる。しかも強
化被覆層を薄肉構造としながら、引張り強度が大
きく、可撓性に富み、優れた機械的特性を有する
強化被覆光フアイバが得られる。更にウイスカー
を含有する樹脂は熱可塑性樹脂であるため、従来
熱硬化性樹脂を用いていたためにその硬化時間が
ネツクとなつて問題とされていたライン速度を大
幅に上げることができ、高い能率で生産すること
ができる。そして本発明の強化被覆光フアイバの
製造については、一般的な押し出し法により行う
ことができるから、樹脂を熱硬化させるための加
熱装置、長尺なガラス繊維の供給装置、及び熱硬
化性樹脂の液槽等が不要になるため簡易な装置で
製造を行うことができる。
[Table] As can be seen from this table, resins containing whiskers have a lower
It has high tensile strength, and low mold shrinkage and linear expansion coefficient. Further, there was no roughness on the resin surface, and no interfacial peeling that would cause cracks between the resin and whiskers was observed. Here, the reinforced coated optical fiber of the present invention is compared with a conventional reinforced coated optical fiber using longitudinally attached long glass fibers and a reinforced coated optical fiber using glass microfibers instead of whiskers. To explain this, when long glass fibers are used vertically, unless the content of long glass fibers in the reinforcing coating layer is 60 to 80%, a reinforcing coating layer with a low coefficient of linear expansion cannot be obtained. However, in the present invention, the linear expansion coefficient of the reinforcing coating layer can be lowered without vertically attaching glass fibers, so it has more plasticity than the conventional one, and the thickness of the reinforcing coating layer can be reduced. It is also possible to make it smaller. In addition, when glass microfibers are used, surface roughness of the reinforcing coating layer becomes a problem, which becomes a major problem especially when thinning the wall. Whiskers are 1/50 to 1/2 the size of glass microfibers. 100, so there is no surface roughness during molding. Also, when comparing the tensile strengths, the reinforcing coating layer using whiskers has a higher tensile strength. Further, in the present invention, as shown in FIG. 4, two optical fibers 1 each having a buffer layer 2 formed on their outer peripheral surfaces are arranged, and the reinforcing coating layer 5 is formed on their outer peripheral surfaces to form two optical fibers. Alternatively, as shown in FIG. 5, a buffer layer 2 may be formed on the outer peripheral surface of two optical fibers 1 so that they are integrated, and the outer periphery of this buffer layer The reinforcing coating layer 5 may be formed on the surface. Effects of the Invention As described above, according to the present invention, since whiskers, which are single-crystal microfibers, are used in the reinforcing coating layer, the linear expansion coefficient of the reinforcing coating layer is reduced, suppressing stress on the optical fiber due to temperature changes. This can prevent an increase in transmission loss. Furthermore, it is possible to obtain a reinforced coated optical fiber having a high tensile strength, high flexibility, and excellent mechanical properties even though the reinforced coating layer has a thin structure. Furthermore, since the whisker-containing resin is a thermoplastic resin, it is possible to significantly increase the line speed, which was previously a problem due to the curing time caused by the use of thermosetting resins, resulting in high efficiency. can be produced. Since the reinforced coated optical fiber of the present invention can be manufactured by a general extrusion method, it requires a heating device for thermosetting the resin, a feeding device for long glass fibers, and a thermosetting resin. Since a liquid tank or the like is not required, manufacturing can be carried out using simple equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図は、各々従来の強化被覆光フア
イバを示す正面図、第3図は本発明の一実施例に
係る強化被覆光フアイバを示す正面図、第4図,
第5図は、各々本発明の他の実施例に係る強化被
覆光フアイバを示す正面図である。 1……光フアイバ、2……緩衝層、5……強化
被覆層、6……ウイスカー、7……熱可塑性樹
脂。
1 and 2 are front views showing a conventional reinforced coated optical fiber, FIG. 3 is a front view showing a reinforced coated optical fiber according to an embodiment of the present invention, and FIGS.
FIG. 5 is a front view of reinforced coated optical fibers according to other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Optical fiber, 2... Buffer layer, 5... Reinforced coating layer, 6... Whisker, 7... Thermoplastic resin.

Claims (1)

【特許請求の範囲】 1 緩衝層により被覆された光フアイバと、前記
緩衝層の外周面に形成した強化被覆層とより成
り、この強化被覆層は、多数のウイスカーを含有
した熱可塑性樹脂により構成されることを特徴と
する強化被覆光フアイバ。 2 前記強化被覆層におけるウイスカーの含有割
合は、2〜60重量%であることを特徴とする特許
請求の範囲第1項記載の強化被覆光フアイバ。
[Scope of Claims] 1 Consists of an optical fiber covered with a buffer layer and a reinforced coating layer formed on the outer peripheral surface of the buffer layer, and this reinforced coating layer is made of a thermoplastic resin containing a large number of whiskers. A reinforced coated optical fiber characterized in that: 2. The reinforced coated optical fiber according to claim 1, wherein the whisker content in the reinforced coat layer is 2 to 60% by weight.
JP59103971A 1984-05-23 1984-05-23 Reinforcing coated optical fiber Granted JPS60247609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103971A JPS60247609A (en) 1984-05-23 1984-05-23 Reinforcing coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103971A JPS60247609A (en) 1984-05-23 1984-05-23 Reinforcing coated optical fiber

Publications (2)

Publication Number Publication Date
JPS60247609A JPS60247609A (en) 1985-12-07
JPH0410043B2 true JPH0410043B2 (en) 1992-02-24

Family

ID=14368225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103971A Granted JPS60247609A (en) 1984-05-23 1984-05-23 Reinforcing coated optical fiber

Country Status (1)

Country Link
JP (1) JPS60247609A (en)

Also Published As

Publication number Publication date
JPS60247609A (en) 1985-12-07

Similar Documents

Publication Publication Date Title
AU596122B2 (en) Coated optical fiber
US4778722A (en) Reinforcing fibers and composite materials reinforced with said fibers
JPS626211A (en) Reinforcing member made of resin with high orientation property and its manufacture
JP4803499B2 (en) Bar and bar forming apparatus
JPH0410043B2 (en)
CN111070736B (en) Method for improving bending performance of carbon fiber wound metal mixing pipe
CN111856681A (en) Enhanced layer-stranded optical cable and preparation process thereof
KR910001804B1 (en) Coated optical fiber
JPH046003Y2 (en)
JPH042165B2 (en)
JP2000109274A (en) Core of fiberglass reinforced plastics
JPH09159070A (en) Glass fiver reinforced plastic pipe for communication antenna cover
JPS61127641A (en) Production of optical fiber cable
JPH0452021Y2 (en)
JPS61198113A (en) Optical fiber core
JPS6014208A (en) Coated optical fiber
JPS6322284B2 (en)
JPS63152786A (en) Fiber reinforced thermoplastic resin pipe and manufacture thereof
JPS5882205A (en) Reinforced optical fiber
JP2572914B2 (en) Manufacturing method of fishing rod
JPH08258165A (en) Tubular body and its manufacture
JPH04253008A (en) High-density optical fiber cable
JPH0885164A (en) Mandrel for manufacturing hose
JP2531127Y2 (en) Eaves gutter
JP2004004637A (en) Tension material for cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees