JPH0410028B2 - - Google Patents

Info

Publication number
JPH0410028B2
JPH0410028B2 JP145383A JP145383A JPH0410028B2 JP H0410028 B2 JPH0410028 B2 JP H0410028B2 JP 145383 A JP145383 A JP 145383A JP 145383 A JP145383 A JP 145383A JP H0410028 B2 JPH0410028 B2 JP H0410028B2
Authority
JP
Japan
Prior art keywords
voltage
relay terminal
test
impulse
application phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP145383A
Other languages
Japanese (ja)
Other versions
JPS59126266A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP145383A priority Critical patent/JPS59126266A/en
Publication of JPS59126266A publication Critical patent/JPS59126266A/en
Publication of JPH0410028B2 publication Critical patent/JPH0410028B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 この発明は工場における電器のインパルス電圧
試験の際の省力と作業の安全とを図つたインパル
ス電圧印加相切換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impulse voltage application phase switching device that saves labor and improves work safety during impulse voltage testing of electrical appliances in a factory.

たとえば変圧器のような誘導電器には接地雷イ
ンパルス耐電圧試験(以後、接地試験と称す)と
非接地雷インパルス耐電圧試験(以後、非接地試
験と称す)が課せられる。
For example, induction electrical equipment such as transformers are subjected to a grounding mine impulse withstand voltage test (hereinafter referred to as an earthing test) and an ungrounded mine impulse withstanding voltage test (hereinafter referred to as an ungrounded test).

接地試験に当つては供試電器の電圧を印加すべ
き相の導体に接続された印加相端子とインパルス
電圧発生器とを接続する。そして他相の端子は直
接接地する。これらの準備が終つた後に、まず電
圧印加端子に規定のさい断波電圧波高値を有する
全波電圧を供試端子と大地との間に設けたさい断
ギヤツプで閃絡させ、波尾においてさい断された
雷インパルス電圧を印加する。次いで、できるだ
け速やかに規定の全波電圧波高値を有する雷イン
パルス電圧を印加する。
In the earthing test, the impulse voltage generator is connected to the application phase terminal connected to the conductor of the phase to which the voltage of the electrical equipment under test is to be applied. The terminals of other phases are directly grounded. After these preparations are completed, first, a full wave voltage having a specified sever voltage peak value is applied to the voltage application terminal through a sever gap set between the terminal under test and the ground, and a sever voltage is applied at the wave tail. Apply a disconnected lightning impulse voltage. Next, a lightning impulse voltage having a specified full-wave voltage peak value is applied as quickly as possible.

非接地試験は供試電器の電圧を印加する相の端
子を全部一括してインパルス電圧発生器に接続
し、中性点はその使用状態に応じて開放のまま、
又は放電ギヤツプを付け、あるいは適当な抵抗を
介して接地する等適宜処置される。
For ungrounded tests, connect all phase terminals of the electrical equipment under test to which voltage is applied to an impulse voltage generator, and leave the neutral point open depending on the usage condition.
Alternatively, appropriate measures may be taken, such as attaching a discharge gap or grounding through a suitable resistor.

また、試験における異常の有無の検出は、規定
波高値の電圧で行なう本試験の前に、低減電圧
(規定値の50〜75%の電圧)で、本試験と同様な
接続回路で予備試験を行ない、その際印加電圧お
よび接地電流の波形を撮影しておき、それに本試
験時形を比較して変化がなければ異状なしとす
る。
In addition, to detect the presence or absence of an abnormality in the test, before performing the main test at the specified peak voltage, conduct a preliminary test at a reduced voltage (voltage 50 to 75% of the specified value) using the same connection circuit as the main test. At that time, take pictures of the waveforms of the applied voltage and ground current, compare them with the waveforms during the actual test, and if there is no change, it is assumed that there is no abnormality.

第1図は従来のこの種試験装置の斜視図で、イ
ンパルス電圧発生器1で発生した電圧をさい断ギ
ヤツプ3を備えたさい断波装置4が接続された電
圧測定用分圧器2を介し、供試器5の印加相ブツ
シング6に順次印加される。7はインパルス制御
室であり8は測定室である。これらの装置による
試験に際しては、まず試験相を選択する。そのた
めの結線の切り換えは分圧器2とブツシング6の
頂部とを接続する高所作業になるため、従来はク
レーン9より吊り下げられたゴンドラ10を使用
する作業となつた。そのため作業効率が非常に悪
く、また危険でもあつた。その他、試験の準備と
してさい断波装置4および分圧器2を適当な位置
に分散配置し、それら相互間を結線する。さい断
ギヤツプ3の調整は電圧が異なればもちろん、同
一電圧でも相ごとに試験の都度スケールを当てて
そのギヤツプ長を調整したり、又はギヤツプを除
去したりすることを繰り返すため多くの時間を要
し、その間試験場の有効活用ができない欠点があ
つた。
FIG. 1 is a perspective view of a conventional test device of this kind, in which the voltage generated by an impulse voltage generator 1 is passed through a voltage measuring voltage divider 2 to which a severing device 4 equipped with a severing gap 3 is connected. The voltage is sequentially applied to the application phase bushings 6 of the test device 5. 7 is an impulse control room and 8 is a measurement room. When testing with these devices, first select the test phase. Switching the wiring for this purpose requires work at a high place to connect the voltage divider 2 and the top of the bushing 6, so conventionally the work has been done using a gondola 10 suspended from a crane 9. As a result, work efficiency was extremely low and it was also dangerous. In addition, in preparation for the test, the wave breaker 4 and the voltage divider 2 are distributed at appropriate locations, and wires are connected between them. Adjustment of the cutting gap 3 requires a lot of time, not only when the voltage is different, but also when the voltage is the same, because it is necessary to apply a scale to each phase and adjust the gap length or remove the gap each time the test is performed. However, there was a drawback that the testing site could not be used effectively.

第2図は従来における三相3巻線変圧器の雷イ
ンパルス試験のフローチヤートで前記クレーン作
業及びさい断ギヤツプ調整の繰り返しが明かであ
る。先づ機器の配置、結線等の準備を行つた後一
次側U相の試験から始める例を示す。最初の試験
は接地試験で低減電圧を印加し、さい断ギヤツプ
を調整しさい断波を印加する。次いで前記さい断
ギヤツプを除去するかギヤツプ長を非常に拡げて
その間では絶対に閃絡しないよようにしてから全
波電圧を印加し、故障判定に合格すればクレーン
作業により印加相を次の相に切り換え、上述と同
様な試験を順次繰り返す。上記の一次側巻線の接
地試験が完了したらクレーン作業により結線を換
えて非接地試験に移る。そのため低減電圧を印加
した後全波印加試験を行ない故障判定合格ならば
クレーン作業により例えば二次側へ結線を換え、
前記の諸試験を繰り返す。すなわち、三相器につ
いては一巻線(例えば一次巻線)につき少なくと
もさい断ギヤツプの調整が6回、クレーン作業が
9回行なわれるのでこれらの作業を簡略化又は省
略し得れば非常な利益となる。
FIG. 2 is a flowchart of a conventional lightning impulse test for a three-phase three-winding transformer, and the repetition of the crane operation and the cutting gap adjustment is clear. An example will be shown in which the test begins with the primary side U-phase test after making preparations such as equipment placement and wiring. The first test is a ground test in which a reduced voltage is applied, the cutting gap is adjusted, and a cutting wave is applied. Next, remove the above-mentioned cutting gap or greatly widen the gap length to ensure that there will be no flashover between them, then apply full-wave voltage, and if the failure judgment passes, the applied phase can be transferred to the next phase by crane operation. , and repeat the same tests as above in sequence. Once the above grounding test of the primary winding is completed, use a crane to change the wire connections and move on to the non-grounding test. Therefore, after applying a reduced voltage, a full wave application test is performed, and if the failure judgment is passed, the wiring is changed to the secondary side by crane work, for example.
Repeat the above tests. In other words, for a three-phase converter, each winding (for example, the primary winding) requires at least six cutting gap adjustments and nine crane operations, so it would be a great benefit if these operations could be simplified or omitted. becomes.

この発明は上述従来の欠点を除いて、高所作業
の廃止及び試験の合理化、省力化、試験場の有効
活用を図つたものである。この目的はインパルス
試験装置のインパルス電圧印加相切換装置を次の
ように構成することにより達成された。すなわ
ち、インパルス電圧発生器で発生した電圧をさい
断ギヤツプを有するさい断波装置が接続された電
圧測定用分圧器を介し、供試器の電圧印加相端子
に順次印加する装置において、前記供試器の印加
相端子にケーブルを介して接続される中継端子な
らびに該中継端子の接地を遠方より操作可能とし
た接地機構を収容し一直線上に並置された複数個
の絶縁筒と、前記分圧器ならびにさい断波装置を
搭載し遠方操作により前記絶縁筒の並置された方
向に平行して移動可能な台車と、前記さい断波装
置が接続された前記分圧器の高圧側電極から延出
され自由端が前記中継端子と接触可能に設けられ
た接続バーとを備えるように構成する。
This invention eliminates the above-mentioned drawbacks of the prior art and aims to eliminate work at heights, rationalize testing, save labor, and effectively utilize testing sites. This objective was achieved by configuring the impulse voltage application phase switching device of the impulse testing device as follows. That is, in a device that sequentially applies the voltage generated by an impulse voltage generator to the voltage application phase terminals of the device under test via a voltage measuring voltage divider to which a breaker device having a breaker gap is connected, A plurality of insulating cylinders arranged in a straight line and housing a relay terminal connected to the voltage application phase terminal of the power supply via a cable and a grounding mechanism that allows the grounding of the relay terminal to be operated from a distance, the voltage divider and a cart equipped with a severing device and movable in parallel to the direction in which the insulating cylinders are arranged by remote control; and a free end extending from the high-voltage side electrode of the voltage divider to which the slicing device is connected. is configured to include a connection bar that is provided so as to be able to come into contact with the relay terminal.

第3図及び第4図はそれぞれこの発明実施例の
全体の関係を示す斜視図及び詳細斜視図である。
これはインパルス電圧発生器1で発生した電圧を
電圧測定用分圧器21と絶縁筒22,23,24
に設けられた中継端子のいずれか一つを介して供
試器5のブツシング6のいずれか一つに印加する
装置である。また前記分圧器21には前記絶縁筒
22,23,24の中継端子25に接続される接
続バー26の他に該バーに接続されたさい断ギヤ
ツプ27の高圧側電極27aが設けられ、また該
電極に対応した接地側電極27bを備え、該電極
を移動させて前記高圧側電極27aとの間隔を調
整し得る調整装置28を備えたさい断波装置29
が設けられている。
3 and 4 are a perspective view and a detailed perspective view, respectively, showing the overall relationship of the embodiment of the present invention.
This converts the voltage generated by the impulse voltage generator 1 into the voltage measuring voltage divider 21 and the insulating tubes 22, 23, 24.
This is a device that applies voltage to any one of the bushings 6 of the test device 5 through any one of the relay terminals provided in the test device 5. Further, the voltage divider 21 is provided with a high-voltage side electrode 27a of a severing gap 27 connected to the connecting bar 26, which is connected to the relay terminal 25 of the insulating cylinders 22, 23, and 24. A wave breaking device 29 equipped with a ground side electrode 27b corresponding to the electrode, and an adjustment device 28 capable of moving the electrode to adjust the distance between it and the high voltage side electrode 27a.
is provided.

絶縁筒22,23,24の頂部の中継端子25
には該中継端子に一端が接続され他端が印加すべ
きブツシング6に接続されるケーブル30を巻回
収納するリール31が設けられている。該リール
は力を加えることによりケーブル30の他端を絶
縁筒外に引き出し得、または前記力を減ずること
により前記引き出されたケーブルを自動的に巻き
戻すものである。各絶縁筒22,23,24には
中継端子25の電位を大地電位とするか、又は大
地電位より浮かすかのいずれかとする接地機構3
2が備えられる。この接地機構は、中継端子に取
り付けられたケーブルと絶縁線とを連結し巻取り
巻戻しができるようにされている。前記絶縁筒2
2,23,24と間隔をおいて相対し、前記絶縁
筒の並ぶ方向に移動し得、かつ分圧器21とさい
断波装置29とを載置した台車33が設けられ、
該台車は軌道34上を移動し得る。そしてその移
動によつて絶縁筒の中継端子25に接続されたケ
ーブル30を介して印加相のブツシング6をイン
パルス電圧発生器に接続することができる。中継
端子25とブツシング6とを接続するには、ケー
ブル30の先端に設けられたたとえば環状体に引
張り棒の先端のかぎ型金具を掛けてケーブル30
の先端部を引き下ろし、ブツシング6に設けられ
た同様構造のリールから引き下ろされたケーブル
の先端に結んで離せば、前記両ケーブルは中継端
子25とブツシング6との間に強く張ることがで
きる。
Relay terminal 25 at the top of insulating cylinders 22, 23, 24
is provided with a reel 31 for winding and storing a cable 30 which has one end connected to the relay terminal and the other end connected to the bushing 6 to which voltage is to be applied. The reel can pull out the other end of the cable 30 out of the insulating tube by applying force, or automatically rewinds the pulled-out cable by reducing the force. Each insulating cylinder 22, 23, 24 has a grounding mechanism 3 that sets the potential of the relay terminal 25 to the ground potential or floats it above the ground potential.
2 is provided. This grounding mechanism connects the cable attached to the relay terminal and the insulated wire, and is capable of winding and unwinding. The insulating tube 2
2, 23, and 24 at intervals, a cart 33 is provided that can move in the direction in which the insulating tubes are lined up, and on which the voltage divider 21 and the wave breaking device 29 are mounted;
The truck may move on a track 34. By this movement, the bushing 6 of the application phase can be connected to the impulse voltage generator via the cable 30 connected to the relay terminal 25 of the insulating tube. To connect the relay terminal 25 and the bushing 6, a hook-shaped fitting at the end of a pull rod is hooked onto, for example, an annular body provided at the end of the cable 30.
The two cables can be tightly stretched between the relay terminal 25 and the bushing 6 by pulling down the tip of the cable and tying it to the tip of a cable pulled down from a reel of a similar structure provided on the bushing 6.

調整装置28、接地機構32及び台車33には
それぞれを所定に動作させることができる図示し
ない電動機と制御装置を設け遠方より操作する。
このように構成することによりさい断ギヤツプ2
7の調整及び電圧印加相の切り換え、ならびに接
地を遠方より自動で行なうことができる。
The adjustment device 28, the grounding mechanism 32, and the trolley 33 are provided with an electric motor and a control device (not shown) capable of operating each of them in a predetermined manner, and are operated from a distance.
With this configuration, the cutting gap 2
7 adjustment, voltage application phase switching, and grounding can be performed automatically from a distance.

また試験に際してはインパルス電圧発生器と分
圧器21間の距離が変るので両者間を結ぶリード
線36は伸縮し得るものが必要であるがそれは前
記ケーブルリール31と同様なものをインパルス
電圧発生器1か分圧器21のいずれかに設けるこ
とによつても容易になし得る。
Also, during the test, the distance between the impulse voltage generator and the voltage divider 21 changes, so the lead wire 36 connecting them needs to be expandable. This can also be easily achieved by providing either the voltage divider 21 or the voltage divider 21.

以上の説明で明らかなように、電圧印加相の切
り換えに際し、ブツシングを接地したり、又は大
地電位より浮かして試験電圧を印加するための作
業を従来のようにゴンドラによる高所作業とせず
に済み作業能率が上り、また安全の点からも利点
がある。試験に際してのさい断ギヤツプ調整を簡
単にすることができ、接地機構、台車にそれぞれ
を所定に動作させる制御装置を設け、遠方より操
作し得るのでより一層便利となる。
As is clear from the above explanation, when switching the voltage application phase, the work of grounding the bushing or floating it above the ground potential and applying the test voltage can be done without having to work at high places using a gondola as in the past. This increases work efficiency and also has advantages in terms of safety. The cutting gap can be easily adjusted during testing, and the grounding mechanism and the trolley are equipped with control devices that operate each of them in a predetermined manner, making it even more convenient because they can be operated from a distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のインパルス電圧試験装置の斜視
図、第2図は従来の三相3巻線変圧器雷インパル
ス電圧試験のフローチヤート、第3図はこの発明
によるインパルス電圧試験装置の斜視図、第4図
は第3図のうちインパルス電圧印加相切換装置部
の詳細図である。 1……インパルス電圧発生器、5……供試器
(変圧器、)、6……ブツシング、21……電圧測
定用分圧器、22,23,24……絶縁筒、26
……接続バー、25……中継端子、27……さい
断ギヤツプ、27a……高圧側電極、27b……
接地側電極、28……調整装置、29……さい断
波装置、30……ケーブル、31……ケーブルリ
ール、32……接地機構、33……台車。
FIG. 1 is a perspective view of a conventional impulse voltage testing device, FIG. 2 is a flowchart of a conventional three-phase three-winding transformer lightning impulse voltage test, and FIG. 3 is a perspective view of an impulse voltage testing device according to the present invention. FIG. 4 is a detailed diagram of the impulse voltage application phase switching device section in FIG. 3. DESCRIPTION OF SYMBOLS 1... Impulse voltage generator, 5... Equipment under test (transformer,), 6... Bushing, 21... Voltage measurement voltage divider, 22, 23, 24... Insulating cylinder, 26
... Connection bar, 25 ... Relay terminal, 27 ... Cutting gap, 27a ... High voltage side electrode, 27b ...
Ground side electrode, 28... Adjustment device, 29... Wave breaking device, 30... Cable, 31... Cable reel, 32... Grounding mechanism, 33... Trolley.

Claims (1)

【特許請求の範囲】 1 インパルス電圧発生器で発生した電圧をさい
断ギヤツプを有するさい断波装置が接続された電
圧測定用分圧器を介して供試器の電圧印加相端子
に順次印加する装置において、前記供試器の電圧
印加相端子にケーブルを介して接続される中継端
子ならびに該中継端子の接地を遠方より操作可能
とした接地機構を収容し一直線上に並置された複
数個の絶縁筒と、前記分圧器ならびにさい断波装
置を搭載し遠方操作により前記絶縁筒の並置され
た方向に平行して移動可能な台車と、前記さい断
波装置が接続された前記分圧器の高圧側電極から
延出され自由端が前記中継端子と接触可能に設け
られた接続バーとを備えたことを特徴とするイン
パルス電圧印加相切換装置。 2 特許請求の範囲第1項記載の装置において、
中継端子に一端が接続され他端が印加すべきブツ
シングに接続される自動巻き取りケーブルリール
に巻回されたケーブルを備えたことを特徴とする
インパルス電圧印加相切換装置。
[Claims] 1. A device that sequentially applies the voltage generated by an impulse voltage generator to voltage application phase terminals of a device under test via a voltage measuring voltage divider connected to a severing device having a severing gap. , a plurality of insulating cylinders arranged in a straight line accommodate a relay terminal connected to the voltage application phase terminal of the device under test via a cable and a grounding mechanism that allows the grounding of the relay terminal to be operated from a distance. a cart equipped with the voltage divider and the severing device and movable in parallel to the direction in which the insulating tubes are arranged by remote operation; and a high-voltage side electrode of the voltage divider to which the slicing device is connected. An impulse voltage application phase switching device comprising: a connection bar extending from the terminal and having a free end contactable with the relay terminal. 2. In the device according to claim 1,
An impulse voltage application phase switching device comprising a cable wound around an automatic winding cable reel, one end of which is connected to a relay terminal and the other end of which is connected to a bushing to which voltage is to be applied.
JP145383A 1983-01-08 1983-01-08 Apparatus for charging over impulse voltage applying phase Granted JPS59126266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP145383A JPS59126266A (en) 1983-01-08 1983-01-08 Apparatus for charging over impulse voltage applying phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP145383A JPS59126266A (en) 1983-01-08 1983-01-08 Apparatus for charging over impulse voltage applying phase

Publications (2)

Publication Number Publication Date
JPS59126266A JPS59126266A (en) 1984-07-20
JPH0410028B2 true JPH0410028B2 (en) 1992-02-24

Family

ID=11501861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP145383A Granted JPS59126266A (en) 1983-01-08 1983-01-08 Apparatus for charging over impulse voltage applying phase

Country Status (1)

Country Link
JP (1) JPS59126266A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012114B4 (en) * 2009-03-06 2016-04-21 Maschinenfabrik Reinhausen Gmbh Controlled cut-off spark gap and electrical system with a controlled cut-off spark gap
DE202009013613U1 (en) * 2009-03-06 2010-04-22 Maschinenfabrik Reinhausen Gmbh Device for system components of a high-voltage pulse testing system
CN105866640B (en) * 2016-04-29 2019-08-27 南方电网科学研究院有限责任公司 System and method for measuring characteristic parameters of streamer-pilot conversion process
CN105866559B (en) * 2016-04-29 2019-10-18 南方电网科学研究院有限责任公司 System and method for measuring intensity of long air gap lightning stroke discharge electric field
CN105866641B (en) * 2016-04-29 2019-05-31 南方电网科学研究院有限责任公司 System and method for measuring long air gap lightning stroke discharge electronic temperature

Also Published As

Publication number Publication date
JPS59126266A (en) 1984-07-20

Similar Documents

Publication Publication Date Title
CN201408939Y (en) Electrified arc extinguishing tool for dismounting and jointing cable tail wires with 10 kV
JPH0410028B2 (en)
CN116430165A (en) Power grid fault detection device and method
CN113517084A (en) Direct-current high-voltage blocker type cable and direct-current high-voltage trial delivery test system
CN105301298B (en) Separated time fixture for power transformer automatic detection
CN212114724U (en) 10kV fixed AC ice melting device
CN211292995U (en) Power transformer high-voltage lead switching device
RU2823605C1 (en) Device for safety disconnection of cable-rope of tethered unmanned aerial vehicle
CN103018631A (en) System for 10kV fault line detection
CN207851213U (en) Low current fault wire selection system based on piezoelectric ceramics voltage acquisition
JPS6056269A (en) Ac withstand voltage testing method of transformer
JPS5920111B2 (en) On-site withstand voltage test method for gas-sealed electrical equipment
CN206400166U (en) Cable fitting more than a kind of double cable OPGW of transformer station's single pole
CN217212991U (en) Modular insulating fixed stay and cubical switchboard withstand voltage test connecting device
CN113514669B (en) Wiring method for traction substation equipment detection
JPH01138908A (en) Gas insulation switching controller
CN220188571U (en) Three-phase shorting clip
SU587548A1 (en) High-voltage mains
JPH05312891A (en) Withstand voltage test method for cubicle type substation
SU767883A1 (en) Outdoor switching arrangement
JP2527777Y2 (en) Gas insulated switchgear
JPS59121814A (en) Bushing type current transformer
JP2633658B2 (en) Load voltage regulator
JPS6154183B2 (en)
JPS60233574A (en) Accident point detecting device of single core metallic sheath cable