JPH0399884A - Information recording medium - Google Patents
Information recording mediumInfo
- Publication number
- JPH0399884A JPH0399884A JP1235818A JP23581889A JPH0399884A JP H0399884 A JPH0399884 A JP H0399884A JP 1235818 A JP1235818 A JP 1235818A JP 23581889 A JP23581889 A JP 23581889A JP H0399884 A JPH0399884 A JP H0399884A
- Authority
- JP
- Japan
- Prior art keywords
- transition point
- recording
- crystallizing
- recording medium
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007704 transition Effects 0.000 claims abstract description 36
- 150000001875 compounds Chemical class 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 7
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 4
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical class [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000002425 crystallisation Methods 0.000 claims description 37
- 230000008025 crystallization Effects 0.000 claims description 37
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract description 5
- 229910052798 chalcogen Inorganic materials 0.000 abstract description 3
- 150000001787 chalcogens Chemical class 0.000 abstract description 3
- 229910005900 GeTe Inorganic materials 0.000 abstract description 2
- 150000004770 chalcogenides Chemical class 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 9
- 239000011241 protective layer Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は情報記録媒体、特に、相変化型情報記録媒体で
あって、光ビームを照射することにより記録層材料に相
変化を生じさせ、情報の記録、再生を行い、且つ書き換
えが可能である情報記録媒体に関するものであり、光メ
モリー関連機器に応用される。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an information recording medium, particularly a phase change type information recording medium, in which a phase change is caused in a recording layer material by irradiation with a light beam, It relates to an information recording medium on which information can be recorded, reproduced, and rewritable, and is applied to optical memory-related equipment.
[従来の技術]
電磁波特にレーザービームの照射による情報の記録・再
生および消去可能な光メモリー媒体の一つとして、結晶
−非晶質相聞或いは結晶−結晶相間の転移を利用する、
いわゆる相変化型記録媒体が良く知られている。特に光
磁気メモリーでは困難な単一ビームによるオーバーライ
ドが可能であり、ドライブ側の光学系もより単純である
ことなどから最近その研究開発が活発になっている。そ
の代表的な材料例として、USP 3,530,441
に開示されているようにGe−Te、Ge−Te−8S
Ge−Se−8s Ge−5e’−Sb、Ge−As−
8e、In−Te。[Prior Art] As one of the optical memory media that can record, reproduce, and erase information by irradiation with electromagnetic waves, especially laser beams, it utilizes transition between crystal-amorphous phase or crystal-crystal phase.
So-called phase change recording media are well known. In particular, it is possible to override with a single beam, which is difficult to do with magneto-optical memory, and the optical system on the drive side is also simpler, so research and development on this topic has been active recently. As a typical material example, USP 3,530,441
Ge-Te, Ge-Te-8S as disclosed in
Ge-Se-8s Ge-5e'-Sb, Ge-As-
8e, In-Te.
5e−Te、5e−As等所謂カルコゲン系合金材料が
挙げられる。又、安定性、高速結晶化等の向上を目的に
Ge−Te系にAu(特開昭6l−219892) 、
S n及びAu(特開昭81−270190)Pd(特
開昭82−19490)等を添加した材料の提案や、記
録/消去の繰返し性能向上を目的に、Ge−Te−5e
−Sbの組成比を特定した材料(特開昭62−7343
8)の提案等もなされている。Examples include so-called chalcogen alloy materials such as 5e-Te and 5e-As. In addition, for the purpose of improving stability, high-speed crystallization, etc., Au (Japanese Patent Application Laid-Open No. 61-219892) is added to the Ge-Te system.
Ge-Te-5e was proposed for the purpose of proposing materials added with Sn and Au (Japanese Unexamined Patent Publication No. 81-270190), Pd (Japanese Unexamined Patent Publication No. 82-19490), etc., and improving the repeatability of recording/erasing.
- Material with specified composition ratio of Sb (Japanese Unexamined Patent Publication No. 62-7343
8) has also been proposed.
しかしながら、そのいずれもが相変化型書換え可能光メ
モリー媒体として要求される諸特性のすべてを満足し得
るものとはいえない。However, none of these can satisfy all of the characteristics required of a phase change type rewritable optical memory medium.
特にコントラスト、記録感度、消去感度の向上、オーバ
ーライド時の消し残りによる消去比低下の防止、並びに
記録部、未記録部の長寿命化が解決すべき最重要課題と
なっている。In particular, the most important issues to be solved are improving contrast, recording sensitivity, and erasing sensitivity, preventing a decrease in erasing ratio due to unerased parts during overwriting, and extending the lifespan of recorded and unrecorded areas.
コントラスト向上の妨げとなっている最大の要因は、単
一の記録材では自らその記録材独自の最大コントラスト
比が定まってしまうことである。記録膜後方に反射層を
設ける方法も考案されているが、結晶−非結晶転移を用
いる場合には透過率の高い非結晶時の反射率を高めてし
まうため物質によっては逆にコントラスト比が低下して
しまう。また記録感度、消去感度という相反する性質の
同時向上は単一相の記録材では極めて困難である。多く
の場合は添加物、不純物を加えるなどの手段を施しアモ
ルファス化、又は結晶化を促進させる。しかしこの手法
は記録膜中に含まれる相の数を増やすため相分離、凝集
、それに伴う酸化などを引き起す原因となる。これらは
記録材料としての特性を著しく悪化させ、寿命の大幅な
劣化につながる。The biggest factor hindering improvement in contrast is that a single recording material has its own maximum contrast ratio. A method of providing a reflective layer behind the recording film has been devised, but when using a crystal-amorphous transition, the contrast ratio decreases depending on the material because the reflectance in the amorphous state, which has high transmittance, increases. Resulting in. Furthermore, it is extremely difficult to simultaneously improve the contradictory properties of recording sensitivity and erasing sensitivity with a single-phase recording material. In many cases, additives or impurities are added to promote amorphization or crystallization. However, this method increases the number of phases contained in the recording film, which causes phase separation, aggregation, and accompanying oxidation. These significantly deteriorate the properties as a recording material, leading to a significant deterioration in the service life.
[発明が解決しようとする課題]
本発明は、従来の情報記録媒体に比較してコントラスト
、および記録・消去感度が高く、記録部、未記録部の寿
命の長い情報記録媒体を提供しようとするものである。[Problems to be Solved by the Invention] The present invention seeks to provide an information recording medium that has higher contrast and recording/erasing sensitivity than conventional information recording media, and has a longer lifespan for recorded and unrecorded areas. It is something.
[課題を解決するための手段]
上記課題を解決するための本発明の基本的な構成は下記
のとおりである。[Means for Solving the Problems] The basic configuration of the present invention for solving the above problems is as follows.
情報記録媒体の記録層に、単独で安定な化合物・合金お
よび元素の中から少なくとも二種以上の成分を同時に含
み、それらのうち結晶化転移点が最も低い成分の結晶化
転移点が、その成分が単独で存在する場合よりも30℃
以上上昇している状態にある情報記録媒体。The recording layer of an information recording medium simultaneously contains at least two or more components selected from independently stable compounds, alloys, and elements, and the crystallization transition point of the component with the lowest crystallization transition point among them is the component. 30°C than when present alone
Information recording media in a state where the increase is above.
低い結晶化転移点を持つものの結晶化転移上昇の理由は
様々に考えられるが、大きく分けると以下の2つのよう
になると思われる。There are various possible reasons for the increase in crystallization transition of materials with low crystallization transition points, but they can be broadly classified into the following two reasons.
まず、記録層を構成する母相(マトリックス)中に低い
結晶化転移点をもつ物質がバルクとしての性質を保つこ
とのできる大きさ以下の微粒子(マイクロクラスター)
またはそれに近い状態で閉じ込められている場合である
。この場合には結晶格子を形成する場合とアモルファス
状態のままで存在する場合とでのエネルギー差があまり
大きくないため本来の結晶化転移点になっても結晶化は
起こらない。より高温で母相が結晶化する際の原子の移
動にともないマイクロクラスター同志の結合がおこり、
その結果、よりエネルギー的に安定な結晶へと転移する
。First, substances with a low crystallization transition point in the parent phase (matrix) that make up the recording layer are called fine particles (microclusters) that are smaller than the size that allows them to maintain their bulk properties.
Or if they are confined in similar conditions. In this case, the energy difference between forming a crystal lattice and remaining in an amorphous state is not very large, so crystallization does not occur even if the original crystallization transition point is reached. As atoms move when the matrix crystallizes at higher temperatures, microclusters bond together,
As a result, it transforms into a more energetically stable crystal.
つぎに記録相中の化合物、合金、または元素のマイクロ
クラスター同志がその一部分で化学的に結合している場
合である。この場合も、より結晶化転移点の高い母相の
再配列に伴って異種のマイクロクラスター間(結晶化転
移点の高い物質のマイクロクラスターと低い物質のマイ
クロクラスター間)の結合が解消されるまで、低い結晶
化転移点をもっつ物質の結晶化は抑制される。いずれに
しても高い結晶化転移点を持つ物質が低い結晶化転移点
を持つ物質の結晶化転移点上昇に大きく影響をおよぼし
ていると考えられる。Next, there is a case where microclusters of compounds, alloys, or elements in the recording phase are chemically bonded at a portion thereof. In this case as well, until the bond between different types of microclusters (between microclusters of a material with a high crystallization transition point and microclusters of a material with a low crystallization transition point) is dissolved due to the rearrangement of the parent phase with a higher crystallization transition point. , crystallization of substances with low crystallization transition points is suppressed. In any case, it is thought that a substance with a high crystallization transition point greatly influences the increase in the crystallization transition point of a substance with a low crystallization transition point.
高い結晶化転移点を持つものとして使用することが可能
なものとしては、Ag1nTe2に代表されるIb−I
I[b−Vlbz、IIb −rVb −vb2系、カ
ルコパイライト型化合物、Ge−3b−Te系化合物及
び合金、In−3b−Te系化合物及び合金、Ib−V
b−VTb2系化合物等が挙げられる。低い結晶化転移
点を持つものとして使用することが可能なものとしては
T e s S e等のカルコゲン系元素、GeTe等
のカルコゲナイド等が挙げられる。Ib-I represented by Ag1nTe2 has a high crystallization transition point.
I[b-Vlbz, IIb-rVb-vb2 series, chalcopyrite-type compounds, Ge-3b-Te-based compounds and alloys, In-3b-Te-based compounds and alloys, Ib-V
Examples include b-VTb2 type compounds. Examples of materials that can be used as having a low crystallization transition point include chalcogen-based elements such as T e S S e and chalcogenides such as GeTe.
本発明の前記情報記録媒体は、必要に応じて耐熱保護層
、表面保護層、反射層、接着層等の補助層を設けてもよ
い。The information recording medium of the present invention may be provided with auxiliary layers such as a heat-resistant protective layer, a surface protective layer, a reflective layer, and an adhesive layer, if necessary.
本発明で用いられる基板は通常、ガラス、セラミックス
あるいは樹脂であり、樹脂基板が成型性、コスト等の点
で好適である。樹脂の代表例としてはポリカーボネート
樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂
、アクリロニトリル−スチレン共重合体樹脂、ポリエチ
レン樹脂、ポリプロピレン樹脂、シリコン系樹脂、フッ
素系樹脂、ABS樹脂、ウレタン樹脂等が挙げられるが
、加工性、光学特性等の点でポリカーボネート樹脂、ア
クリル系樹脂が好ましい。又、基板の形状としてはディ
スク状、カード状あるいはシート状であっても良い。The substrate used in the present invention is usually made of glass, ceramics, or resin, and resin substrates are preferable in terms of moldability, cost, and the like. Typical examples of resins include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile-styrene copolymer resin, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin, urethane resin, etc. Polycarbonate resins and acrylic resins are preferred in terms of processability, optical properties, and the like. Further, the shape of the substrate may be a disk, a card, or a sheet.
耐熱性保護層の材料としては、5iO1Si02、Zn
O,5nOz、Al2O3、Ti0z、In203、M
g0SZ r02等の金属酸化物、S i 3N4、A
IN、TiN。Materials for the heat-resistant protective layer include 5iO1Si02, Zn
O, 5nOz, Al2O3, Ti0z, In203, M
Metal oxides such as g0SZ r02, S i 3N4, A
IN, TiN.
BN、ZrN等の窒化物、S iCST a CsB4
C,WC,TiC,ZrC等の炭化物やダイヤモンド
状カーボン或いはそれらの混合物が挙げられる。又、必
要に応じて不純物を含んでいてもよい。このような耐熱
性保護層は各種気相成膜法、例えば、真空蒸告法、スパ
ッタ法、プラズマCVD法、光CVD法、イオンブレー
ティング法、電子ビーム蒸着法等によって形成できる。Nitride such as BN, ZrN, SiCST a CsB4
Examples include carbides such as C, WC, TiC, and ZrC, diamond-like carbon, and mixtures thereof. Further, it may contain impurities as necessary. Such a heat-resistant protective layer can be formed by various vapor phase deposition methods, such as vacuum evaporation, sputtering, plasma CVD, photoCVD, ion blating, and electron beam evaporation.
耐熱性保護層の膜厚としては200〜5000 X、好
適には500〜3000人とするのが良い。200人よ
り薄くなると耐熱性保護層としての機能を果たさなくな
り、逆に5000人より厚くなると、感度低下を来した
り、界面剥離を生じ易くなる。The thickness of the heat-resistant protective layer is preferably 200 to 5000×, preferably 500 to 3000×. When the thickness is less than 200, it does not function as a heat-resistant protective layer, and on the other hand, when it is thicker than 5,000, sensitivity decreases and interfacial peeling is likely to occur.
又、必要に応じて保護層を多層化することもできる。Moreover, the protective layer can be multi-layered if necessary.
相変化材料は単層のみならず、多層膜であっても良い。The phase change material may be not only a single layer but also a multilayer film.
記録層の膜厚としては200〜10.000X、好適に
は500〜3000人、最適1こは700〜2000人
である。The thickness of the recording layer is 200 to 10,000 times, preferably 500 to 3,000 times, and most preferably 700 to 2,000 times.
記録、再生及び消去に用いる電磁波としてはレーザー光
、電子線、X線、紫外線、可視光線、赤外線、マイ゛ク
ロ波等、種々のものが採用可能であるが、ドライブに取
付ける際、小型でコンパクトな半導体レーザーのビーム
が最適である。Various types of electromagnetic waves can be used for recording, reproducing, and erasing, such as laser light, electron beams, X-rays, ultraviolet rays, visible light, infrared rays, and microwaves. A solid semiconductor laser beam is optimal.
以下、実際に作製した記録媒体の特性を挙げ、本発明を
説明する。これらの実施例は本発明を何ら制限するもの
ではない。Hereinafter, the present invention will be explained by citing the characteristics of the recording medium that was actually produced. These examples do not limit the invention in any way.
[実施例]
結晶化転移点が低い物質としてTe(テルル)を選択し
、Ag1nTez中に分散させた。記録膜作製にはrf
マグネトロンスパッタ法を用い、ターゲットにはAg2
TeとIn2Te3のモル比が48対52になるように
調整したAg−In−Te三元系ターゲットを使用した
。[Example] Te (tellurium) was selected as a substance with a low crystallization transition point and dispersed in Ag1nTez. RF for recording film production
Using magnetron sputtering method, the target is Ag2.
An Ag-In-Te ternary system target was used in which the molar ratio of Te and In2Te3 was adjusted to be 48:52.
膜厚は7800 Xにした。製膜直後の膜はX線回折に
よりアモルファス状態である。The film thickness was 7800X. The film immediately after film formation is in an amorphous state as determined by X-ray diffraction.
第1図に300℃で1時間熱処理を行ったものX線回折
パターンを示す。カルコパイライト構造のAg1nTe
2 (c−AgInTez)とジンクブレンド構造のA
g1nTe2 (z −AglnTez)とTeによ
るピークが観測される。FIG. 1 shows the X-ray diffraction pattern after heat treatment at 300° C. for 1 hour. Ag1nTe with chalcopyrite structure
2 (c-AgInTez) and zinc blend structure A
Peaks due to g1nTe2 (z -AglnTez) and Te are observed.
第2図は示差走査熱量計(DSC)で測定した結晶化過
程である。測定は窒素雰囲気中で行い、昇温速度はlO
℃/1nである。200℃均傍に連続した3つの発熱ピ
ークがみられる。FIG. 2 shows the crystallization process measured with a differential scanning calorimeter (DSC). Measurements were performed in a nitrogen atmosphere, and the temperature increase rate was 1O
℃/1n. Three consecutive exothermic peaks are observed at approximately 200°C.
この温度以下で熱処理を行ってもX線回折で結晶性のピ
ークが見られないことから、この3つの発熱ピークは3
つの相(C−AgInTe2、z−AglnTe2.T
e)の結晶化に対応していると言える。すなわち、この
膜中でのTeの結晶化ピークはTe単独の場合(Tc=
=80℃)に比べて100℃以上も上昇している。しか
も結晶化後も酸化されることなく安定に膜中で存在して
いる。420℃付近に吸熱ピークがあり、これはTeの
融点に対応している。Since no crystalline peaks are observed in X-ray diffraction even if heat treatment is performed below this temperature, these three exothermic peaks are
two phases (C-AgInTe2, z-AglnTe2.T
It can be said that this corresponds to the crystallization of e). That is, the crystallization peak of Te in this film is when Te alone (Tc=
This is an increase of more than 100°C compared to the previous year (=80°C). Moreover, even after crystallization, it remains stably in the film without being oxidized. There is an endothermic peak around 420°C, which corresponds to the melting point of Te.
これらのことは低融点(s、p、:450℃)であるが
結晶化転移点が低すぎる(Tc中80℃)ため単独では
使用不可能なTeを結晶化転移点の高いAg1nTez
とともに層中に混在させることにより低融点を保ったま
ま結晶化転移点を200℃付近まで100℃以上も上昇
させることができることを示している。These are because Te, which has a low melting point (s, p,: 450°C) but cannot be used alone because the crystallization transition point is too low (80°C in Tc), can be replaced with Ag1nTez, which has a high crystallization transition point.
It has been shown that by mixing these in the layer, it is possible to raise the crystallization transition point by more than 100°C to around 200°C while maintaining a low melting point.
このような膜を記録層として用いることにより高感度記
録(アモルファス化)かつ記録寿命の長い記録媒体を得
ることができる。さらに、母相となっているAg1nT
ezの結晶構造は正方品であり構造が単純で等方的なた
め消去(結晶化)速度向上の点でも有利である。By using such a film as a recording layer, a recording medium with high sensitivity recording (amorphous) and long recording life can be obtained. Furthermore, Ag1nT, which is the matrix
The crystal structure of ez is a tetragonal one, which is simple and isotropic, which is advantageous in terms of improving the erasure (crystallization) speed.
[発明の効果]
以上説明したような本発明の効果を要約すると下記のと
おりである。[Effects of the Invention] The effects of the present invention as explained above are summarized as follows.
低結晶化点を持つ物質をマトリックス中で安定に存在さ
せることにより長寿命化が実現できる。Longer life can be achieved by stably existing a substance with a low crystallization point in the matrix.
記録感度のよい低結晶化点を有する物質の相転移を安定
に利用できるので記録感度、消去感度が向上する。Since the phase transition of a substance having a low crystallization point with good recording sensitivity can be stably utilized, recording sensitivity and erasing sensitivity are improved.
相変化をおこす相の数が増すためコントラストの高い記
録ができる。Since the number of phases that undergo phase change increases, recording with high contrast can be achieved.
第1図は本発明の実施例1の記録膜のX線回折パターン
、
第2図は上記記録膜の結晶化過程の示差走査熱量分析の
結果を示すグラフである。FIG. 1 is an X-ray diffraction pattern of the recording film of Example 1 of the present invention, and FIG. 2 is a graph showing the results of differential scanning calorimetry of the crystallization process of the recording film.
Claims (4)
合金および元素の中から少なくとも二種以上の成分を同
時に含み、それらのうち結晶化転移点が最も低い成分の
結晶化転移点が、その成分が単独で存在する場合よりも
30℃以上上昇している状態にあることを特徴とする情
報記録媒体。(1) A compound that is stable alone in the recording layer of an information recording medium,
Contains at least two or more components selected from alloys and elements at the same time, and the crystallization transition point of the component with the lowest crystallization transition point among them is 30°C or more higher than when the component exists alone. An information recording medium characterized by being in a state where
を特徴とする請求項(1)記載の情報記録媒体。(2) The information recording medium according to claim (1), wherein the component having the lowest crystallization transition point is tellurium.
コパイライト構造を有することを特徴とする請求項(1
)または(2)に記載の情報記録媒体。(3) Claim (1) characterized in that at least one of the components having a high crystallization transition point has a chalcopyrite structure.
) or the information recording medium described in (2).
以外の成分が逐次的に結晶化することを特徴とする請求
項(1)乃至(3)の何れかに記載の情報記録媒体。(4) The information record according to any one of claims (1) to (3), characterized in that during crystallization, a component having the lowest crystallization transition point and other components are successively crystallized. Medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235818A JP3009899B2 (en) | 1989-09-13 | 1989-09-13 | Information recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235818A JP3009899B2 (en) | 1989-09-13 | 1989-09-13 | Information recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0399884A true JPH0399884A (en) | 1991-04-25 |
JP3009899B2 JP3009899B2 (en) | 2000-02-14 |
Family
ID=16991711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1235818A Expired - Fee Related JP3009899B2 (en) | 1989-09-13 | 1989-09-13 | Information recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3009899B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470628A (en) * | 1993-12-13 | 1995-11-28 | Tdk Corporation | Optical recording medium |
US6022605A (en) * | 1997-02-28 | 2000-02-08 | Kao Corporation | Optical recording medium and recording/erasing method therefor |
EP1162612A2 (en) * | 2000-06-06 | 2001-12-12 | Fuji Photo Film Co., Ltd. | Optical recording medium and optical recording method |
WO2005026462A1 (en) * | 2003-09-12 | 2005-03-24 | Nippon Steel Corporation | Magnetic shield panel |
CN105420528A (en) * | 2016-01-12 | 2016-03-23 | 武汉理工大学 | Method for preparing high-performance AgInTe2 thermoelectric material |
-
1989
- 1989-09-13 JP JP1235818A patent/JP3009899B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470628A (en) * | 1993-12-13 | 1995-11-28 | Tdk Corporation | Optical recording medium |
US6022605A (en) * | 1997-02-28 | 2000-02-08 | Kao Corporation | Optical recording medium and recording/erasing method therefor |
EP1162612A2 (en) * | 2000-06-06 | 2001-12-12 | Fuji Photo Film Co., Ltd. | Optical recording medium and optical recording method |
EP1162612A3 (en) * | 2000-06-06 | 2008-09-24 | FUJIFILM Corporation | Optical recording medium and optical recording method |
WO2005026462A1 (en) * | 2003-09-12 | 2005-03-24 | Nippon Steel Corporation | Magnetic shield panel |
CN105420528A (en) * | 2016-01-12 | 2016-03-23 | 武汉理工大学 | Method for preparing high-performance AgInTe2 thermoelectric material |
Also Published As
Publication number | Publication date |
---|---|
JP3009899B2 (en) | 2000-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0834874B1 (en) | Optical information recording medium and optical recording method | |
US6280684B1 (en) | Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of fabricating the optical recording medium | |
EP1107244B1 (en) | Optical recording medium and production method of the same | |
EP1396851A2 (en) | Optical information recording medium | |
US5627012A (en) | Method for preparing phase change optical recording medium | |
TW407271B (en) | Rewritable optical information medium | |
US20010033991A1 (en) | Optical recording medium and use of such optical recording medium | |
EP0888616A1 (en) | Optical recording medium with phase-change recording layer | |
EP0951717B1 (en) | REWRITABLE OPTICAL INFORMATION MEDIUM OF A Ge-Sb-Te ALLOY | |
JPH0399884A (en) | Information recording medium | |
JP3693125B2 (en) | Optical recording medium | |
JPH10112028A (en) | Optical information recording medium | |
WO1997050084A1 (en) | Reversible optical information medium | |
JPH03240590A (en) | Data recording medium | |
JPH05151619A (en) | Optical information recording medium and recording method | |
JPH08249725A (en) | Optical information recording medium and material for heat resistant protective layer used in its production | |
JP3999003B2 (en) | Manufacturing method of optical recording medium | |
EP1002314A2 (en) | Rewritable optical information medium | |
JP2004174868A (en) | Phase transition-type optical recording medium | |
EP0392179B1 (en) | Optical recording medium | |
JPH04267192A (en) | Optical information recording medium | |
US6735165B1 (en) | Rewritable optical information medium | |
US6753059B2 (en) | Optical recording material and optical recording medium using same | |
JPH05345478A (en) | Optical data recording medium and production thereof | |
JPH0428587A (en) | Optical information record medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |