JPH0399793A - Al-zn-mg series filler material having excellent stress corrosion cracking resistance - Google Patents

Al-zn-mg series filler material having excellent stress corrosion cracking resistance

Info

Publication number
JPH0399793A
JPH0399793A JP23748689A JP23748689A JPH0399793A JP H0399793 A JPH0399793 A JP H0399793A JP 23748689 A JP23748689 A JP 23748689A JP 23748689 A JP23748689 A JP 23748689A JP H0399793 A JPH0399793 A JP H0399793A
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
cracking resistance
filler material
excellent stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23748689A
Other languages
Japanese (ja)
Inventor
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23748689A priority Critical patent/JPH0399793A/en
Publication of JPH0399793A publication Critical patent/JPH0399793A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain welded part having excellent stress corrosion cracking resistance by constituting Al-Zn-Mg series filler material of the specific wt.% of Mg, Ti, Zn, B, Ag, Zr and the balance Al with impurities. CONSTITUTION:The Al-Zn-Mg series filler material is constituted of 3.0 - 8.0% Mg, 0.05 - 0.3% Ti, 0.5 - 3.0% Zn, 0.001 - 0.2% B, 0.02 - 1.0% Ag, 0.05 - 0.3% Zr by wt.% and the balance Al with impurities. In the filler material, further, one or more kinds among 0.03 - 0.3% Ni, 0.2 - 0.8% Si. 0.05 - 0.5% Mn and 0.05 - 0.2% Cr are contained. By this method, the mechanical property and weldability in a welded joint can be secured.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐応力腐食割れ性が優れたA Q −Zn−M
g系溶加材に関する。 (従来の技術及び解決しようとする課題)Al、−Zロ
ーMg系及びAl−Mg系のアルミニウム合金は、その
機械的性質や溶接性が優れるため、鉄道車輌や種々の陸
」二構造物に非常に広範囲に、且つ多量に使用されてい
る。 しかし、この種の高力アルミニウム合金は、高強度にな
るに従って応力腐食割れが発生し易くなる。前述のAl
−Zn−Mg系及びAl−Mg系合金も例外ではなく、
強度を高めるためにM4.Zn含有量を多くすると耐応
力腐食割れ性が劣化するという問題がある。 一方、溶接構造は、軽量構造物には理想的な接合法であ
るため、多くの使用実績を持っているが、更に高性能化
、大型化を進めるに当り溶接部の応力腐食割れ性の改善
は常に求められてきている。 更に、近年になって構造物の大型化及び設n]・施工の
合理化のために、厚肉材料の使用が増加しており、溶接
部に発生する応力が大きく、溶接部の耐応力腐食割れ性
の改善の要求は益々強くなっている。 この点、高力アルミニウム合金用の溶加材としては、従
来より5356(Al−Mg系)が用いられていたが、
溶接部の耐応力腐食割れ性が十分でなく、耐応力腐食割
れ性の優れた溶接部が得られる溶加材の開発が望まれて
いるのが実情である。 本発明は、か)る要請に応えるへくなされたものであっ
て、高力アルミニ911合金の溶接部の耐応力腐食割れ
性を改善し得る新規な溶加材を提供することを目的とす
るものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、従来の溶加材の
場合に溶接部の耐応力腐食割れ性が劣化する原因を究明
し、その対応策について鋭意研究を重ねた結果、ここに
新規なAl−Zn−Mg系溶加材を見い出し、本発明を
なしたものである。 すなわち、本発明は、Mg: 3 、 O〜8.0%、
Ti:0.05〜0.3%、Zn:0.5−3.0%、
B:0.001〜0.2%、Ag:0.02− 1.0
%及びZr:0.05〜0.3%を含有し、必要に応じ
−C更に、Ni:0.03〜0.3%、Sj:0.2〜
0.8%、3 Mn:0.05−0.5%及びCr:0.05−0.2
%のうちの1種又は2種以」二を含有し、残部がAl及
び不純物からなることを特徴とする耐応力腐食割れ性が
優れたAM−Zn−Mg系溶加材を要旨とするものであ
る。 以下に本発明を更に詳述する。 (作用) 本発明によるへ〇−Zn−Mg系溶加材は、溶接性を損
なうことなく耐応力腐食割れ性を向上させるものである
。 一般に、母材部は製造工程において熱処理等により応力
腐食割れ防止処理が施されているが、溶接部は、この効
果がなくなるため、溶加月による耐応力腐食割れ性の向
上を図る必要がある。 応力腐食割れは結晶粒界に発生する一種の脆性破壊であ
り、その発生初期の原因は、結晶粒界と粒内の電位差に
よる粒界の優先溶出に起因しており、Mg、Zn含有量
を多くすると、強度は高くなるが、それに伴って粒界と
粒内の電位差が大きくなるので応力腐食割れが発生し易
くなるものであ− る。 これを防止する方策について本発明者が研究した結果、
電位の高いAg、 Ni、Siを適量で含有させると、
これが溶接部の結晶粒界に優先的に析出し、粒内と粒界
の電位差を小さくする結果、粒界の優先溶出を防止でき
、溶接部の耐応力腐食割れ性を向上させる効果があるこ
とが判明した。 次に本発明における化学成分の限定理由について説明す
る。 Mg: Mgは強度を向上させるために最も重要な元素であるが
、含有量が3.0%未満では十分な強度を得ることがで
きず、また8、0%を超えて含有させると耐応力腐食割
れ性が低下する。よって、Mg量は3.0〜8.0%の
範囲とする。 zn : ZnはMgと同様に強度を向上させるために重要な元素
であるが、含有量が0.5%未満では十分な強度を得る
ことができず、また3、0%を超えて含有させると耐応
力腐食割れ性及び溶接性が低下する。よって、Zn量は
0.5〜3.0%の範囲とする。 T1、 B : T」、Bは溶接部の組織を微細化し、粒界にかかる凝固
収縮時の応力を分散させる結果、溶接割れ性を向上させ
る効果がある。しかし、Tjが0゜05%未満及びBが
0.001%未満では溶接割れ性向上に効果がなく、ま
たTj:0.3%及びB:0.2%を超えて含有させる
と巨大化合物が発生する可能性がある。よって、Ti量
は0.05〜0゜3%、B量は0.001〜0.2%の
範囲とする。 Ag: Agは耐応力腐食割れ性を著しく向上させる元素である
が、含有量が0.02%未満てはこの効果がなく、また
]−1O%を超えて含有させると溶接性が劣る。よって
、Ag量は0.02〜1.0%の範囲とする。 Zr: Zrは組織安定化のために必要な元素であるが、含有量
が0.05%未満ではこの効果がなく、また0、3%を
超えて含有させると巨大化合物が発生する可能性がある
。よって、Zr量は0.05〜0.3%の範囲とする。 以上の各元素を必須成分とするが、必要に応して、以下
に示す元素の1種又は2種以−1−を適量で添加するこ
とができる。 N1、Si: Ni、SjはA、gと同様、耐応力腐食割れ性を著しく
向」ニさせるが、Ni:0.03%未満及びSj:0.
2%未満ではこの効果がなく、またNi:0.3%及び
Sj:0.8%を超えて含有させると溶接性が劣化する
。よって、Ni量は0.03〜0.3%、Sj量は0.
2〜0.8%の範囲とする。 Mn、Cr: Mn、CrはZrと同様、組織安定化に効果があるが、
Mn:0.05%未満及びCr:0.05%未満ではそ
の効果がなく、またMn:0.5%及びCr:0.05
%を超えて含有させると巨大化合物が発生する可能性が
ある。よって、M n fkは0.05〜0.5%、C
r量は0.05−0.2%の範囲とする。 なお、本発明の溶加材は、Al−Zn−Mg系及びAl
−Mg系合金を一例とする種々のアルミニウム合金の溶
接に適用でき、またその溶接法並びに条件も特に制限さ
れるものではない。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有するアルミニウム合金を通常
の方法にて溶解、鋳造し、15 mmφの押し出し棒と
した後、最終的に1.6mmφのMIG用溶加材とした
。 次いで、これらの溶加材を用い、母材として代表的なA
、Q−Zn−Mg系合金である7NO]、−T6材(板
厚6 mm)を用いて、電流280A、電圧30vの条
件で突合せMI(に接試験を行い、溶接継手の機械的性
質、溶接性並びに溶接部の削応力腐食割れ性を調へた。 それらの結果を第2表に示す。 なお、溶接性は、スリッ1へ型割れ試験において、厚さ
6mmのスリット型溶接割れ試験片を用い、次式 割れ率(%)=(割れ長さ/溶接全長)x 100によ
り割れ率を求めて評価した。 溶接部の耐応力腐食割れ性は、第」−図に示す要領によ
り、試験片(板材1.溶接ビード2)を、ピン5を有す
る支持金具3で3点支持し、15kg/lllm2の応
力を加え、100℃の3g/]−NaCQ36g/IC
ry3−30g/]、に2Cr207混合水溶液に浸漬
し、割れを観察して評価した。 第2表より、本発明例の溶加材はいずれも、従来の53
56溶加材に比べて耐応力腐食割れ性が著しく優れてお
り、溶接継手の強度及び溶接性も良好であることがわか
る。 また、比較例は、溶接継手の強度、溶接性及び耐応力腐
食割れ性のいずれかが劣っている。
(Industrial Application Field) The present invention provides AQ-Zn-M with excellent stress corrosion cracking resistance.
Regarding g-based filler metals. (Prior art and problems to be solved) Al, -Z low Mg and Al-Mg based aluminum alloys have excellent mechanical properties and weldability, so they are used in railway vehicles and various land-based structures. It is used very widely and in large quantities. However, as the strength of this type of high-strength aluminum alloy increases, stress corrosion cracking becomes more likely to occur. The aforementioned Al
-Zn-Mg and Al-Mg alloys are no exception.
M4. to increase strength. When the Zn content is increased, there is a problem that stress corrosion cracking resistance deteriorates. On the other hand, welded structures are an ideal joining method for lightweight structures and have a long track record of use, but as we move toward higher performance and larger sizes, we need to improve the stress corrosion cracking resistance of welded parts. is always in demand. Furthermore, in recent years, due to the increase in the size of structures and the rationalization of construction, the use of thicker materials has increased, and the stress generated in welds is large, resulting in stress corrosion cracking in welds. The demand for sexual improvement is becoming stronger and stronger. In this regard, 5356 (Al-Mg type) has traditionally been used as a filler metal for high-strength aluminum alloys, but
The actual situation is that the stress corrosion cracking resistance of welded parts is insufficient, and there is a desire for the development of filler metals that can provide welded parts with excellent stress corrosion cracking resistance. The present invention has been made to meet the above requirements, and an object of the present invention is to provide a novel filler metal that can improve the stress corrosion cracking resistance of welded parts of high-strength aluminum 911 alloy. It is something. (Means for Solving the Problem) In order to achieve the above object, the present inventor investigated the cause of the deterioration of the stress corrosion cracking resistance of the welded part in the case of conventional filler metals, and worked diligently to find countermeasures. As a result of repeated research, we discovered a new Al-Zn-Mg filler material and accomplished the present invention. That is, the present invention provides Mg: 3, O ~ 8.0%,
Ti: 0.05-0.3%, Zn: 0.5-3.0%,
B: 0.001-0.2%, Ag: 0.02-1.0
% and Zr: 0.05 to 0.3%, and optionally -C, Ni: 0.03 to 0.3%, Sj: 0.2 to
0.8%, 3Mn: 0.05-0.5% and Cr: 0.05-0.2
AM-Zn-Mg filler metal with excellent stress corrosion cracking resistance, characterized in that it contains one or more of the following % and the remainder consists of Al and impurities. It is. The present invention will be explained in further detail below. (Function) The 〇-Zn-Mg filler metal according to the present invention improves stress corrosion cracking resistance without impairing weldability. Generally, the base metal is treated to prevent stress corrosion cracking through heat treatment during the manufacturing process, but this effect disappears in welded parts, so it is necessary to improve the stress corrosion cracking resistance due to welding. . Stress corrosion cracking is a type of brittle fracture that occurs at grain boundaries.The initial cause of stress corrosion cracking is due to preferential elution of grain boundaries due to potential differences between grain boundaries and within grains. When the amount is increased, the strength increases, but the potential difference between the grain boundaries and inside the grains increases, making stress corrosion cracking more likely to occur. As a result of the inventor's research on measures to prevent this,
When Ag, Ni, and Si, which have high potential, are included in appropriate amounts,
This preferentially precipitates at the grain boundaries of the weld zone and reduces the potential difference between the inside of the grain and the grain boundary, thereby preventing preferential elution of the grain boundaries and improving the stress corrosion cracking resistance of the weld zone. There was found. Next, the reasons for limiting the chemical components in the present invention will be explained. Mg: Mg is the most important element for improving strength, but if the content is less than 3.0%, sufficient strength cannot be obtained, and if the content exceeds 8.0%, the stress resistance Corrosion cracking resistance decreases. Therefore, the Mg amount is set in the range of 3.0 to 8.0%. zn: Like Mg, Zn is an important element for improving strength, but if the content is less than 0.5%, sufficient strength cannot be obtained, and if the content exceeds 3.0%. and stress corrosion cracking resistance and weldability decrease. Therefore, the amount of Zn is set in the range of 0.5 to 3.0%. T1, B: T'', B refines the structure of the weld zone and disperses the stress during solidification shrinkage applied to the grain boundaries, resulting in an effect of improving weld cracking resistance. However, if Tj is less than 0°05% and B is less than 0.001%, there is no effect on improving weld cracking properties, and if Tj: 0.3% and B: 0.2% are contained, macrocompounds are formed. This may occur. Therefore, the amount of Ti is in the range of 0.05 to 0.3%, and the amount of B is in the range of 0.001 to 0.2%. Ag: Ag is an element that significantly improves stress corrosion cracking resistance, but if the content is less than 0.02%, this effect is absent, and if the content exceeds -10%, weldability is poor. Therefore, the amount of Ag is in the range of 0.02 to 1.0%. Zr: Zr is an element necessary for stabilizing the structure, but if the content is less than 0.05%, it will not have this effect, and if the content exceeds 0.3%, there is a possibility that giant compounds will occur. be. Therefore, the amount of Zr is set in the range of 0.05 to 0.3%. Each of the above elements is an essential component, but if necessary, one or more of the following elements may be added in appropriate amounts. N1, Si: Like A and g, Ni and Sj significantly improve stress corrosion cracking resistance, but Ni: less than 0.03% and Sj: 0.
If the content is less than 2%, this effect is not achieved, and if the content exceeds Ni: 0.3% and Sj: 0.8%, weldability deteriorates. Therefore, the amount of Ni is 0.03 to 0.3%, and the amount of Sj is 0.
The range is 2% to 0.8%. Mn, Cr: Like Zr, Mn and Cr are effective in stabilizing the structure, but
Mn: less than 0.05% and Cr: less than 0.05% have no effect, and Mn: 0.5% and Cr: 0.05%
If the content exceeds %, giant compounds may be generated. Therefore, M n fk is 0.05-0.5%, C
The amount of r is in the range of 0.05-0.2%. Note that the filler metal of the present invention is Al-Zn-Mg-based and Al
The present invention can be applied to welding various aluminum alloys, including -Mg alloys, and the welding method and conditions are not particularly limited. Next, examples of the present invention will be shown. (Example) An aluminum alloy having the chemical components shown in Table 1 was melted and cast in a conventional manner to form an extruded rod of 15 mm in diameter, and finally a filler material for MIG of 1.6 mm in diameter. Next, using these filler metals, a typical A
, Q-Zn-Mg alloy 7NO], -T6 material (plate thickness 6 mm) was used to conduct a butt MI (connection test) under the conditions of a current of 280 A and a voltage of 30 V to determine the mechanical properties of the welded joint. Weldability and cutting stress corrosion cracking resistance of the welded part were investigated. The results are shown in Table 2. Weldability was measured using a 6 mm thick slit type weld cracking test piece in the slit type cracking test. The cracking rate was determined and evaluated using the following formula: cracking rate (%) = (crack length/total weld length) x 100. The stress corrosion cracking resistance of the weld was tested according to the procedure shown in Fig. A piece (plate material 1. weld bead 2) is supported at three points by support metal fittings 3 having pins 5, and a stress of 15 kg/llm2 is applied to it, and 3 g/]-NaCQ36 g/IC at 100°C.
ry3-30g/] was immersed in a 2Cr207 mixed aqueous solution, and cracks were observed and evaluated. From Table 2, it can be seen that the filler metals of the present invention examples are all 53% of the conventional filler metal.
It can be seen that the stress corrosion cracking resistance is significantly superior to that of No. 56 filler metal, and the strength and weldability of the welded joint are also good. In addition, the comparative example is inferior in any of the strength, weldability, and stress corrosion cracking resistance of the welded joint.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明の溶加材を用いるならば、
溶接継手の機械的性質及び溶接性をグ1保しつつ、優れ
た耐応力腐食割れ性を有する溶接部を得ることができる
(Effect of the invention) As detailed above, if the filler material of the present invention is used,
It is possible to obtain a welded joint having excellent stress corrosion cracking resistance while maintaining the mechanical properties and weldability of the welded joint.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接部の耐応力腐食割れ性の試験法を示ず概略
説明図である。 ] ・板材、2 ・溶接ビード、3 支持金具、4・・
割れ発生部、5 ピン。
FIG. 1 is a schematic explanatory diagram without showing a test method for stress corrosion cracking resistance of a welded part. ] ・Plate material, 2 ・Welding bead, 3 Supporting metal fittings, 4...
Cracking area, 5 pins.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Mg:3.0〜8.0
%、Ti:0.05〜0.3%、Zn:0.5〜3.0
%、B:0.001〜0.2%、Ag:0.02〜1.
0%及びZr:0.05〜0.3%を含有し、残部がA
l及び不純物からなることを特徴とする耐応力腐食割れ
性が優れたAl−Zn−Mg系溶加材。
(1) In weight% (the same applies hereinafter), Mg: 3.0 to 8.0
%, Ti: 0.05-0.3%, Zn: 0.5-3.0
%, B: 0.001-0.2%, Ag: 0.02-1.
0% and Zr: 0.05 to 0.3%, with the remainder being A.
1. An Al-Zn-Mg filler material having excellent stress corrosion cracking resistance, characterized by comprising L and impurities.
(2)前記添加材が、更にNi:0.03〜0.3%、
Si:0.2〜0.8%、Mn:0.05〜0.5%及
びCr:0.05〜0.2%のうちの1種又は2種以上
を含有している請求項1に記載のAl−Zn−Mg系溶
加材。
(2) The additive further includes Ni: 0.03 to 0.3%,
Claim 1 containing one or more of Si: 0.2 to 0.8%, Mn: 0.05 to 0.5%, and Cr: 0.05 to 0.2%. The Al-Zn-Mg filler material described above.
JP23748689A 1989-09-13 1989-09-13 Al-zn-mg series filler material having excellent stress corrosion cracking resistance Pending JPH0399793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23748689A JPH0399793A (en) 1989-09-13 1989-09-13 Al-zn-mg series filler material having excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23748689A JPH0399793A (en) 1989-09-13 1989-09-13 Al-zn-mg series filler material having excellent stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPH0399793A true JPH0399793A (en) 1991-04-24

Family

ID=17016038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23748689A Pending JPH0399793A (en) 1989-09-13 1989-09-13 Al-zn-mg series filler material having excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH0399793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371125C (en) * 2004-05-27 2008-02-27 兰州理工大学 Soldering agent and method for laser welding Al-Mg alloy plates with different thicknesses
WO2010060021A1 (en) * 2008-11-24 2010-05-27 Alcoa Inc. Fusion weldable filler alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371125C (en) * 2004-05-27 2008-02-27 兰州理工大学 Soldering agent and method for laser welding Al-Mg alloy plates with different thicknesses
WO2010060021A1 (en) * 2008-11-24 2010-05-27 Alcoa Inc. Fusion weldable filler alloys

Similar Documents

Publication Publication Date Title
JPH09104940A (en) High-tensile aluminum-copper base alloy excellent in weldability
JPH09279284A (en) High-tensile aluminum alloy for welding excellent in stress corrosion cracking resistance
US20070045260A1 (en) Welded aluminum sheets and process therefore
JPH09279280A (en) Aluminum-magnesium-silicon alloy excellent in weldability
US4216016A (en) Filler metal for welding aluminum alloys
JPH05169290A (en) Aluminum alloy filler material and its production
JP6632839B2 (en) Aluminum alloy filler metal and aluminum alloy welding method
JPH0399793A (en) Al-zn-mg series filler material having excellent stress corrosion cracking resistance
JPH03122248A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915488B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPS6111155B2 (en)
JPH03122247A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915491B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPH02280992A (en) Al alloy filler metal for welding of al-si alloy material
JPH1024387A (en) Filler material foe aluminum alloy
JP3123682B2 (en) High strength aluminum alloy material for welding
JP4623639B2 (en) Welding material for aluminum alloy and welding method
JP2915490B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP2915489B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP2915487B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPH042741A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH11197884A (en) Dual electrode electrogas arc welding method
JPS61216885A (en) Aluminum alloy filler metal
JPS5937733B2 (en) Co-based alloy for overlay welding of engine valves and valve seats of internal combustion engines
JP3529664B2 (en) Aluminum alloy filler metal