JPH0399746A - Precision suction mold - Google Patents

Precision suction mold

Info

Publication number
JPH0399746A
JPH0399746A JP23685889A JP23685889A JPH0399746A JP H0399746 A JPH0399746 A JP H0399746A JP 23685889 A JP23685889 A JP 23685889A JP 23685889 A JP23685889 A JP 23685889A JP H0399746 A JPH0399746 A JP H0399746A
Authority
JP
Japan
Prior art keywords
mold
slurry
iron
powder
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23685889A
Other languages
Japanese (ja)
Other versions
JP2654999B2 (en
Inventor
Akira Yanagisawa
柳沢 章
Hiroyuki Noguchi
裕之 野口
Takeo Nakagawa
威雄 中川
Masato Imamura
正人 今村
Tatsuo Watanabe
達夫 渡辺
Tadashi Makiguchi
直史 牧口
Kazuyuki Nishikawa
和之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP1236858A priority Critical patent/JP2654999B2/en
Publication of JPH0399746A publication Critical patent/JPH0399746A/en
Application granted granted Critical
Publication of JP2654999B2 publication Critical patent/JP2654999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a mold having good strength, permeability, surface accuracy and transferability by making solid formed body of slurry-state material specified with component composition and composed of a composite formed body with drying and/or primary burning executed to form this to the permeable structure having specific porosity. CONSTITUTION:The slurry-state material prepared by mixing iron powder, ceramic powder and binder containing component vaporized in hardening process at wt. blending ratio of (1-9): (1-9): (1-3), respectively, is used. In some case, further, by adding and mixing reinforcing fiber, the slurry-state material is provided. This material is poured, formed and solidified so as to become the desired mold shape and the mold is manufactured through the drying process of he primary burning process or further executing the primary buring process after drying. This composite formed body is made to the permeable structure having >=10% porosity with fine pores generated with exhaust of vaporized component. For example, the composite formed body 1 has the recessed or projecting mold surface 10 and is formed with the fine pattern 100 on the mold surface, and this is clearly transferred to the casting surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は崩壊性のある精密吸引鋳型に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a collapsible precision suction mold.

〔従来の技術及びその技術的課題〕[Conventional technology and its technical issues]

液状またはスラリー状物質を三次元形状に加工する場合
に鋳型は不可欠である。この場合の鋳型の特性としては
、■良好な表面精度を有し、微細な模様を忠実に転写で
き、また複雑形状や薄肉形状に対応することができるこ
と、■成形品の表面や内部にピンホールや巣を生じさせ
ないこと、■型製作が簡単で安価に得られること、■使
用後は崩壊できることが望まれる。
Molds are essential when processing liquid or slurry materials into three-dimensional shapes. The characteristics of the mold in this case are: ■ It has good surface accuracy, can faithfully transfer minute patterns, and can handle complex shapes and thin-walled shapes; ■ It has pinholes on the surface and inside of the molded product. It is desired that the material should not produce any mold or cavities, (1) be easy to mold and be obtained at low cost, and (2) be able to disintegrate after use.

しかし従来では、このような条件を満たすものがなかっ
た。すなわち、金属鋳造用の鋳型として生型があるが、
山砂、半合成砂、あるいは合成砂に石炭粉やベンナイト
、穀粉等を水と混練し、鋳わくの中に充填してつき固め
造型しただけであるため、■の条件は満足できるが、■
〜■の条件を満たすことができず、精密な鋳造は行えな
かった。
However, in the past, there was nothing that met these conditions. In other words, there is a green mold as a mold for metal casting,
Conditions (■) can be satisfied because mountain sand, semi-synthetic sand, or synthetic sand is simply mixed with water, such as coal powder, bennite, grain flour, etc., and then filled into a casting frame and compacted and molded.
It was not possible to satisfy the conditions of ~■, and precision casting could not be performed.

精密鋳造用の鋳型としては、ダイカスト金型があるが、
■の条件を満足することは1−11能であるものの、■
〜■の条件を満たすことはできず、ことに通気性がない
ため鋳巣を発生させやすい点が問題となっている。
There are die-casting molds as molds for precision casting.
Although satisfying the condition of ■ is 1-11 ability, ■
It is not possible to satisfy the conditions (1) to (2), and there is a particular problem that cavities are likely to occur due to lack of air permeability.

本発明は前記のような問題点を解消するために創案され
たもので、その目的とするところは、良好な表面精度を
有し、微細な模様を忠実に転写でき、また複雑形状や薄
肉形状に対応することができるうえに良好な通気性を備
え、キャビティ内や材料中の空気やガスの除去を確実に
行え、しかも型製作が簡単で低コストで製造でき、その
うえ崩壊性のよい精密吸引鋳型を提供することにある。
The present invention was created to solve the above-mentioned problems, and its purpose is to have good surface precision, be able to faithfully transfer fine patterns, and be able to transfer complex shapes and thin shapes. In addition, it has good air permeability, can reliably remove air and gas inside the cavity and in the material, is easy to manufacture at low cost, and has good disintegration properties. The purpose is to provide molds.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、鉄系粉と、好ましく
はこれよりも粒径が小さいセラミック粉と、硬化過程で
蒸発する成分を含むバインダを重量配合比で(1〜9)
:(1〜9 ):(1〜3)で混合3 したスラリー状資料、あるいはこれにさらに補強用繊維
を添加混合したスラリー状資料を作り、これを所望の型
形状となるように流し込み成形し、その固化成形体を乾
燥又は/及び一次焼成した複合成形体からなり、該複合
成形体が全体として気孔率10〜50%の多孔質構造と
なっている構成としたものである。
In order to achieve the above object, the present invention combines iron-based powder, preferably ceramic powder with a smaller particle size, and a binder containing components that evaporate during the curing process in a weight mixing ratio (1 to 9).
: (1 to 9) : A slurry material is prepared by mixing 3 in steps (1 to 3), or a slurry material is prepared by further adding and mixing reinforcing fibers, and this is poured and molded into the desired mold shape. , a composite molded body obtained by drying and/or primary firing the solidified molded body, and the composite molded body has a porous structure with a porosity of 10 to 50% as a whole.

本発明による鋳型は、たとえば次のような用途に好適で
ある。
The mold according to the present invention is suitable for, for example, the following uses.

■溶解金属、溶融ガラス、溶融プラスチックで代表され
る液状材料あるいはスラリー状材料(スリップ)を加圧
無しで注入し、外部から吸引力を作用させて成型する減
圧鋳型(無加圧吸引成形型) ■上記液状材料やスラリー状材料をキャビティに加圧な
いし射出注入し、外部から吸引力を作用させて成型する
鋳型(加圧吸引成形型)この中にはセラミック類の脱気
、脱水も含む。
■Low-pressure molding (non-pressure suction molding) in which liquid or slurry materials (slip), such as molten metal, molten glass, and molten plastic, are injected without pressure and molded by applying suction from the outside. (2) A mold in which the liquid material or slurry material is pressurized or injected into a cavity and molded by applying suction from the outside (pressure suction mold) This includes deaeration and dehydration of ceramics.

〔実 施 例〕〔Example〕

以下本発明の実施例を添付図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明による精密吸引鋳型の実施例を示すもの
で、鉄系粉とセラミック粉を骨材とする複合成形体1か
らなっており、凹状又は凸状の型面10を有し、その型
面10にはしぼなどの微細模様100が形成されている
FIG. 1 shows an embodiment of a precision suction mold according to the present invention, which is composed of a composite molded body 1 made of iron-based powder and ceramic powder as aggregates, and has a concave or convex mold surface 10. A fine pattern 100 such as grains is formed on the mold surface 10.

第2図においては、鋳型は上型用の複合成形体1aと下
型用の複合成形体】bとからなっており、そhらの型面
10.10によりキャビティ11゜11が形成され、中
央の注入路12から材料が注入されるようになっており
、片方の複合成形体1bには突出しピン用の穴13が形
成されている。
In Fig. 2, the mold consists of a composite molded body 1a for the upper mold and a composite molded body 1b for the lower mold, and a cavity 11°11 is formed by the mold surfaces 10 and 10 of the mold. Material is injected from the central injection path 12, and a hole 13 for an ejecting pin is formed in one composite molded body 1b.

また、必要に応じ、型の冷却又は保温のための媒体導管
ないしヒータ14が埋没されてもよい。
Also, if necessary, a medium conduit or heater 14 for cooling or keeping the mold warm may be embedded.

第3図は本発明の別の実施例を示すもので、この実施例
では鋳型は鉄系粉とセラミック粉及び補強繊維2を骨材
とする複合成形体1からなっている。
FIG. 3 shows another embodiment of the present invention, in which the mold is made of a composite molded body 1 made of iron-based powder, ceramic powder, and reinforcing fibers 2 as aggregates.

前記複合成形体1.la、lbは、第4図に模式的に示
すように、鉄系粉粒子3aとこれよりも粒度の小さいセ
ラミック粒子3bをさらに微細なバインダ粒子3cによ
る粒子間吸引力で接合した組織からなっており、セラミ
ック粒子3bが鉄系粉粒子4の隙間を埋めるように分散
されることで緻密な表面性状を創成している。しかも、
バインダ中の蒸発成分が成形体層中から外部へ蒸発する
ことによる3〜20μmの微細な気孔が形成され、全体
が気孔率10〜50%の多孔質通気構造となっており、
圧縮強度は約10〜100kg/■2である。
The composite molded article 1. As schematically shown in FIG. 4, la and lb are composed of a structure in which iron-based powder particles 3a and ceramic particles 3b having a smaller particle size are joined by the interparticle suction force of finer binder particles 3c. The ceramic particles 3b are dispersed to fill the gaps between the iron-based powder particles 4, thereby creating a dense surface texture. Moreover,
Fine pores of 3 to 20 μm are formed by the evaporation components in the binder evaporating from the molded body layer to the outside, and the entire structure has a porous ventilation structure with a porosity of 10 to 50%.
The compressive strength is about 10 to 100 kg/■2.

上記のような本発明による鋳型は、鉄系粉とセラミック
粉と硬化過程で蒸発する成分を含むバインダを所要の配
合比で混合し、あるいはさらに補強繊維を添加混合して
スラリー状資料を作る工程と、このスラリー状資料を流
し込み成形する工程と、固化した成形体を乾燥する行程
または乾燥に代えて一次焼成する工程、あるいは乾燥後
さらに1次焼成する工程で作られたものである。
The mold according to the present invention as described above is produced by mixing iron-based powder, ceramic powder, and a binder containing components that evaporate during the curing process in a desired mixing ratio, or by further adding and mixing reinforcing fibers to create a slurry-like material. It is made by a step of pouring and molding this slurry-like material, a step of drying the solidified molded object, a step of primary firing instead of drying, or a step of further primary firing after drying.

詳述すると、「鉄系粉」としては、鋳鉄粉、電解粉、純
鉄粉などの鉄粉が用いられ、場合によっては銅粉、ステ
ンレス粉なども用いることができる。
Specifically, as the "iron-based powder", iron powder such as cast iron powder, electrolytic powder, pure iron powder, etc. is used, and depending on the case, copper powder, stainless steel powder, etc. can also be used.

「セラミック粉」は鉄系粉と接合しゃすいものであれば
任意であり、たとえばムライ[・、焼成アルミナ、活性
アルミナ、電融アルミナ、クロマイ1へ、シリマナイト
等の中性系のもの、あるいは溶融シリカ等で代表される
酸性系のものが一般に使用されるが、塩基性のものでも
よい。「補強繊維」は亀裂やセラミック粉の脱落を防止
し、強度の向上と寸法安定性を図るために用いられる。
"Ceramic powder" can be any material as long as it is easily bonded to iron-based powder, such as neutral powder such as Murai, calcined alumina, activated alumina, fused alumina, Chroma 1, sillimanite, or fused Acidic materials such as silica are generally used, but basic materials may also be used. "Reinforcing fibers" are used to prevent cracks and ceramic powder from falling off, and to improve strength and dimensional stability.

この補強繊維はステンレス、快削鋼などで代表される鋼
繊維でもよいし、ガラス繊維、アルミナなどのセラミッ
ク系繊維、カーボン繊維なども用いることができる。
The reinforcing fibers may be steel fibers such as stainless steel and free-cutting steel, glass fibers, ceramic fibers such as alumina, carbon fibers, and the like.

前記鉄系粉の粒径は最大寸法で500μm、好ましくは
40〜100μm、セラミック粉の粒径は鉄系粉よりも
粒径が小さく、最大寸法で300μm、好ましくは35
〜40μn1である。最大寸法を上記のように規定した
のは、強度が不十分となりやすい7貨と、過剰な多孔質
となって表面精度を低下させるからである。補強繊維は
型の大きさにもよるが、一般に長さ0.05〜30nw
n、太さ10〜400μmの範囲内で適宜選定すればよ
い。
The particle size of the iron-based powder is 500 μm in maximum dimension, preferably 40 to 100 μm, and the particle size of the ceramic powder is smaller than that of iron-based powder, 300 μm in maximum dimension, preferably 35 μm.
~40 μn1. The reason why the maximum dimension is defined as above is because the strength tends to be insufficient and the surface accuracy is deteriorated due to excessive porosity. The reinforcing fibers generally have a length of 0.05 to 30nw, depending on the size of the mold.
n, the thickness may be appropriately selected within the range of 10 to 400 μm.

次に、硬化過程で蒸発する成分を含むバインダを使用す
るのは、鉄系粒子とセラミック粒子を接合し、かつ微細
な気孔を付与するためである。すなわち、従来の鋳造用
の生型は粒径の粗い砂を点接触的に接合することで通気
用隙間を得ていた。
Next, the reason why a binder containing a component that evaporates during the curing process is used is to bond the iron-based particles and ceramic particles and provide fine pores. That is, in the conventional green mold for casting, ventilation gaps were obtained by joining coarse-grained sand in a point-contact manner.

本発明はこれと発想を異にし、型成形用粒子として細か
い粒径のものを用い、通気用隙間の形成をバインダ中の
蒸発成分の外部への抜けにより実現し、これにより緻密
な型面に無数のかつ微細な通気隙間を創成させるもので
ある。前記蒸発成分を含むバインダは、具体的にはシリ
カゾル(シリカのコロイド溶液を安定にしたもの)、特
にエチルシリケートを基材とするアルコール系溶剤性シ
リカゾルが好適である。
The present invention differs from this idea by using particles with a fine particle size for mold forming, and achieves the formation of ventilation gaps by allowing the evaporated components in the binder to escape to the outside, thereby creating a dense mold surface. This creates countless and minute ventilation gaps. Specifically, a silica sol (a stabilized colloidal solution of silica), particularly an alcoholic solvent-based silica sol based on ethyl silicate, is suitable as the binder containing the evaporable component.

前記鉄系粉とセラミック粉及びバインダの配合比は、重
量比で(1〜9):(1〜9):(1〜3)とするのが
好ましく、この範囲内で強度、通気性、熱伝導性、表面
性状などの要求特性に応じて適宜一 選定すればよい。下限を1:、1:1に規定したのは、
鋳型として使用可能な最低限の強度を得るのに必要だか
らである。鉄系粉とセラミック粉との配合比について言
えば、それらは前記粒径とあいまって型面の表面粗さと
崩壊性に影響を及ぼす。
The mixing ratio of the iron-based powder, ceramic powder, and binder is preferably (1 to 9): (1 to 9): (1 to 3) by weight, and within this range, strength, air permeability, and heat One may be selected as appropriate depending on required characteristics such as conductivity and surface properties. The lower limit was set to 1:, 1:1 because
This is because it is necessary to obtain the minimum strength that can be used as a mold. Regarding the blending ratio of iron-based powder and ceramic powder, together with the particle size, they affect the surface roughness and collapsibility of the mold surface.

表面粗さと崩壊性を同時に良くするには、鉄系粉とセラ
ミック粉の重量配合比を4二6〜1:9にすることが推
奨される。通気性を調整するには、骨材のバインダに対
する配合比を減少させればよく、それらの配合比が固定
であれば、鉄系粉とセラミック粉の配合比を鉄系粉の量
を少なくするようにすればよい。
In order to simultaneously improve surface roughness and collapsibility, it is recommended that the weight mixing ratio of iron-based powder and ceramic powder be 426 to 1:9. To adjust air permeability, it is sufficient to reduce the blending ratio of aggregate to binder, and if those blending ratios are fixed, the blending ratio of iron-based powder and ceramic powder can be adjusted by decreasing the amount of iron-based powder. Just do it like this.

なお、補強繊維を用いる場合、その添加量は1〜10v
o1%とすべきである。1vo1%未満では強度や寸法
安定性の向上を期待できない。しかし10νO1%を越
える添加はファイバーボールを生じさせやすくなり、成
形性を低下させるため好ましくない。
In addition, when using reinforcing fibers, the amount added is 1 to 10v.
It should be o1%. If it is less than 1vo1%, no improvement in strength or dimensional stability can be expected. However, addition of more than 10 νO1% is not preferable because it tends to cause fiber balls and reduces moldability.

次いで、前記スラリー状材料を所望型形状に流し込み成
形する。第5図(、)はこの段階を示しており、マスタ
ーモデル6を配置した鋳枠7にスラリー状材料5を流し
込み固化させる。この流し込み成形に際し、適宜硬化剤
を加えたり、振動を加えたり、スクイズする。また、こ
の工程で必要に応じてピンやパイプ類を装入しておけば
、第2図のような構造が容易に得られる。
Next, the slurry material is poured into a desired mold shape. FIG. 5(,) shows this stage, in which the slurry material 5 is poured into the flask 7 in which the master model 6 is placed and solidified. During this casting process, a curing agent is added, vibration is applied, or squeezing is performed as appropriate. Moreover, if pins and pipes are inserted as necessary in this step, the structure shown in FIG. 2 can be easily obtained.

次いで、固化した成形素体1′を離型した後、乾燥又は
/及び1次焼成を行う。これは本発明の場合、単に亀裂
や歪みの発生を抑制するだけでなく、バインダ中に含ま
れるアルコール分などの蒸発成分を蒸発させて微細達成
気孔を形成するためである。
Next, after the solidified molded element 1' is released from the mold, drying and/or primary firing is performed. This is because, in the case of the present invention, not only is the generation of cracks and distortions suppressed, but also the evaporation components such as alcohol contained in the binder are evaporated to form fine pores.

乾燥はたとえば1〜48時間の自然乾燥でもよいし、第
5図(b)のように真空乾燥器8を用いて、たとえば1
0.0℃程度の温度で真空乾燥してもよい。1次焼成は
、乾燥した成形素体の表面をトーチランプなどであぶり
、あるいは電熱で短時間加熱することで蒸発成分を着火
燃焼させるものである。1次焼成は型表面に硬化層を形
成するようなものではなく、温度は高くても450°C
であり、時間は型の大きさにもよるが、10〜40分程
度である。
Drying may be carried out naturally for 1 to 48 hours, for example, or by drying for 1 to 48 hours using a vacuum dryer 8 as shown in FIG.
Vacuum drying may be performed at a temperature of about 0.0°C. The primary firing is to ignite and burn the evaporated components by burning the surface of the dried molded element with a torch lamp or by heating it with electric heat for a short time. The primary firing does not form a hardened layer on the mold surface, and the temperature is at most 450°C.
Although the time depends on the size of the mold, it is about 10 to 40 minutes.

以上の工程で第1図ないし第3図の複合成形体1、la
、lbが得られるので、あとは第5図(C)のように型
面10とパーティングラインを除く外面に膜あるいはカ
バーないしボックスなどからなる目どめ手段9を施し、
適所に吸引部90を設ける。これで吸引鋳型として、使
用に供することができる。
With the above steps, the composite molded product 1, la shown in FIGS. 1 to 3 is
, lb are obtained, then as shown in FIG. 5(C), a sealing means 9 consisting of a film, cover, or box is applied to the outer surface excluding the mold surface 10 and the parting line.
A suction section 90 is provided at an appropriate location. Now it can be used as a suction mold.

第6図と第7図は本発明による鋳型の使用例を示してい
る。第6図は液状ないしスラリー状月料Wを重力で注入
し、キャビティ内に吸引力を作用させて鋳造する方式の
例である。鋳型は複合成形体1a、lbからなる固定型
IAと可動型IBが用いられ、それらは外面に目どめ手
段9,9が施され、吸引部90.90がホースを介して
真空ポンプ等の減圧装置91に接続されている。型面1
0.10には予め塗型剤や離型剤が施され、注入手段1
5から液状ないしスラリー状材料Wがキャビティ11に
注入され、それと併行して減圧装置1 91が運転されるより固定型IAと可動型IBに負圧が
掛けられ、キャビティ11内が減圧されて鋳造される。
Figures 6 and 7 show examples of the use of the mold according to the invention. FIG. 6 shows an example of a casting method in which a liquid or slurry material W is injected by gravity and a suction force is applied to the cavity. The molds used are a fixed type IA and a movable type IB consisting of composite molded bodies 1a and 1b, which have stopper means 9 and 9 on their outer surfaces, and suction parts 90 and 90 are connected to a vacuum pump or the like through a hose. It is connected to a pressure reducing device 91. Mold surface 1
0.10 is coated with mold coating agent and mold release agent in advance, and injection means 1
5, liquid or slurry material W is injected into the cavity 11, and at the same time, the pressure reducing device 191 is operated to apply negative pressure to the fixed mold IA and the movable mold IB, reducing the pressure inside the cavity 11 and casting. be done.

第7図は液状ないしスラリー状材料Wを低加圧吸引鋳造
する方式の例である。この場合も鋳型として複合成形体
1a、lbからなる固定型IAと可動型1Bが用いられ
、外面に目どめ手段9,9が施され、所要個所の吸引部
90.90がホースを介して真空ポンプ等の減圧装置9
1に接続されている。可動型IBは型開閉装置16に連
結されており、液状ないしスラリー状材料Wは容器に入
れられ、」二部の密閉蓋18に設けた導気孔180から
導入された気体圧力により導管19を」二部してキャビ
ティ11に加圧注入され、それと併行して減圧装置91
が運転されるより固定型IAと可動型IBに負圧が掛け
られ、キャビティ11内が減圧されて鋳造される。
FIG. 7 shows an example of a method of casting a liquid or slurry material W at low pressure by suction. In this case as well, a fixed mold IA and a movable mold 1B consisting of composite molded bodies 1a and 1b are used as molds, and the outer surfaces are provided with sealing means 9, 9, and suction parts 90 and 90 at required locations are connected to each other through hoses. Pressure reducing device 9 such as a vacuum pump
Connected to 1. The movable mold IB is connected to the mold opening/closing device 16, and the liquid or slurry material W is placed in a container and passed through the conduit 19 by gas pressure introduced from the air guide hole 180 provided in the two-part sealing lid 18. It is injected into the cavity 11 under pressure in two parts, and at the same time, it is injected into the decompression device 91.
When the mold is operated, a negative pressure is applied to the fixed mold IA and the movable mold IB, and the pressure inside the cavity 11 is reduced to perform casting.

上記は一例であり、片側の型だけを本発明による複合成
形体としてもよく、両方の型が複合成形体の場合も吸引
を片方の型だけ行ってもよい。
The above is an example, and only one mold may be a composite molded article according to the present invention, and even if both molds are composite molded products, suction may be applied to only one mold.

2− このような鋳造時において、本発明の鋳型は、鉄系粉と
セラミック粉を骨材としこれにコロイド状のバインダを
加えたスラリー状資料を流し込み固化したのち乾燥また
はさらに一次焼成した複合成形体からなっており、強度
メンバーとしての鉄系粉の分散とバインダによる結合作
用で、型強度は慣用の生型よりも高いものとなる。また
、耐熱性もよく、したがって、急熱、急冷の繰返しによ
っても、亀裂、コーナ一部の欠け、ボロツキ等の欠陥の
発生が抑制される。ことに補強繊維2を添加した場合に
は曲げに対する強度も高くなり、寸法変化も少なくなる
2- During such casting, the mold of the present invention is a composite molded material in which a slurry-like material made of iron-based powder and ceramic powder as aggregate and a colloidal binder added thereto is poured, solidified, and then dried or further fired. The strength of the mold is higher than that of conventional green molds due to the dispersion of iron-based powder as a strength member and the binding action of the binder. In addition, it has good heat resistance, and therefore, even after repeated rapid heating and cooling, defects such as cracks, chipped corners, and crumbling are suppressed. In particular, when reinforcing fibers 2 are added, the strength against bending is increased and dimensional changes are reduced.

さらに、本発明においては、鉄系粉とセラミック粉の点
接触により通気性を実現するのでなく、バインダに含ま
れる蒸発成分の抜けによる気孔形成作用で通気性を創成
している。このため、鋳造工程でキャビティ内を全域を
均一に負圧化し、材料を型面のすみずみまでまんべんな
く充填させ、同時にキャビティ内の空気や材料に含まれ
るガスあるいは水分等を効率よく除去することができる
Furthermore, in the present invention, air permeability is not achieved through point contact between the iron-based powder and the ceramic powder, but rather through the pore-forming effect caused by the release of evaporated components contained in the binder. For this reason, during the casting process, it is possible to uniformly create negative pressure in the entire cavity, fill the material evenly to every corner of the mold surface, and at the same time efficiently remove the air in the cavity and the gas or moisture contained in the material. can.

また、セラミック粉を骨材に含むため、金型に比べて熱
伝導率が低く、材料を低速低圧で鋳込む場合もいわゆる
湯廻りが良好となる。従って複雑形状、薄肉形状でもピ
ンホールや巣の発生のない良好な鋳造品を作ることがで
きる。
In addition, since the aggregate contains ceramic powder, the thermal conductivity is lower than that of a mold, and when the material is cast at low speed and low pressure, so-called hot water circulation is good. Therefore, it is possible to produce a good quality cast product without pinholes or cavities even if the shape is complex or thin.

しかも、上記のような通気構造のため、鉄系粉とセラミ
ック粉は粒径を小さくすることができ、これにより緻密
な表面性状とすることができると共に、流し込み成形で
型造型するため、良好な転写性が得られ、マスターモデ
ルの微細な模様(たとえば革しぼ模様)を忠実に再現す
ることができる。一般に、転写性と型の通気性は相反す
る関係にあり、転写性をよくするには骨材粒度を細かく
する必要があるが、これによると型の通気性が損なわれ
、従って型面に細かい模様を形成できても、鋳造品にこ
れを転写することが困難となる。本発明によれば、転写
性と通気性を同時に実現することができる。
Moreover, because of the ventilation structure described above, the particle size of iron-based powder and ceramic powder can be reduced, which allows for a finer surface texture, and because molding is performed by pour molding, it is possible to reduce the particle size of iron-based powder and ceramic powder. Transferability is obtained, and the fine patterns of the master model (for example, leather grain patterns) can be faithfully reproduced. Generally, there is a contradictory relationship between transferability and air permeability of the mold, and it is necessary to make the aggregate particle size finer in order to improve the transferability. Even if a pattern can be formed, it is difficult to transfer it to a cast product. According to the present invention, transferability and air permeability can be achieved simultaneously.

さらに、本発明においては、鋳型を構成する複合成形体
1.la、lbが、流し込み造型した素体を乾燥するか
ぜいぜい低温で短時間加熱することで作られている。す
なわち未焼結体である。そのため、型面を非常に良好な
表面性状とすることができ、鋳造品の表面精度を優れた
ちのににすることができる。これに対し、流し込み造型
した素体を乾燥後、本焼成した場合には、分散状の鉄系
粒子が酸化して型面の表面に析出し、さらには膨張・結
合しそれが成長して素体表面を覆うようになるため、表
面性状が非常に悪くなる。本発明によればこの問題が生
じず良好な表面粗さとすることができるため、精密な転
写性を持つことができる。
Furthermore, in the present invention, the composite molded body 1 constituting the mold. la and lb are made by drying a cast-molded element or heating it at a low temperature for a short period of time. In other words, it is an unsintered body. Therefore, the surface of the mold can be made to have very good surface quality, and the surface accuracy of the cast product can be made into a mold. On the other hand, when the casting molded element is dried and then fired, the dispersed iron-based particles oxidize and precipitate on the surface of the mold, expand and bond, and grow. Since it begins to cover the body surface, the surface quality becomes very poor. According to the present invention, this problem does not occur and a good surface roughness can be achieved, so that precise transferability can be achieved.

次に本発明の具体例を示す。Next, specific examples of the present invention will be shown.

具体例1 ■、鉄系粉としてt4鉄粉(粒径40μn1アンダー)
、セラミック粉として合成ムライト(粒径34μm1ア
ンダー)を用い、バインダとしてエチルシリケート(S
in2a度20%、揮発分80ぶのアルコール溶剤性シ
リカゾル)を用い、それらを重量配合比で2:2 : 
1として均一に混合し、スラリー5 状資料Aを得た。また、上記配合にガラス繊維(長さ1
00 μm、太さIQμm)を4wt%添加混合しスラ
リー状資料Bを得た。
Specific example 1 ■ T4 iron powder (particle size 40 μn 1 under) as iron-based powder
, synthetic mullite (particle size 34 μm 1 under) was used as the ceramic powder, and ethyl silicate (S) was used as the binder.
(alcohol-solvent silica sol with 20% alcohol content and 80% volatile content) was used in a weight mixing ratio of 2:2:
1 and mixed uniformly to obtain sample A in the form of slurry 5. In addition, glass fiber (length 1
00 μm, thickness IQ μm) was added and mixed in an amount of 4 wt % to obtain slurry sample B.

前記各スラリー状試料を、それぞれマスターモデルとし
て平滑面を有するアクリル盤(表面粗Rz:o、1μm
)を装填した鋳枠に振動を加えつつ流し込み、固化後離
型し、100℃で真空乾燥し、鋳型A□、を得た。また
、100℃で真空乾燥後、トーチランプで着火し、30
分間アルコール分を燃焼する一次焼成を行い、鋳型A2
を得た。
Each slurry sample was used as a master model on an acrylic disc with a smooth surface (surface roughness Rz: o, 1 μm).
) was poured into a flask loaded with vibration, and after solidification, the mold was released and vacuum dried at 100°C to obtain mold A□. In addition, after vacuum drying at 100℃, ignite with a torch lamp and
Perform primary firing to burn out the alcohol for a minute, and then mold A2
I got it.

■、前記各鋳型の特性は下記第1表のとおりである。(2) The characteristics of each mold are shown in Table 1 below.

第1表 比較のため、上記鉄系粉とセラミック粉との配合比を3
ニア、1:9としたところ、各々の表面粗さが約1μm
、2μm減少し、表面粗さが向上した。
For comparison in Table 1, the mixing ratio of the above iron-based powder and ceramic powder was set to 3.
Near, 1:9, each surface roughness is about 1 μm
, decreased by 2 μm, and the surface roughness improved.

16− なお、A1の鋳型について、乾燥後さらに500℃、9
00 ’Cで6時間酸化焼成した結果、表面粗さは50
0℃の場合で約10μm、9゜0℃の場合で約17μI
nであり、表面性状が劣っていた。これは鉄系粉の酸化
析出・膨張によるものである。
16- In addition, regarding the mold A1, after drying, the mold was further heated at 500°C, 9
As a result of oxidation baking at 00'C for 6 hours, the surface roughness was 50
Approximately 10 μm at 0°C, approximately 17 μI at 9°0°C
n, and the surface quality was poor. This is due to oxidation precipitation and expansion of iron-based powder.

m、a6型A1を用い、型面に塗型を施し、亜鉛合金の
重力鋳造を行いつつ、700 mmHgの吸引を行った
。鋳込み条件は、鋳込み温度420℃、鋳込み時間30
秒、離型時間30秒とした。
Using m, a6 type A1, the mold surface was coated and gravity casting of the zinc alloy was performed while suction of 700 mmHg was applied. The casting conditions were a casting temperature of 420°C and a casting time of 30°C.
The mold release time was 30 seconds.

その結果、肉厚1 、2mmであるにも係らず、湯流れ
がよく、ひけもない良好な鋳造を行え、かつ、鋳肌に平
滑面が明確に転写され、表面、内部の巣は皆無であった
As a result, despite the wall thickness of 1 to 2 mm, the metal flows well and casts can be performed without sinkage, and the smooth surface is clearly transferred to the casting surface, and there are no cavities on the surface or inside. there were.

■、鋳型A2を用い、AC4D、AC23H1高力黄銅
の低圧吸引鋳造を行いつつ、可動型と固定型に700 
mmHgの吸引力を作用させた。この結果、前記■、よ
りもさらに鋳出し精度が向上し、射出成形金型に好適な
ものが得られた。
■ Using mold A2, low-pressure suction casting of AC4D and AC23H1 high-strength brass was performed, and the movable mold and fixed mold
A suction force of mmHg was applied. As a result, the casting accuracy was further improved than in the case (2) above, and a mold suitable for injection molding was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明第1項によるときには、生型に比べ
て良好な強度を持ち、しかも通気性ときわめて良好な表
面精度と転写性とを同時に実現することができ、その上
、鋳造後の崩壊性も良好な鋳型とすることができ、しか
も、工程や操作が簡単で、電気炉等の高価な設備も不要
であるため、低コストで製造することができるというす
ぐれた効果が得られる。
According to item 1 of the present invention as described above, it has better strength than a green mold, and can simultaneously achieve air permeability, extremely good surface precision and transferability, and also collapse after casting. A mold with good properties can be obtained, and the process and operation are simple, and expensive equipment such as an electric furnace is not required, so the excellent effect of manufacturing at low cost can be obtained.

また本発明の第2項によるときには、強度を向」ニさせ
、寸法安定性が良々fになりるため、高圧の鋳造にも耐
える鋳型とすることができるというすぐれた効果が得ら
れる。
Further, according to the second aspect of the present invention, the strength is improved and the dimensional stability is improved to a good level f, so that an excellent effect can be obtained in that the mold can withstand high-pressure casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明による精密吸引鋳型の実施
例を示す断面図、第4図は本発明の鋳型の組織を模式的
に示す拡大図、第5図(a) (b) (C)は本発明
の鋳型の製造工程を示す説明図、第6図と第7図は本発
明の鋳型の使用例を示す断面図である。 1 、1 a 、 1 b−複合成形体、1′・・素体
、3a・・・鉄系粉粒子、3b・・セラミック粉粒子、
3C・・・バインダ粒子、5・・・スラリー状資料、1
0・・型面、11・・・キャビティ
Figures 1 to 3 are cross-sectional views showing embodiments of the precision suction mold according to the present invention, Figure 4 is an enlarged view schematically showing the structure of the mold of the present invention, and Figures 5 (a) (b) ( C) is an explanatory diagram showing the manufacturing process of the mold of the present invention, and FIGS. 6 and 7 are cross-sectional views showing examples of use of the mold of the present invention. 1, 1a, 1b-composite molded body, 1'...element body, 3a...iron-based powder particles, 3b...ceramic powder particles,
3C... Binder particles, 5... Slurry material, 1
0...Mold surface, 11...Cavity

Claims (2)

【特許請求の範囲】[Claims] (1)鉄系粉と、セラミック粉と、硬化過程で蒸発する
成分を含むバインダを重量配合比で(1〜9):(1〜
9):(1〜3)で混合したスラリー状資料を所望の型
形状となるように流し込み成形し、その固化成形体を乾
燥又は/及び一次焼成した複合成形体からなり、該複合
成形体が前記蒸発成分の抜けにより創成された微細な気
孔で全体として気孔率10%以上の通気構造となってい
ることを特徴とする精密吸引鋳型。
(1) Iron-based powder, ceramic powder, and binder containing components that evaporate during the curing process in a weight mixing ratio of (1 to 9): (1 to 9).
9): A composite molded body is obtained by pouring and molding the slurry material mixed in (1 to 3) into a desired mold shape, and drying and/or primary firing of the solidified molded body, and the composite molded body is A precision suction mold characterized in that it has a vented structure with a porosity of 10% or more as a whole with fine pores created by the escape of the evaporated components.
(2)鉄系粉と、セラミック粉と、硬化過程で蒸発する
成分を含むバインダを、重量配合比で(1〜9):(1
〜9):(1〜3)で混合し、これにさらに補強繊維を
添加混合したスラリー状資料を所望の型形状となるよう
に流し込み成形し、その固化成形体を乾燥又は/及び一
次焼成した複合成形体からなり、該複合成形体が前記蒸
発成分の抜けにより創成された気孔で全体として気孔率
10%以上の通気構造となっていることを特徴とする精
密吸引鋳型。
(2) Iron-based powder, ceramic powder, and a binder containing components that evaporate during the curing process in a weight mixing ratio of (1 to 9): (1)
~9): The slurry-like material mixed in (1-3) and further mixed with reinforcing fibers was poured and molded into the desired mold shape, and the solidified molded product was dried and/or primarily fired. A precision suction mold comprising a composite molded body, characterized in that the composite molded body has a vented structure with a porosity of 10% or more as a whole due to pores created by the removal of the evaporated components.
JP1236858A 1989-09-14 1989-09-14 Precision suction mold Expired - Fee Related JP2654999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236858A JP2654999B2 (en) 1989-09-14 1989-09-14 Precision suction mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236858A JP2654999B2 (en) 1989-09-14 1989-09-14 Precision suction mold

Publications (2)

Publication Number Publication Date
JPH0399746A true JPH0399746A (en) 1991-04-24
JP2654999B2 JP2654999B2 (en) 1997-09-17

Family

ID=17006846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236858A Expired - Fee Related JP2654999B2 (en) 1989-09-14 1989-09-14 Precision suction mold

Country Status (1)

Country Link
JP (1) JP2654999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066634A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Water-soluble core binder, water-soluble core, and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041073B1 (en) * 2019-03-21 2019-11-05 최임근 Casting mold system for discharging gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431972A (en) * 1977-08-15 1979-03-09 Hitachi Ltd Full automatic washing machine
JPS5858955A (en) * 1981-10-05 1983-04-07 Hiroshi Kawauchi Improving method for air permeability of mold
JPS62168628A (en) * 1986-01-17 1987-07-24 Mitsui Eng & Shipbuild Co Ltd Casting mold, production of casting mold and casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431972A (en) * 1977-08-15 1979-03-09 Hitachi Ltd Full automatic washing machine
JPS5858955A (en) * 1981-10-05 1983-04-07 Hiroshi Kawauchi Improving method for air permeability of mold
JPS62168628A (en) * 1986-01-17 1987-07-24 Mitsui Eng & Shipbuild Co Ltd Casting mold, production of casting mold and casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066634A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Water-soluble core binder, water-soluble core, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2654999B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US4531705A (en) Composite and durable forming model with permeability
US4812278A (en) Process for preparing mold
EP0121929B1 (en) Permeable mold
JP2005537938A (en) Temperature control method for gas permeable mold wall
JPH07108348A (en) Production of air permeable durable mold
JPH0399746A (en) Precision suction mold
JPH08332547A (en) Casting method and mold and its production
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
JPH0478681B2 (en)
JPH0445205A (en) Manufacture of powder molded body
JPS6167540A (en) Casting mold
JPS63140740A (en) Mold for casting active metal of high melting point
JPH0223321B2 (en)
US4002196A (en) Method for forming an equalized layer to a shaping surface of a mold
JPH08174144A (en) Casting mold and its manufacture
US3208115A (en) Investment molding
JPH0323253B2 (en)
JPS63252661A (en) Sand core for pressure molding
JPH0469844B2 (en)
JPH0210118B2 (en)
JPS612507A (en) Porous durable mold and manufacture thereof
JPH0557060B2 (en)
JP2001001107A (en) Device for manufacture of mold and its casting method
JPS606242A (en) Durable composite casting mold and its production
JPH11320075A (en) Molding for cylinder block and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees