JPH0399422A - Thin film manufacturing device - Google Patents

Thin film manufacturing device

Info

Publication number
JPH0399422A
JPH0399422A JP23464589A JP23464589A JPH0399422A JP H0399422 A JPH0399422 A JP H0399422A JP 23464589 A JP23464589 A JP 23464589A JP 23464589 A JP23464589 A JP 23464589A JP H0399422 A JPH0399422 A JP H0399422A
Authority
JP
Japan
Prior art keywords
frequency
electrode
ultraviolet ray
discharge
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23464589A
Other languages
Japanese (ja)
Inventor
Hirobumi Tanaka
博文 田中
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23464589A priority Critical patent/JPH0399422A/en
Publication of JPH0399422A publication Critical patent/JPH0399422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To augment the electron density between electrodes by a method wherein the title thin film manufacturing device is provided with a means irradiating a high-fre quency impressed electrode with ultraviolet ray so that the device may discharge the generating function of photoelectrons. CONSTITUTION:A high-frequency impressed electrode 2 not grounded to a reaction chamber 16 with high-frequency is impressed with the high-frequency from a high-fre quency power supply 10 to discharge the high-frequency power into a discharging space. An opposite electrode is grounded by a high-frequency grounding capacitor 14 or directly to the reaction chamber 16. A device 3 irradiating the high-frequency impressed electrode 2 with ultraviolet ray can irradiate the ultraviolet ray and far ultraviolet ray displaying higher energy than the working function of a material on the surface of the electrode 2 and installed at the position wherein the device 3 can not irradiate a substrate with the ultraviolet ray and the far ultraviolet ray. The purpose of a DC power supply 11 is to impress the high-frequency impressed electrode 2 and the opposite electrode thereto with a DC voltage. The reaction chamber 16 is provided with a leading-in system 7 and an exhausting system 8 of material gas, etc., thereby enabling the reaction gas pressure to be changed by controlling the conductance of the exhaust system.

Description

【発明の詳細な説明】 〈産業上の利用分野〉゛ 本発明は、気体原料ガスのグロー放電分解を行う装置に
おいて、特に、放電状態の制御を行って、薄膜の電気特
性を向上させる装置に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to an apparatus for performing glow discharge decomposition of a gaseous raw material gas, and particularly to an apparatus for improving the electrical properties of a thin film by controlling the discharge state. .

〈従来の技術〉 薄膜形成法として、原料ガスをグロー放電分解して成膜
する方法は比較的簡単であり、広(用いられている。こ
の方法は一対の電極間に高周波電界もしくは直流電界を
印加することによって電極間に存在する電子を加速し、
原料ガスと衝突させることによって原料ガスを分解、成
膜するため、放電を維持するためにある一定量以上の電
子数が電極間に存在する必要が蘂る。しかして、従来技
術においては、該電子の発生機構として電極間に印加さ
れる電界のみで行っていたため、放電に必要な電子数を
維持させるために強電界が必要となっていた。すなわち
、例えば、シラン系ガス原料を分解してa−3i:Hを
形成する方法において、これまでは、グロー放電を維持
させるために、電子密度が低いため、成膜最適ガス圧力
よりガス圧力を高くせざるを得なかった。また、原料ガ
スが分解するのに必要なエネルギー以上に過大に高周波
電力を印加している状態で成膜が行われざるを得なかっ
た。
<Prior art> As a thin film forming method, the method of forming a film by glow discharge decomposition of a raw material gas is relatively simple and widely used. Accelerate the electrons existing between the electrodes by applying
Since the source gas is decomposed and formed into a film by colliding with the source gas, a certain number or more of electrons must exist between the electrodes in order to maintain discharge. However, in the prior art, since the electron generation mechanism was performed using only an electric field applied between electrodes, a strong electric field was required to maintain the number of electrons necessary for discharge. That is, for example, in the method of decomposing a silane-based gas raw material to form a-3i:H, in order to maintain glow discharge, the gas pressure has been lowered than the optimum gas pressure for film formation due to the low electron density. I had no choice but to raise the price. Furthermore, film formation has to be performed while applying high frequency power that is higher than the energy required to decompose the source gas.

たとえば、アモルファス太陽電池の先発電層作製法とし
て、SiH,あるいはSi!H,のグロ−放電分解によ
る方法が一般的に行われている。
For example, SiH or Si! A method using glow discharge decomposition of H, is generally practiced.

この方法で作製した光発電層の電子移動度はたかだか1
0cm”/V・secおよび正孔移動度で0.1cm”
/V・secと結晶シリコンのそれの約100分の1以
下の膜しか得られていない。
The electron mobility of the photovoltaic layer prepared by this method is at most 1
0cm”/V・sec and hole mobility 0.1cm”
/V·sec, which is about 1/100th or less of that of crystalline silicon.

これに起因し、アモルファス太陽電池の変換効率もto
−12%にとどまり、結晶シリコン太陽電池の20%に
は遠く及ばない原因になっている。
Due to this, the conversion efficiency of amorphous solar cells also decreases to
This is only -12%, which is far behind the 20% of crystalline silicon solar cells.

〈基本的着想〉 本発明者らは、従来のグロー放電分解による方法では、
電子が強電界により加速されるため、原料ガスがさまざ
まなモードに励起され、それが基板に到達し膜になると
きに膜の不規則性が増し、そのことが膜の電気特性を低
下させる要因となっていると考えた。半導体としての性
質は特に結晶シリコンの例をみるように、原子配列が整
然としている場合において発現するものであり、構造の
乱れは、半導体的性質を低下させ、電気的特性の低下を
もたらす。
<Basic Idea> The present inventors believe that the conventional glow discharge decomposition method
As electrons are accelerated by a strong electric field, the raw material gas is excited into various modes, which increases the irregularity of the film when it reaches the substrate and becomes a film, which is a factor that deteriorates the electrical properties of the film. I thought that it was. Semiconductor properties are manifested when the atomic arrangement is well-ordered, as in the case of crystalline silicon in particular, and disordered structure deteriorates semiconductor properties and leads to deterioration of electrical characteristics.

すなわち、本発明は、放電電極間の電子密度を高めるた
め、光電子を発生させるための紫外線発生照射装置を反
応室外に付加したことを特徴とする。
That is, the present invention is characterized in that an ultraviolet ray generation irradiation device for generating photoelectrons is added outside the reaction chamber in order to increase the electron density between the discharge electrodes.

〈発明の開示〉 すなわち、本発明は、 高周波印加電極と対向電極からなる一対の放電電極を有
する反応室内において、グロー放電分解によってi4膜
を形成する装置であって、該高周波印加電極に紫外線を
照射することのできる手段を備えてなることを特徴とす
る薄膜製造装置、であり、また、この薄膜製造装置の高
周波印加電極に紫外線を照射し、反応性ガスを供給して
グロー放電分解し、薄膜を形成することを特徴とする薄
膜形成方法、である。
<Disclosure of the Invention> That is, the present invention provides an apparatus for forming an i4 film by glow discharge decomposition in a reaction chamber having a pair of discharge electrodes consisting of a high frequency application electrode and a counter electrode, wherein the high frequency application electrode is exposed to ultraviolet rays. A thin film manufacturing apparatus characterized by comprising a means capable of irradiating ultraviolet rays to a high frequency application electrode of this thin film manufacturing apparatus, supplying a reactive gas to perform glow discharge decomposition, This is a thin film forming method characterized by forming a thin film.

第1図はこの装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of this device.

第1図において、高周波印加電極2とは、高周波的に反
応室16に接地されておらず、高周波電源または交流電
源10より高周波電力が印加され、高周波電力を放電空
間に放出する電極のことである。これに対向する対向電
極は高周波接地コンデンサー14により、または直接に
反応室に接地される。反応室は耐減圧構造となっており
、材質は導電性材料からなる。
In FIG. 1, the high-frequency application electrode 2 is an electrode that is not grounded to the reaction chamber 16 in terms of high frequency, is applied with high-frequency power from a high-frequency power source or an AC power source 10, and emits the high-frequency power into the discharge space. be. The counter electrode facing this is grounded by a high frequency grounding capacitor 14 or directly to the reaction chamber. The reaction chamber has a vacuum-resistant structure and is made of a conductive material.

本発明においては、高周波印加電極に紫外線を照射する
ことのできる装置3を有するが、かかる紫外線を照射す
ることのできる装置3とは、高周波印加電極表面の材料
の仕事関数よりも大きなエネルギーを持つ紫外線や遠紫
外線を照射できる装置であり、基板には紫外線、遠紫外
線が当たらないような位置に設置されるのが好ましい。
In the present invention, the device 3 that can irradiate the high frequency application electrode with ultraviolet rays is provided. It is a device that can irradiate ultraviolet rays and far ultraviolet rays, and is preferably installed in a position where the ultraviolet rays and far ultraviolet rays do not hit the substrate.

また、高周波電源または交流電源とは50Hz以上10
 G Hz以下で、0.OIW以上10kW以下の交流
電力を発生できる装置である。直流電源11は交流遮断
フィルター12を通して高周波印加電極とこれに対向す
る電極間に−toov〜1oovの直流電圧を印加する
ものである。反応室には原料ガス等の導入系7と排気系
8が付加され、排気系のコンダクタンスを制御すること
により、反応ガス圧力を1mTorr〜1Torrの範
囲で可変できる。また、所望により、放電開始トリガー
発生装置9が付加されることもある。
Also, high frequency power source or AC power source is 50Hz or more.
Below GHz, 0. This is a device that can generate AC power of more than OIW and less than 10kW. The DC power supply 11 applies a DC voltage of -toov to 1oov between a high frequency application electrode and an electrode facing the high frequency application electrode through an AC cutoff filter 12. An introduction system 7 for introducing raw material gas and the like and an exhaust system 8 are added to the reaction chamber, and by controlling the conductance of the exhaust system, the reaction gas pressure can be varied in the range of 1 mTorr to 1 Torr. Further, a discharge start trigger generating device 9 may be added as desired.

本発明において反応ガスとして、■族生導体を形成する
場合においては、S j H4、S i 2H4、Ge
H4,CHa 、C1H1、SiF4 、GeF4とい
った■族元素を含有するもの、さらに、BtHh 、P
Hzといった■族生導体に対するドーピングガス、希釈
ガスとしてlt、He等が用いられる。
In the present invention, when forming a group (III) raw conductor as a reactive gas, S j H4, S i 2H4, Ge
Those containing Group III elements such as H4, CHa, C1H1, SiF4, and GeF4, as well as BtHh and P
lt, He, etc. are used as a doping gas and a diluent gas for a group II raw conductor such as Hz.

しかして反応ガス流量としては、アモルファスシリコン
(a−5i:H)を成膜する場合は、5iHaまたはS
i、H,を10〜101005c、P型アモルファスシ
リコンを成膜する際にはB、H,をB2H2/ (S 
i HaまたはSi、1l−)比でQ、llppm−1
000Pp程度の範囲で加える。n型アモルファスシリ
コンの場合はB t Hbに代えてPH,を加える。
However, when forming a film of amorphous silicon (a-5i:H), the reaction gas flow rate is 5iHa or S
i, H, is 10 to 101005c, and when forming P-type amorphous silicon, B, H, is B2H2/ (S
i Ha or Si, 1l-) Q, llppm-1
Add in a range of about 000 Pp. In the case of n-type amorphous silicon, PH is added instead of B t Hb.

高周波電源の周波数としては通常13.56MHzが用
いられるが、勿論これに限定されるものではない。高周
波印加電力としてはアモルファスシリコンの成膜におい
ては0.1〜100Wが使用され、反応圧力は5mTo
rr〜0.ITorrが使用される。直流電圧は10〜
30Vの範囲の電圧を光電子励起用として電極間に印加
するのが望ましい。
The frequency of the high frequency power source is usually 13.56 MHz, but of course it is not limited to this. The high-frequency applied power is 0.1 to 100 W in amorphous silicon film formation, and the reaction pressure is 5 mTo.
rr~0. ITorr is used. DC voltage is 10~
Preferably, a voltage in the range of 30V is applied between the electrodes for photoelectron excitation.

〈発明を実施するための好ましい形態〉電極材料から誘
起する光電子を利用するためには、光電子発生に使用す
る紫外線は電極材料の仕事関数よりも大きなエネルギー
を持つ紫外線が望ましく、例えば材料として、ステンレ
ス鋼(SUS304.5US316L等)を用いる場合
には、λ=280 nm以下の波長の紫外線を、また、
Alを用いる場合にはλ=400 nm以下の波長の紫
外線を、Tiを用いる場合にはλ=310 nm以下の
波長の紫外線を、Wを用いる場合にはλ=275 nm
以下の波長の紫外線を、照射することが好ましい、紫外
線の効率的利用という観点から電極材料としてはAff
iが好ましいと言える。また、原料ガスとして5iHa
を用いた場合には、λ=160nm以上の紫外線を、S
i*Hiを用いた場合には、λ=200 nm以上の紫
外線を用いることが好ましい。
<Preferred form for carrying out the invention> In order to utilize photoelectrons induced from the electrode material, it is desirable that the ultraviolet rays used for photoelectron generation have a higher energy than the work function of the electrode material. When using steel (SUS304.5US316L, etc.), ultraviolet rays with a wavelength of λ = 280 nm or less, and
When using Al, ultraviolet light with a wavelength of λ = 400 nm or less, when using Ti, ultraviolet light with a wavelength of λ = 310 nm or less, and when using W, λ = 275 nm.
It is preferable to irradiate ultraviolet rays with the following wavelengths. From the viewpoint of efficient use of ultraviolet rays, Aff
It can be said that i is preferable. In addition, 5iHa is used as a raw material gas.
When using S
When i*Hi is used, it is preferable to use ultraviolet light of λ=200 nm or more.

紫外線発生源としては重水素ランプ、水′iM/キセノ
ンアークランプ、低圧水銀灯ランプ、ArFエキシマレ
ーザ−がある、また、好ましくは、第1図に示すように
、発生紫外線を所定の位置に集光するための集光レンズ
4、所望の紫外線の波長を選択透過する光学フィルター
5、合成石英窓6を備えることが好ましい。
Ultraviolet radiation sources include deuterium lamps, water/xenon arc lamps, low-pressure mercury lamps, and ArF excimer lasers. Preferably, as shown in FIG. It is preferable to include a condensing lens 4 for transmitting light, an optical filter 5 for selectively transmitting a desired wavelength of ultraviolet rays, and a synthetic quartz window 6.

本発明においては、斯くして、上記のような紫外線をグ
ロー放電開始前に高周波電力印加電極付近に照射して、
予め電極間に電子を存在させることにより、直流電界に
よって10−’A程度の電流を発生させ、0.IW程度
の小さな高周波電力に対しても安定なグロー放電を起こ
させるようにする。この場合、高周波電力を印加する電
極には負電圧を印加し、対向電極には正電圧を印加して
、紫外線を照射して得られる光電子を有効に電極間に引
き出すようにすることが好ましい。
In the present invention, the above-mentioned ultraviolet rays are irradiated near the high-frequency power application electrode before the start of glow discharge,
By making electrons exist between the electrodes in advance, a current of about 10-'A is generated by a DC electric field, and a current of about 10-'A is generated. To cause stable glow discharge even with a small high frequency power such as IW. In this case, it is preferable to apply a negative voltage to the electrode to which high-frequency power is applied, and to apply a positive voltage to the opposing electrode, so that photoelectrons obtained by irradiation with ultraviolet rays can be effectively extracted between the electrodes.

光電子による電極間の電流を10−’Aに保つための紫
外線照射強度は以下の式で与えられる(なお、 紫外線の波長を200nmで代表した )。
The intensity of ultraviolet irradiation to maintain the current between the electrodes due to photoelectrons at 10-'A is given by the following formula (note that the wavelength of ultraviolet rays is represented by 200 nm).

紫外線強度(W) =10−’xhc/(TpxλX q )−・−−−−
−−■ここで、 hニブランク定数(6,eaxto−s4J−s )C
:光速(3X10” m/s ) Tp:光電子放出係数(波長λ=200nm、仕事関数
φ=4.5eV)  3X10−3λ:200X10−
”(m) q:電荷素置(1,6XIO−” C)二こで、好まし
い紫外線強度の範囲は、光電子による電流を10−マA
−10−’Aとすると、0゜2mW以上200mW以下
である。
Ultraviolet light intensity (W) = 10-'xhc/(TpxλX q )-----
--■Here, h blank constant (6, eaxto-s4J-s)C
: Speed of light (3X10" m/s) Tp: Photoelectron emission coefficient (wavelength λ = 200 nm, work function φ = 4.5 eV) 3X10-3λ: 200X10-
"(m) q: Charge element (1,6
-10-'A, it is 0°2 mW or more and 200 mW or less.

なお、第2図には、後記実施例2において求められた、
照射される紫外線に対する放電持続可能な高周波印加電
力の関係を示した。紫外線照射強度の増加とともに放電
持続可能な高周波印加電力は低下できることがわかる。
In addition, FIG. 2 shows the values obtained in Example 2, which will be described later.
The relationship between the discharge-sustainable high-frequency applied power and the irradiated ultraviolet rays was shown. It can be seen that the discharge-sustainable high-frequency applied power can decrease as the UV irradiation intensity increases.

〈実施例1〉 本発明の実権例として、成膜装置、およびa−3l :
 H3膜の成膜に応用した場合の、効果について説明す
る。
<Example 1> As a practical example of the present invention, a film forming apparatus and a-3l:
The effects when applied to H3 film formation will be explained.

第1図に示すところの、5US304製の平行平板型対
向電極によるグロー放電発生装置に、3紫外線発生装置
3、集光レンズ4、光学フィルター5、合成石英ガラス
窓6等からなる光電子発生機構を付加した成膜装置を用
いた。水銀を含んだキセノンのアーク放電ランプより発
生する、遠紫外線、紫外線、近紫外線、可視光線のうち
、光学フィルターにより波長λ=160〜280nmの
遠紫外線、紫外線のみを透過させ、さらに合成石英窓を
通して高周波電力印加電極にのみ照射した。
As shown in Fig. 1, a photoelectron generation mechanism consisting of three ultraviolet ray generators 3, a condensing lens 4, an optical filter 5, a synthetic quartz glass window 6, etc. is attached to the glow discharge generator using parallel plate type counter electrodes made of 5US304. An additional film-forming device was used. Among the far ultraviolet, ultraviolet, near ultraviolet, and visible light emitted by a xenon arc discharge lamp containing mercury, only the far ultraviolet and ultraviolet rays with wavelengths λ = 160 to 280 nm are transmitted through an optical filter, and then through a synthetic quartz window. Only the high-frequency power application electrode was irradiated.

紫外線強度は0式において、2mWとなる。原料ガスと
してSiH4を用い、ガス圧力は20,50mTo r
 r、高周波電力は0. 1.  IWで行った。第1
表に紫外線を照射し、高周波電力およびガス圧力を変え
た条件で成膜を行った場合の実施例および低圧力、低高
周波電力の条件で、紫外線を照射しないで成膜を試みた
例を示した。低圧力、低高周波電力の条件で、紫外線を
照射しない場合は放電しなかった。また第2表に紫外線
を照射しないで、成膜した場合の比較例を示した。紫外
線照射により、5t−H!結合モードが減少し、正孔移
動度が増加した。また、ガス圧力、高周波電力を20m
Torr、0.IWにしても放電は持続し、成膜可能で
あった。直流電圧の印加および低高周波電力化、低ガス
圧力化条件での成膜により正孔移動度はそれぞれ増加し
た。
The ultraviolet light intensity is 2 mW in the 0 formula. SiH4 was used as the raw material gas, and the gas pressure was 20.50 mTor.
r, high frequency power is 0. 1. I went with IW. 1st
The table shows examples in which film formation was performed under conditions of irradiation with ultraviolet rays and varying high-frequency power and gas pressure, and examples in which film formation was attempted without irradiation with ultraviolet rays under conditions of low pressure and low high-frequency power. Ta. Under conditions of low pressure and low high-frequency power, no discharge occurred when no ultraviolet rays were irradiated. Table 2 also shows comparative examples in which films were formed without irradiation with ultraviolet rays. By UV irradiation, 5t-H! The binding mode decreased and the hole mobility increased. In addition, gas pressure and high frequency power can be
Torr, 0. Even with IW, the discharge continued and film formation was possible. The hole mobility increased by applying DC voltage, using low high frequency power, and forming the film under low gas pressure conditions.

〈実施例2〉 グロー放電に対する、紫外線照射による放電補助効果を
明らかにするために、紫外線照射強度と放電持続可能と
なる高周波印加電力との関係を測定し、結果を第2図に
示した0反応ガスとしては5iHaを用いた0反応ガス
圧力は20mTorr、紫外線波長としては、光学フィ
ルターにより160〜280nmの範囲を透過させ照射
した。
<Example 2> In order to clarify the discharge auxiliary effect of ultraviolet irradiation on glow discharge, we measured the relationship between the ultraviolet irradiation intensity and the high-frequency applied power that makes it possible to sustain the discharge, and the results are shown in Figure 2. 5iHa was used as the reactive gas, the zero reactive gas pressure was 20 mTorr, and the ultraviolet wavelength was transmitted through an optical filter in the range of 160 to 280 nm.

電極面積は100cm”、電極間距離は3cmと第1表
(カー) 第2表(比中郊I+) した、また、基板側に正電圧、高周波印加電極側に負電
圧とした直流電圧を30V印加した。その結果、紫外線
照射により、放電持続可能となる高周波印加電力は照射
しない場合に比較して低くできることがわかった。さら
に紫外線照射強度を強くしていくに従って、放電持続可
能となる高周波印加電力は低くなった。
The electrode area was 100 cm, and the distance between the electrodes was 3 cm, as shown in Table 1 (Car) and Table 2 (Hichukyo I+), and the DC voltage was 30 V with a positive voltage on the substrate side and a negative voltage on the high frequency application electrode side. As a result, it was found that by UV irradiation, the high-frequency applied power that allows the discharge to be sustained can be lowered compared to the case without irradiation.Furthermore, as the UV irradiation intensity is increased, the high-frequency applied power that allows the discharge to be sustained can be lowered by UV irradiation. Power was low.

〈発明の効果〉 本発明においては、高周波印加電極に紫外線を照射する
ことのできる手段を備え、光電子の発生機能を発現せし
めることにより、成膜中の電子密度を個別に発生させ制
御できるので、従来の放電持続条件にとられれず、これ
と独立により成膜のために好ましい条件を選択して放電
が可能になった。このことより、ガス圧力を従来より低
(することができ、さらに印加する高周波電力も少なく
て放電できるので、プラズマダメージおよび電極間にお
ける原料ガス同士の気相重合も大幅に抑制でき、基板上
での薄膜形成としては非常に好ましい方法で行われるよ
うになった。その結果として、形成される膜の赤外吸収
スペクトル測定によるSi −H* /s I −H比
が従来の成膜法によるものに比べて、大きく改善されて
おり、電気的特性として、正孔移動度が増加することが
わかった。4、
<Effects of the Invention> In the present invention, the electron density during film formation can be individually generated and controlled by providing a means capable of irradiating ultraviolet rays to the high-frequency application electrode and allowing the photoelectron generation function to occur. It is now possible to select favorable conditions for film formation and perform discharge independent of conventional discharge sustaining conditions. As a result, the gas pressure can be lower than before, and discharge can be performed with less applied high-frequency power, so plasma damage and gas phase polymerization of raw material gases between the electrodes can be significantly suppressed, and the As a result, the Si-H*/s I-H ratio of the formed film, measured by infrared absorption spectroscopy, is lower than that of the conventional film formation method. It was found that the hole mobility was significantly improved compared to the electrical properties.4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、薄膜形成装置の構成を示す模式図であり、第
2図は高周波印加電力に照射される紫外線強度と放電持
続可能高周波電力の関係を示すグラフである。 図において、 1・・一基板、2−高周波電力印加電極、3−遠紫外、
紫外線ランプ等の紫外線発生手段、4・・−集光レンズ
、5・・−光学フィルター、6・・・合成石英ガラス窓
、7−・・ガス導入系、8・−・排気系、9・・−放電
開始トリガー発生装置、lO・・−高周波電源または交
流電源、11・・・直流電源、12−・交流遮断フィル
ター、13・−直流遮断コンデンサー、14・・−高周
波接地コンデンサー、15−・−高周波シールド、16
・・−反応室
FIG. 1 is a schematic diagram showing the configuration of a thin film forming apparatus, and FIG. 2 is a graph showing the relationship between the intensity of ultraviolet rays applied to the high-frequency applied power and the high-frequency power capable of sustaining discharge. In the figure, 1... one substrate, 2- high frequency power application electrode, 3- deep ultraviolet,
Ultraviolet generating means such as an ultraviolet lamp, 4... - condenser lens, 5... - optical filter, 6... synthetic quartz glass window, 7 - gas introduction system, 8 - exhaust system, 9... -Discharge start trigger generator, lO...-High frequency power supply or AC power supply, 11...DC power supply, 12-.AC cutoff filter, 13.-DC cutoff capacitor, 14...-High frequency grounding capacitor, 15-.- High frequency shield, 16
・・・-Reaction chamber

Claims (2)

【特許請求の範囲】[Claims] (1)高周波印加電極と対向電極からなる一対の放電電
極を有する反応室内において、グロー放電分解によって
薄膜を形成する装置であって、該高周波印加電極に紫外
線を照射することのできる手段を備えてなることを特徴
とする薄膜製造装置。
(1) An apparatus for forming a thin film by glow discharge decomposition in a reaction chamber having a pair of discharge electrodes consisting of a high frequency application electrode and a counter electrode, comprising means capable of irradiating the high frequency application electrode with ultraviolet rays. A thin film manufacturing device characterized by:
(2)請求項1記載の薄膜製造装置の高周波印加電極に
紫外線を照射し、反応性ガスを供給してグロー放電分解
し、薄膜を形成することを特徴とする薄膜形成方法。
(2) A method for forming a thin film, which comprises irradiating the high frequency application electrode of the thin film manufacturing apparatus according to claim 1 with ultraviolet rays, supplying a reactive gas, and performing glow discharge decomposition to form a thin film.
JP23464589A 1989-09-12 1989-09-12 Thin film manufacturing device Pending JPH0399422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23464589A JPH0399422A (en) 1989-09-12 1989-09-12 Thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23464589A JPH0399422A (en) 1989-09-12 1989-09-12 Thin film manufacturing device

Publications (1)

Publication Number Publication Date
JPH0399422A true JPH0399422A (en) 1991-04-24

Family

ID=16974272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23464589A Pending JPH0399422A (en) 1989-09-12 1989-09-12 Thin film manufacturing device

Country Status (1)

Country Link
JP (1) JPH0399422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320741B1 (en) 1999-09-29 2001-11-20 Nec Corporation Electrical double layer capacitor
JP2007297341A (en) * 2006-05-01 2007-11-15 Athletes:Kk Method for producing hairdressing material and hairdressing material
US8414817B2 (en) 2007-12-06 2013-04-09 Braun Gmbh Process for manufacturing a hairbrush bristle
US8414818B2 (en) 2007-12-29 2013-04-09 Braun Gmbh Method for making bristles for a hairbrush

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320741B1 (en) 1999-09-29 2001-11-20 Nec Corporation Electrical double layer capacitor
JP2007297341A (en) * 2006-05-01 2007-11-15 Athletes:Kk Method for producing hairdressing material and hairdressing material
US8414817B2 (en) 2007-12-06 2013-04-09 Braun Gmbh Process for manufacturing a hairbrush bristle
US8414818B2 (en) 2007-12-29 2013-04-09 Braun Gmbh Method for making bristles for a hairbrush

Similar Documents

Publication Publication Date Title
JP3158236B2 (en) Apparatus and method for igniting a plasma in a process module
Zhang et al. Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare‐gas/halogen mixtures
US5221561A (en) Process for the photochemical treatment of a material using a flash tube light source
US4664938A (en) Method for deposition of silicon
Kampas An optical emission study of the glow‐discharge deposition of hydrogenated amorphous silicon from argon‐silane mixtures
US4910436A (en) Wide area VUV lamp with grids and purging jets
US6133694A (en) High-pressure lamp bulb having fill containing multiple excimer combinations
US5585641A (en) Large area, surface discharge pumped, vacuum ultraviolet light source
Feng et al. Investigation of excimer ultraviolet sources from dielectric barrier discharge in krypton and halogen mixtures
JPH0399422A (en) Thin film manufacturing device
JPH031436A (en) High efficiency excimer discharge lamp
JPH07169762A (en) Manufacture of insulating film and manufacture of semiconductor device using it
US4732793A (en) Method and apparatus for laser-induced CVD
JPS59188913A (en) Photo cvd device
JP3230315B2 (en) Processing method using dielectric barrier discharge lamp
Shuaibov et al. Characteristics and Parameters of Overstressed Nanosecond-Pulse Discharge Plasma between Chalcopyrite (CuInSe 2) Electrodes in Argon
Yan et al. 121.6 nm radiation source for advanced lithography
Ueno et al. Highly efficient generation of high-energy photons and low-temperature oxidation of a crystal silicon surface with O1D radicals
Boyd Ultraviolet induced mechanisms in oxide film formation
JPS60202928A (en) Optical pumping reaction device
JP2001176870A (en) Method for forming nitride film
Suzuki et al. Silicon dioxide film deposited by photoassisted microwave plasma CVD using TEOS
JP2742796B2 (en) Method for forming a-sic: H thin film
JPS62127472A (en) Apparatus for forming thin film
JPH0459769B2 (en)