JPH0399405A - Resin bonded type rare-earth magnet - Google Patents

Resin bonded type rare-earth magnet

Info

Publication number
JPH0399405A
JPH0399405A JP1236012A JP23601289A JPH0399405A JP H0399405 A JPH0399405 A JP H0399405A JP 1236012 A JP1236012 A JP 1236012A JP 23601289 A JP23601289 A JP 23601289A JP H0399405 A JPH0399405 A JP H0399405A
Authority
JP
Japan
Prior art keywords
powder
resin
raw material
organic solvent
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1236012A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakurai
充 桜井
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1236012A priority Critical patent/JPH0399405A/en
Publication of JPH0399405A publication Critical patent/JPH0399405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain high density while a high powder fludity is being maintained when a molding operation is conducted by a method wherein a mixture, formed by mixing the magnetic powder with organic resin which becomes a binder and a microcapsule containing a lubricant and an organic solvent, is used as a magnet raw material. CONSTITUTION:A lubricant and an organic solvent are contained in a microcapsule, and the mixture of the microcapsule and the resin-coated magnetic powder, in a B-stage hardened state, is used as a magnet raw material. When the raw material powder is put in a mold and a compact-molding operation is conducted, the microcapsule contained in the raw material is destructed by the pressure of molding, and the lubricant and the organic solvent in the capsule are brought out to outside. The brought out lubricant enters between powder, and the frictional resistance between powder is lessened. Also, the organic solvent dissolves the solid-state binder of the B stage on powder surface, and the organic solvent works as a liquid lubricant. A high density resin-bonded type magnet is obtained by the above-mentioned double lubricational actions. Also, as the microcapusule is merely mixed into the dried magnetic powder, the raw material powder has excellent fluidity, and it can be filled in the mold easily.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は樹脂結合型希土類磁石に関する。 〔従来の技術l 樹脂結合型磁石を製造する際にバインダーとなる樹脂を
磁性粉末に添加する方法としては液状の樹脂をニーグー
、またはロールミルのような装置で混線し1機械的に磁
性粉末の回りにコーティングさせる方法が一般的に行わ
れている。しかし。 このような方法では全ての粉末の回りに樹脂を付けるこ
とは難しく混線状態の差によって製品としての磁石性能
にバラツキがでてしまう、また、樹脂が液状であるため
に混線後の粉末がべとべとしており粉末の流動性が悪く
成形の際に成形型に粉末を充填しにくいという欠点があ
る。 このような問題を解決する方法として樹脂を有機溶剤に
溶かし、その中に磁性粉末を浸した後かくはんしながら
溶媒を揮発させ磁性粉末に樹脂をコーティングする方法
、または同様に有機溶剤に溶かした樹脂を用いて粒動層
造粒する方法が行われるようになった。これらの方法に
依って得られた粉末は個々の粉末表面が完全に樹脂でコ
ーティングされているうえに、樹脂がBステージの固体
状態にあるのでコーテイング後の粉末がさらさらしてお
り良好な流動性をもっている。 〔発明が解決しようとする課題] 有機溶剤に溶かした樹脂を用いる方法に依って得られた
粉末はバインダーとなる樹脂が磁性粉末の表面でBステ
ージの固体状態にある、これは液状の樹脂を機械的に混
練させたものと大きく異なる点で機械的に混線されたも
のは成形時においても磁性粉末間に液状の樹脂が存在す
るので粉末間の摩擦抵抗が少なく容易に高密度成形体が
得られる、しかし、Bステージの固体状態にある粉末は
成形時に潤滑剤の役目を果たす液体がないので粉末間の
摩擦抵抗が大きく高密度の成形体を得ることが難しい。 本発明はこのような問題を解決するものであり、その目
的は成形時に高い粉末流動性を維持しつつ高い密度の樹
脂結合型希土類磁石を供給することにある。 〔課題を解決するための手段〕 本発明は、磁石原料として磁性粉末にバインダーとなる
有機物樹脂をコーティングしたものと潤滑剤及び有機溶
剤を内包するマイクロカプセルの混合物を用いることを
特徴とする。 マイクロカプセルはすでに接着、印刷、医療等の分野に
おいて広く利用されているが、接着、または印刷の分野
で使用されているのはマイクロカプセルの中に接着剤や
インクを入れ、外圧に依ってカプセルが破壊され中の接
着剤やインクが外に出ることにより接着または印刷が行
われるようにしたものである。 本発明はマイクロカプセルの中に潤滑剤及び有機溶剤を
内包させ、そのマイクロカプセルとBステージの硬化状
態にある樹脂でコーティングされた磁性粉末を混合した
ものを磁石原料とする。 原料粉末を型に入れ圧粉成形を行う際、原料中のマイク
ロカプセルは成形の圧力によって破壊され、カプセル内
の潤滑剤及び有機溶剤が外に出される。出された潤滑剤
は粉末間に入り粉末間の摩擦抵抗を小さくする、また、
有機溶剤も粉末表面にあってBステージの固体状態のバ
インダーを溶解し液体潤滑剤の作用をする。これらの二
重の潤滑作用によって高密度の樹脂結合型磁石が得られ
る。また、さらさらの磁性粉末にマイクロカプセルを混
合しただけなので原料粉末の流動性はよく型への充填は
容易に行われる。 〔実 施 例〕 以下に本発明について実施例をもとに詳細に説明する。 (実施例1) 最初に急冷薄帯法によって得られたNd−Fe−B系の
磁性粉末(平均粒径=25μm、最大径=177μm)
にトリエタンに溶解させたエポキシ樹脂をエポキシ樹脂
量で2wt%加え、かくはんしながら溶媒を揮発させ樹
脂コーティングされた磁性粉末を得た。 ゼラチン水溶液にオリーブ油及びトリエタンを添加し乳
化させたものにアラビアゴム水溶液を加え酢酸でpHを
4−4.3に調整しコアセルベート相を析出させた。こ
れにホルマリン水溶液を加え、NaOHでpHを8.5
に上げることによってオリーブ油を内包、するゼラチン
−アラビアゴム系のマイクロカプセル(平均粒径20μ
m)を得た。樹脂コーティングした磁性粉末にマイクロ
カプセル2wt%加えよく混合して原料粉末とした。 得られた原料粉末を用いて無磁場状態でlO*10*1
0mmブロック成形し、l 50cで1時間焼成した。 焼成後、成形体は性能及び密度の確認を行った。尚、比
較の為にマイクロカプセルを加えずに成形したものにつ
いても同様の試験を行った。 結果を第1表に示す。 第  1  表 第1表よりマイクロカプセルを加えることにより密度が
上がり性能が改善されることがわかる。 (実施例2) Sm−Co系の磁性粉末及び、エポキシ樹脂なメチルエ
チルケトン溶液(エポキシ樹脂の重量で2.5wt%相
当量)を用いて流動層造粒を行い樹脂コーティングした
磁性粉末を得た。この粉末にオレイン酸及びトリエタン
を内包したマイクロカプセル1.5wt%を加え実施例
1と同様のテストを行った。 結果を第2表に示した。 第  2  表 第2表よりマイクロカプセルを加えることにより密度が
上がり性能が改善されることがわかる。 【発明の効果1 以上述べたように本発明により従来の樹脂コーティング
磁性粉末が持つ高い粉末流動性を維持したままで、従来
の樹脂コーティング磁性粉末より高い密度、 性能を持つ樹脂結合型磁石を提供する ことが可能となった。 以 上
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin bonded rare earth magnet. [Conventional technology 1] When manufacturing resin-bonded magnets, a method of adding resin to serve as a binder to magnetic powder is to mix liquid resin with a device such as a Ni-Goo or a roll mill, and then mechanically mill around the magnetic powder. A commonly used method is to coat the but. With this method, it is difficult to apply resin around all the powder, resulting in variations in the performance of the magnet as a product due to differences in the cross-wire state.Also, since the resin is liquid, the powder after cross-wire becomes sticky. The disadvantage is that the powder has poor fluidity, making it difficult to fill the mold with the powder during molding. One way to solve this problem is to dissolve the resin in an organic solvent, immerse the magnetic powder in it, and then evaporate the solvent while stirring to coat the magnetic powder with the resin, or to coat the magnetic powder with the resin. A method of granulation using a moving bed has come into use. Powders obtained by these methods have individual powder surfaces completely coated with resin, and since the resin is in a B-stage solid state, the powder after coating is smooth and has good fluidity. have. [Problem to be solved by the invention] In the powder obtained by the method using a resin dissolved in an organic solvent, the resin serving as a binder is in a B-stage solid state on the surface of the magnetic powder. Mechanically mixed wires are significantly different from mechanically kneaded ones because liquid resin exists between the magnetic powders even during molding, so there is less frictional resistance between the powders and high-density compacts can be easily obtained. However, since the powder in the B-stage solid state does not have a liquid that acts as a lubricant during molding, the frictional resistance between the powders is large, making it difficult to obtain a high-density compact. The present invention is intended to solve these problems, and its purpose is to provide a resin-bonded rare earth magnet with high density while maintaining high powder fluidity during molding. [Means for Solving the Problems] The present invention is characterized in that a mixture of magnetic powder coated with an organic resin serving as a binder, and microcapsules containing a lubricant and an organic solvent is used as a magnet raw material. Microcapsules are already widely used in fields such as adhesives, printing, and medicine, but what is used in the fields of adhesives and printing is to put adhesive or ink inside microcapsules and use external pressure to release the capsules. When the paper is destroyed, the adhesive or ink inside comes out, allowing for adhesion or printing. In the present invention, a lubricant and an organic solvent are encapsulated in microcapsules, and a mixture of the microcapsules and magnetic powder coated with a resin in a B-stage hardening state is used as a magnet raw material. When raw material powder is put into a mold and compacted, the microcapsules in the raw material are destroyed by the pressure of molding, and the lubricant and organic solvent inside the capsules are expelled. The released lubricant enters between the powders and reduces the frictional resistance between the powders.
The organic solvent also dissolves the B-stage solid binder on the powder surface and acts as a liquid lubricant. These dual lubrication effects result in a high-density resin-bonded magnet. Furthermore, since the microcapsules are simply mixed with smooth magnetic powder, the raw material powder has good fluidity and can be easily filled into molds. [Examples] The present invention will be described in detail below based on Examples. (Example 1) Nd-Fe-B magnetic powder first obtained by the quenched ribbon method (average particle size = 25 μm, maximum diameter = 177 μm)
An epoxy resin dissolved in triethane was added thereto in an amount of 2 wt %, and the solvent was evaporated while stirring to obtain a resin-coated magnetic powder. Olive oil and triethane were added to an aqueous gelatin solution and emulsified, an aqueous gum arabic solution was added, and the pH was adjusted to 4-4.3 with acetic acid to precipitate a coacervate phase. Add formalin aqueous solution to this and adjust the pH to 8.5 with NaOH.
gelatin-gum arabic microcapsules (average particle size 20μ) that encapsulate olive oil by
m) was obtained. 2 wt % of microcapsules were added to the resin-coated magnetic powder and mixed well to obtain a raw material powder. Using the obtained raw material powder, 1O*10*1 in the absence of a magnetic field
It was molded into a 0 mm block and fired at l 50c for 1 hour. After firing, the molded body was checked for performance and density. For comparison, a similar test was also conducted on a molded product without adding microcapsules. The results are shown in Table 1. Table 1 It can be seen from Table 1 that the addition of microcapsules increases the density and improves the performance. (Example 2) Fluidized bed granulation was performed using Sm--Co magnetic powder and a methyl ethyl ketone solution (corresponding to 2.5 wt% of the weight of the epoxy resin) as an epoxy resin to obtain resin-coated magnetic powder. 1.5 wt % of microcapsules containing oleic acid and triethane were added to this powder, and the same test as in Example 1 was conducted. The results are shown in Table 2. Table 2 It can be seen from Table 2 that the addition of microcapsules increases the density and improves the performance. [Effect of the invention 1] As described above, the present invention provides a resin-bonded magnet that maintains the high powder fluidity of conventional resin-coated magnetic powder and has higher density and performance than conventional resin-coated magnetic powder. It became possible to do so. that's all

Claims (1)

【特許請求の範囲】[Claims]  基本組成に希土類金属を含む磁性粉末に有機物樹脂を
加え得られる樹脂結合型希土類磁石において、その製造
の際に磁石原料として磁性粉末にバインダーとなる有機
物樹脂をコーティングしたものと潤滑剤及び有機溶剤を
内包するマイクロカプセルの混合物を用いることを特徴
とした樹脂結合型希土類磁石。
In resin-bonded rare earth magnets obtained by adding an organic resin to magnetic powder containing rare earth metals in the basic composition, the magnetic powder is coated with an organic resin as a binder as a magnet raw material, and a lubricant and an organic solvent are used during production. A resin-bonded rare earth magnet characterized by using a mixture of encapsulated microcapsules.
JP1236012A 1989-09-12 1989-09-12 Resin bonded type rare-earth magnet Pending JPH0399405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236012A JPH0399405A (en) 1989-09-12 1989-09-12 Resin bonded type rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236012A JPH0399405A (en) 1989-09-12 1989-09-12 Resin bonded type rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH0399405A true JPH0399405A (en) 1991-04-24

Family

ID=16994473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236012A Pending JPH0399405A (en) 1989-09-12 1989-09-12 Resin bonded type rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH0399405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth based bond magnet and its manufacturing method
JP2012533879A (en) * 2009-07-16 2012-12-27 マグネクエンチ インターナショナル インコーポレイテッド Magnetic material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth based bond magnet and its manufacturing method
JP2012533879A (en) * 2009-07-16 2012-12-27 マグネクエンチ インターナショナル インコーポレイテッド Magnetic material and method for producing the same

Similar Documents

Publication Publication Date Title
Koo et al. Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules
KR102668397B1 (en) Fabrication of Gelatin-Gum arabic Capsules Using Fluidic Device
JP2006504813A (en) Three-dimensional printing material system and method
RU2053975C1 (en) Moulding mass for of production of inorganic cakes
DE2157845C3 (en) Process for the manufacture of refractory articles
KR20140121190A (en) Metal based solder composite including conductive self-healing materials
CN1778760A (en) Gel molding-injection base from high-strength ceramic composite materials and shaping method thereof
US5030391A (en) Process for the production of spherical particles of ceramics
US5272008A (en) Encapsulated oxidation-resistant iron-neodymium-boron permanent magnet
KR20030051387A (en) Thick film composition yielding magnetic properties
US4190548A (en) Plastic bonded permanent magnet and method of making same
JPH0399405A (en) Resin bonded type rare-earth magnet
JPH02278701A (en) Resin-bonded type rare earth element magnet
US3804775A (en) Method of preparing microcapsules
JPH01234502A (en) Fine metal powder and production thereof
CN107195412A (en) Preparation and application process of a kind of 3D printing with neodymium iron boron powder slurry
US2965953A (en) Method of producing permanent magnets
JP2000077221A (en) Granulated powder for rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JP7271955B2 (en) Bonded magnet and method for producing the bonded magnet
JP2006286903A (en) Method of manufacturing rare-earth bond magnet
US3657143A (en) Manufacture of minute capsules enmasse and dewatering their walls
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH0480901A (en) Bonded magnet and manufacture thereof
JPH02110904A (en) Resin-bonded nd-fe-b magnet
KR20120129921A (en) Process for production of composite fine particles with heterogeneous surfaces