JPH0399139A - Measuring method for ice amount in ice heat storage system - Google Patents

Measuring method for ice amount in ice heat storage system

Info

Publication number
JPH0399139A
JPH0399139A JP23599689A JP23599689A JPH0399139A JP H0399139 A JPH0399139 A JP H0399139A JP 23599689 A JP23599689 A JP 23599689A JP 23599689 A JP23599689 A JP 23599689A JP H0399139 A JPH0399139 A JP H0399139A
Authority
JP
Japan
Prior art keywords
ice
water
heat storage
ion materials
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23599689A
Other languages
Japanese (ja)
Inventor
Yukio Kurosaki
黒崎 幸夫
Isao Hasegawa
功 長谷川
Fumihiro Baba
文啓 馬場
Hironori Inada
稲田 裕紀
Koichi Endo
光一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Toyo Engineering Corp
Original Assignee
Mitsui Construction Co Ltd
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, Toyo Engineering Corp filed Critical Mitsui Construction Co Ltd
Priority to JP23599689A priority Critical patent/JPH0399139A/en
Publication of JPH0399139A publication Critical patent/JPH0399139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure continuously the ice amount and make the occurence of errors difficult at the time of ice making and ice melting by a method wherein the content rate of ion materials concentrated and raised following the formation of ice in a heat storage vessel is measured from the change in electric conductivity by a conductivity meter and an ice charging rate is indirectly measured. CONSTITUTION:In the cooling water inside a heat storage vessel 1 various kinds of ion materials are contained and the ice formed in a supercooling dissolution unit is, however, formed by only pure water and in it various kinds of ion materials are not contained. Accordingly, as far as the initial water amount is not changed, the content of the ion materials is constant and so as the formed amount of ice increases, the ion materials in the water which is not frozen are concentrated and the content rate of the contained ion materials for this water is raised. As the ion materials have electric conductivity, a conductivity rate is proportional to the content rate of the ion materials in the range of about pH 5-9 for the water of the same amount in the same water system. Then, when the change of the conductivity rate of supplied cooling water from the vessel 1 is measured by a conductivity meter 6, the change in the content rate of the ion materials, that is, the amount of ice can be measured indirectly.

Description

【発明の詳細な説明】 (産業Lの利用分野) 本発明は、空気調和機等の冷房t1荷用に利用される氷
蓄熱システムにおける氷晴測定方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of Industry L) The present invention relates to a method for measuring ice clearness in an ice heat storage system used for cooling t1 loads such as air conditioners.

(従来の技術) 近年、氷蓄熱システムが、従来の水蓄熱システムに賛わ
るものとして種々提案されて来ている。
(Prior Art) In recent years, various ice heat storage systems have been proposed as alternatives to conventional water heat storage systems.

該氷蓄熱システムは、夜間電力を利用して夜の間に蓄え
た熱エネルギーを科間の空気調和用等に活用して,省エ
ネルギー化を図ろうとするものであり、水が氷になる時
の凝固熱を利用するものであるため、従来の水の温度変
化だけを利用した水蓄熱システムに比較して、容積当り
の蓄熱能力を飛躍的に同上させることができ、換言すれ
ば、蓄熱スペースを格段に小型化することが可能となる
The ice heat storage system uses nighttime electricity to save energy by using the thermal energy stored during the night for purposes such as air conditioning between departments. Because it uses heat of solidification, it can dramatically increase the heat storage capacity per volume compared to conventional water heat storage systems that only use temperature changes in water.In other words, it can save heat storage space. It becomes possible to significantly reduce the size.

しかして、現在の氷蓄熱システムは、生成される氷の性
状により、固体氷な利用する、いわゆるソリッドアイス
方式と、流動性を有する粒状(納品状)の氷を利用する
、いわゆるリキッドアイス方式とに大別されている。
Current ice heat storage systems are divided into two types, depending on the properties of the ice produced: the so-called solid ice method, which uses solid ice, and the so-called liquid ice method, which uses fluid granular (delivered) ice. It is broadly divided into

一方、氷蓄熱システムでは、管理ヒ、氷:殺のイf効水
量に対する割合、即ち、氷充填率(IPF)を常時把握
しておく必要がある。
On the other hand, in an ice heat storage system, it is necessary to constantly grasp the ratio of ice to effective water volume, that is, the ice filling factor (IPF).

そこで、前記ソリッド型氷蓄熱システムでは、各種の氷
晴センサーを用いて氷吊:測定を行なっているが、現在
使用されている氷πセンサーとしては、機械式、電極式
、水位差式、電極棒式、温度式のものなどがある。
Therefore, in the solid-type ice heat storage system, ice suspension is measured using various types of ice sensors.Currently used ice π sensors include mechanical, electrode type, water level difference type, and electrode type. There are rod type and temperature type.

1111記機械式センサーには、駆動部に駆動制御f3
号を入力し、検出針を一定時間に動かして測定を行なう
接触式センサー、あるいは、氷の生成によりセンサー内
の水が氷となって膨張する作用を利用してマイクロスイ
ッチを作動させて測定を行なうダイヤフラム式センサー
がある。
The mechanical sensor No. 1111 has a drive control f3 in the drive section.
A contact type sensor that takes measurements by inputting a number and moving the detection needle at fixed intervals, or a contact sensor that takes measurements by activating a microswitch that takes advantage of the action of water in the sensor turning into ice and expanding due to the formation of ice. There are diaphragm sensors that do this.

前記電極式センサーには、接地電極と検出電極を備え、
検出電極が氷で覆われるまでの前記2極間の通電状態で
氷晴を測定する2極式センサーや、冷却管と電極管の電
位差により測定を行なうl極式センサーがある。
The electrode type sensor includes a ground electrode and a detection electrode,
There are two-electrode sensors that measure ice clearance by applying electricity between the two electrodes until the detection electrode is covered with ice, and one-electrode sensors that measure based on the potential difference between the cooling tube and the electrode tube.

前記水位差式センサーは、検出電極により氷の生成に伴
なう水位の上界状態を感知して測定を行なうものである
The water level difference type sensor performs measurement by sensing the upper limit state of the water level accompanying the formation of ice using a detection electrode.

また、前記温度式センサーは、蓄熱槽の水温と冷却管内
の冷媒の温度との差で氷礒を測定するものである。
Furthermore, the temperature sensor measures ice buildup based on the difference between the water temperature in the heat storage tank and the temperature of the refrigerant in the cooling pipe.

さらに、七記リキッド型氷蓄熱システムのものでは,上
記各センサーで直接計測ができないため、間接法として
、入力(蓄熱量)側と、出力(放熱量)側との熱量差で
もって測定を行なう方法を採用している。
Furthermore, with the liquid ice heat storage system described in Section 7, direct measurement cannot be performed with each of the above sensors, so as an indirect method, measurement is performed using the difference in heat amount between the input (heat storage amount) side and the output (heat release amount) side. method is adopted.

(発明が解決しようとする課題) しかしながら、上記各センサーや間接測定法は、次のよ
うな欠点を有している。
(Problems to be Solved by the Invention) However, each of the above-mentioned sensors and indirect measurement methods has the following drawbacks.

(1)機械式及び電極式では、氷厚が場所により変動す
る場合には計測誤差が生じ、また、装置が複雑になる。
(1) Mechanical and electrode methods cause measurement errors if the ice thickness varies depending on location, and the devices become complicated.

(2)水位差式では、解氷時に水面の変動で誤差が生じ
る。
(2) In the water level difference method, errors occur due to fluctuations in the water level when ice melts.

(3)間接測定法では、蓄熱槽、配管等の放熱や、ボン
ブ入熱が蓄熱量、放熱気に影響を与え,稍度の高い計測
ができない。
(3) In the indirect measurement method, heat radiation from the heat storage tank, piping, etc., and heat input from the bomb affect the amount of heat storage and heat radiation, making it impossible to measure with high accuracy.

本発明は、かかる従来の課題を解決しつる、氷蓄熱シス
テムにおける氷咀測定方法を提供することを口的とする
ものである。
An object of the present invention is to provide a method for measuring ice mass in an ice heat storage system, which solves the conventional problems.

(課題を解決するための手段) L記目的を達成するため本発明に係る氷蓄熱システムに
おける氷電測定方法では、蓄熱槽内に氷が生成されるに
つれて、濃縮されて高くなるイオン物質の含有率を、導
電率計による導電率の変化から計測し、これにより氷充
填率を間接的に測定するようにしたことを特徴とするも
のである。
(Means for Solving the Problems) In order to achieve the object L, in the ice electricity measurement method in the ice thermal storage system according to the present invention, as ice is generated in the thermal storage tank, the content of ionic substances is concentrated and increases. The ice filling rate is measured from the change in conductivity using a conductivity meter, thereby indirectly measuring the ice filling rate.

(実施例) 以下、本発明の好適な実施例を図面により説明する。(Example) Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明に係る水量の測定装置の一実施例を示
すものであり,図中1は氷蓄熱システムにおける蓄熱槽
である。
FIG. 1 shows an embodiment of a water amount measuring device according to the present invention, and numeral 1 in the figure is a heat storage tank in an ice heat storage system.

該蓄熱槽lの底部近傍から循環ボンブ2を介して延設、
配管されている冷水ライン3からは、バイパスライン4
が分岐されており、第1バルブ5を介して導電率計6が
バイパスライン内に配置されている。
Extending from near the bottom of the heat storage tank l via the circulation bomb 2,
A bypass line 4 is connected to the piped cold water line 3.
is branched off, and a conductivity meter 6 is placed in the bypass line via the first valve 5.

また、7、8は各々第2バルブ及び第3バルブである。Further, 7 and 8 are a second valve and a third valve, respectively.

次に、本実施例に係る氷損測定方法につき説明する。Next, the ice loss measuring method according to this embodiment will be explained.

蓄熱槽!内の冷却水中には、各種のイオン物質が含まれ
ているが、図示しない過冷却解泪装置により生成された
氷は、純粋な水( UZO )だけで構成され、各種の
イオン物質を含まない性質がある。
Heat storage tank! The cooling water inside contains various ionic substances, but the ice produced by the supercooling melting device (not shown) is composed only of pure water (UZO) and does not contain any ionic substances. It has a nature.

よって、初期の水量が変化しない限り、イオン物質の含
有晴は一定であるから、氷の生成館が増加するにつれて
、氷結していない水中のイオン物質が濃縮されてゆき、
この水に対する含イiイ才ン物質の含有率が高くなって
いくこととなる。
Therefore, as long as the initial amount of water does not change, the content of ionic substances remains constant, so as the amount of ice formation increases, the ionic substances in unfrozen water become concentrated.
The content of the desirable substances in this water becomes higher.

一方、イオン物質には導電性があるため、同一水系の同
一量の水では、p I1 5〜9の範四でその導電率が
イオン物質の含有率に比例ずることが知られている。
On the other hand, since ionic substances have electrical conductivity, it is known that in the same amount of water in the same aqueous system, the electrical conductivity is proportional to the content of the ionic substance in the range of p I1 5 to 9.

即ち,含有イオン物質の含有率が高くなってくるにつれ
て、導電率も高くなる。
That is, as the content of ionic substances increases, the conductivity also increases.

よって、本実施例のように導電率計6によって、蓄熱槽
1から供給される冷却水の導電率の変化を計測すること
により、イオン物質の含イ■串の変化、即ち、氷の景を
間接的に測定することができることになる。
Therefore, by measuring the change in the conductivity of the cooling water supplied from the heat storage tank 1 using the conductivity meter 6 as in this embodiment, it is possible to measure the change in the content of ionic substances, that is, the appearance of ice. This means that it can be measured indirectly.

また、本実施例に係る氷積測定方法によれば、リキッド
梨氷蓄熱システムにも適用することができ、汎用性を有
する測定方法となる。
Furthermore, the ice accumulation measuring method according to the present embodiment can be applied to a liquid pear ice heat storage system, resulting in a versatile measuring method.

ここで、導電率とは、通常断面梢1cm”、距離1 c
mの相対する電極間にある溶液の電導度をいい、ジーメ
ンス/ cm ( S / cm)で表示する。
Here, the electrical conductivity is usually measured at a cross-section of 1 cm" and a distance of 1 c.
It refers to the conductivity of a solution between opposing electrodes of m, and is expressed in Siemens/cm (S/cm).

但し、水の導電率については、マイクロジーメンス/c
m(μS/cm)で表される。
However, regarding the conductivity of water, MicroSiemens/c
It is expressed in m (μS/cm).

( I S/cm= I  O’  μs/cm)なお
、測定にあたっては、上記した如く比例関係にある導電
率、イオン物質の含有率及び氷t1の問の相関関係値を
計算しておき、さらに、氷竜と氷充填率との間の相関関
係植も求めておき、導電率計6に接続された図示しない
計算同路にあらかじめ各関係値を入力しておくことによ
り、即座に氷充填率を出力しつるようにしておくのが望
ましい。
(I S/cm = I O' μs/cm) In addition, in the measurement, calculate the correlation value of the electrical conductivity, ionic substance content, and ice t1, which have a proportional relationship as described above, and then , the correlation between the ice dragon and the ice filling rate is also determined, and by inputting each relationship value in advance into the calculation circuit (not shown) connected to the conductivity meter 6, the ice filling rate can be immediately calculated. It is desirable to output and hang it.

また、導電率は水温1℃の−.1.9iに比例して約2
%増加するこども知られているので、導電率計6と並行
して図示しない水温センサーも設置しておき、1rI記
計算同路に水温の変化に対する補正同路を設けて、水温
の変化よる測定値誤差が生じないようにしておけばよい
Moreover, the electrical conductivity is -. Approximately 2 in proportion to 1.9i
% increase in children, so a water temperature sensor (not shown) is installed in parallel with the conductivity meter 6, and a correction path for changes in water temperature is installed in the calculation path described in 1rI to perform measurements based on changes in water temperature. It is sufficient to prevent value errors from occurring.

なお、本発明は、上記実施例に限定されるものではなく
,本発明の要旨を逸脱しない範囲内で神々の変形例が可
能なことは言うまでもない。
It should be noted that the present invention is not limited to the above embodiments, and it goes without saying that modifications of the gods are possible within a scope that does not depart from the gist of the present invention.

(発明の効果) 本発明は上述した如く構成されており、以下の効果を奏
しつるものである。
(Effects of the Invention) The present invention is configured as described above, and provides the following effects.

(1)氷凝の連続計測が可能である。(1) Continuous measurement of ice condensation is possible.

(2)測定装置がコンパクトで、保守管理が容易である
(2) The measuring device is compact and maintenance is easy.

(3)氷結していない水に対するイオン物質の含イ1率
の変化で測定する方法であるため、製氷時及び解氷時の
誤差が生じにくい。
(3) Since this method measures changes in the ionic content of unfrozen water, errors are less likely to occur during ice making and ice thawing.

(4)導電率計を自動化のための計装用センサーとして
使用することが可能となる。
(4) The conductivity meter can be used as an instrumentation sensor for automation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る氷1tの測定装置の−丈施例を
示すものである。 1・・・蓄熱槽、    2・・・循環ボンブ、3・・
・冷水ライン、 4・・・バイパスライン, 5・・・第1バルブ、 6・・・導電率計、 7・・・第2バルブ、 8・・・第3パルブ。 第1図
FIG. 1 shows an embodiment of the ice measuring device according to the present invention. 1... Heat storage tank, 2... Circulation bomb, 3...
- Cold water line, 4... Bypass line, 5... First valve, 6... Conductivity meter, 7... Second valve, 8... Third valve. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 蓄熱槽内に氷が生成されるにつれて、濃縮されて高くな
るイオン物質の含有率を、導電率計による導電率の変化
から計測し、これにより氷充填率を間接的に測定するよ
うにしたことを特徴とする氷蓄熱システムにおける氷量
測定方法。
As ice is formed in the heat storage tank, the content of ionic substances that becomes concentrated and increases is measured from changes in conductivity using a conductivity meter, thereby indirectly measuring the ice filling rate. A method for measuring the amount of ice in an ice heat storage system characterized by:
JP23599689A 1989-09-12 1989-09-12 Measuring method for ice amount in ice heat storage system Pending JPH0399139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23599689A JPH0399139A (en) 1989-09-12 1989-09-12 Measuring method for ice amount in ice heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23599689A JPH0399139A (en) 1989-09-12 1989-09-12 Measuring method for ice amount in ice heat storage system

Publications (1)

Publication Number Publication Date
JPH0399139A true JPH0399139A (en) 1991-04-24

Family

ID=16994262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23599689A Pending JPH0399139A (en) 1989-09-12 1989-09-12 Measuring method for ice amount in ice heat storage system

Country Status (1)

Country Link
JP (1) JPH0399139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233978A (en) * 1994-02-22 1995-09-05 Nkk Corp Method and device for measuring percentage of ice in ice storage tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233978A (en) * 1994-02-22 1995-09-05 Nkk Corp Method and device for measuring percentage of ice in ice storage tank

Similar Documents

Publication Publication Date Title
Lazaro et al. Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials
Sarı Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications
Greywall Search for superfluidity in solid He 4
Grace et al. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
EP3470829B1 (en) Dew point measuring method
EP3575718A1 (en) Using surface heat flux measurement to monitor and control a freeze drying process
CN104964997A (en) Method for quickly determining content of heterogeneous media in material based on physical property matching
Lunkenheimer et al. Attempts to study a water evaporation retardation by soluble surfactants
Gardner et al. Osmotic coefficients of some aqueous sodium chloride solutions at high temperature
JPH0399139A (en) Measuring method for ice amount in ice heat storage system
US5140275A (en) Method and apparatus for measuring the amount of ice in an aqueous ice slurry
Hust et al. Density and crystallinity measurements of liquid and solid n-undecane, n-tridecane, and o-xylene from 200 to 350. deg. K
CN106646251A (en) Electric car vehicle power battery large-power direct current electric energy metering method
KR101332179B1 (en) Freezing sensor
Shi et al. A measurement method of ice layer thickness based on resistance-capacitance circuit for closed loop external melt ice storage tank
JPH03110330A (en) Method for measuring amount of heat accumulated in ice heat storage system
CN209416461U (en) Ice amount detecting device for ice-storage equipment
Scribner et al. Low-Temperature He 3 Melting Curve
JPH04132948A (en) Ph meter with life-prediction display
JPH04357446A (en) Method and apparatus for measuring ice making amount used in ice heat accumulator
JPS5945903B2 (en) Ice amount measuring device
CN212842374U (en) Cryostat with liquid level is reported to police and prediction function
JPS63195551A (en) Method for measuring freezing rate
Brown et al. Frost action in clay soils. I. A temperature‐step and equilibrate differential scanning calorimeter technique for unfrozen water content determinations below 0° C
CN220229661U (en) Cold quantity metering system of ice storage tank for ice storage