JPH0397820A - Titanium alloy for anode - Google Patents
Titanium alloy for anodeInfo
- Publication number
- JPH0397820A JPH0397820A JP1235195A JP23519589A JPH0397820A JP H0397820 A JPH0397820 A JP H0397820A JP 1235195 A JP1235195 A JP 1235195A JP 23519589 A JP23519589 A JP 23519589A JP H0397820 A JPH0397820 A JP H0397820A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- cobalt
- titanium
- nickel
- platinum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 52
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 32
- 239000010941 cobalt Substances 0.000 claims abstract description 32
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000010936 titanium Substances 0.000 claims abstract description 23
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 23
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 20
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 4
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 4
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 3
- 229910052762 osmium Inorganic materials 0.000 claims abstract description 3
- 239000010405 anode material Substances 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 abstract description 17
- 230000007797 corrosion Effects 0.000 abstract description 17
- 238000005868 electrolysis reaction Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 19
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000956 alloy Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、アノード用材料,特に電解二酸化マンガン製
造用アノード材料やその他めっき用,電気分解用不溶性
アノード材料に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to anode materials, particularly anode materials for electrolytic manganese dioxide production, and other insoluble anode materials for plating and electrolysis.
不溶性アノードとして現在、黒鉛,鉛.白金めっき,あ
るいは白金タラッドチタン材などが使用されている。し
かし黒鉛や鉛は使用中に溶解により消耗してゆき,液の
汚濁が起きる。Graphite and lead are currently used as insoluble anodes. Platinum plating or platinum-talad titanium materials are used. However, graphite and lead are consumed by dissolution during use, causing contamination of the liquid.
一方、白金めっき,あるいは白金クラッドチタン材は,
高価な白金を使月することにより非常にコストが高くつ
き,それゆえに表面にわずかだけ白金コーティングして
あるため,予想以上シこ寿命が短い場合がある。また,
このような表面処理材は一般に表面の扱いを慎重にする
必要があり,取扱に慎重を要する。On the other hand, platinum-plated or platinum-clad titanium materials are
The cost is very high due to the use of expensive platinum, and because the surface is coated with a small amount of platinum, the life of the die may be shorter than expected. Also,
In general, the surface of such surface-treated materials must be handled with care, and care must be taken when handling them.
また、二訣化マンガン製造時に用いられるアノード材は
、表面をサンドブラスト処理した純チタン板が用いられ
ているが、これは黒鉛等の材料に比べ消耗が非常に少な
く安定であるためである.〔発明が解決しようとする課
題〕
しかしながら,チタンのアノード材は、電流密度を高く
すると表面の不動態膜が戊長し浴電圧が上昇することが
あり、さらになお通電を継続しようとするとついには通
電不能となるという問題がある。そのため電解二酸化マ
ンガン製造時の電流密度は、0.8A/dm”前後に抑
えておく必要があった。In addition, the anode material used in the production of manganese is a pure titanium plate with a sandblasted surface because it is stable and wears much less than materials such as graphite. [Problem to be solved by the invention] However, when the current density of titanium anode materials is increased, the passive film on the surface may lengthen and the bath voltage may rise. There is a problem that electricity cannot be supplied. Therefore, it was necessary to suppress the current density during electrolytic manganese dioxide production to around 0.8 A/dm''.
この電流密度は、電解工場においては直接生産性に結び
つく問題であり、同じ電解槽であれば電流密度が高いほ
ど大量生産が可能となり、また生産量一定とすれば電流
密度が高いほど電解槽の設備費を小さくすることが出来
ると言う利点がある.さらに、電解二酸化マンガン製造
用アノード材料以外でもチタンは陽極として用いられて
いるが、前記したように電流密度を高くすると表面の不
動態膜が成長し通電不能となるため現状では白金めっき
等の貴金属めっきを行ったものが用いられている.しか
し、このような処理は非常に高価な貴金属を使うことな
どにより経済的負担が大きく、工場利用上大きな問題と
なっていた.
本発明は,上記の事情に鑑みなされたものであリ、従来
使用されていたチタン陽極材に代わりより多くの高電流
密度が流せることを特徴とする全く新しいアノード電陽
用チタン合金材料を安価に提供することを目的としてい
る。This current density is a problem that is directly linked to productivity in electrolytic factories.If the current density is the same, the higher the current density, the more mass production is possible.If the production volume is constant, the higher the current density, the more The advantage is that equipment costs can be reduced. Furthermore, titanium is also used as an anode for materials other than anode materials for producing electrolytic manganese dioxide, but as mentioned above, when the current density is increased, a passive film grows on the surface, making it impossible to conduct electricity. A plated material is used. However, this type of treatment imposes a heavy economic burden due to the use of extremely expensive precious metals, which poses a major problem in terms of factory utilization. The present invention was made in view of the above-mentioned circumstances, and provides a completely new titanium alloy material for anodes, which is characterized by the ability to flow a higher current density and is inexpensive, in place of the conventionally used titanium anode material. It is intended to provide.
本発明は上記目的を達成するためにコバルトが0.05
wt%超え3wt%以下で,残部がチタン及び不可避的
不純物からなることを特{放としたアノード用材料であ
り,またコバルトが0.05ωt%超え3wt%以下、
ニッケルが0.上wt%以上7wt%以下で,残部がチ
タン及び不可避的不1物からなることを特徴としたアノ
ード用材科であり、さらシこコバルトが0.05υt%
超え3wt%以下、ニッケルが0,1wt%以上7wt
%以下、白金族元素(Pt,Au,Ru,Pd,Rh,
○s,Ir)のトータルの含有量が0.01+,+t%
以上5vt%以下で、残部がチタン及び不可避的不純物
からなることを特徴としたアノード用材料である。In order to achieve the above object, the present invention has a cobalt content of 0.05
It is an anode material with a special feature that the content of cobalt is more than 3 wt% and the balance is titanium and unavoidable impurities, and the content of cobalt is more than 0.05 ωt% and less than 3 wt%.
Nickel is 0. It is an anode material with a content of 0.05 υt% and 0.05υt% of smooth cobalt.
Exceeding 3wt% or less, nickel 0.1wt% or more 7wt
% or less, platinum group elements (Pt, Au, Ru, Pd, Rh,
○The total content of s, Ir) is 0.01+, +t%
This is an anode material characterized in that the content is 5vt% or less, and the remainder consists of titanium and unavoidable impurities.
本発明がコバルトをチタン中に添加するのは,Ti2C
oの金属間化合物が適切な製造方法を行うことによりチ
タン中に現れ,この部分からより多くの電流を流すこと
により、母材のチタンの酸化皮膜成長を防ぎ浴電圧の上
昇が起こらなくなるからである。The present invention adds cobalt to titanium because Ti2C
This is because the intermetallic compound of o appears in the titanium by performing an appropriate manufacturing method, and by passing more current from this part, it prevents the growth of an oxide film on the base material titanium and prevents an increase in bath voltage. be.
この際、コバルトの添加量が0.05wt%以下ではそ
の量が少なく純チタンとあまり変わらないためコバルト
含有量の下限を0.05wt%超えとした.
また,上限を3wt%としたのは、これより多く添加す
ると加工が著しく困難となりアノード用材料として通常
用いられている形状まで加工が実質的に不可能なためで
ある。At this time, if the amount of cobalt added is less than 0.05 wt%, the amount is small and is not much different from pure titanium, so the lower limit of the cobalt content was set to exceed 0.05 wt%. The upper limit was set at 3 wt% because if more than this amount is added, processing becomes extremely difficult and it is virtually impossible to process into the shape normally used as an anode material.
さらに,これにニッケルを添加すると,より一層の効果
があることが判明し本発明の2番目の発明を見い出すに
到った.
この際,コバルトの含有量が0.05tit%以下、ニ
ッケルの含有量が0.1wt%未満では、その効果が表
われないためコバルトの含有量の下限を0.05wt%
超え,ニッケルの含有量の下限を0.上wt%とした。Furthermore, it was found that adding nickel to this resulted in an even more effective effect, leading to the discovery of the second invention of the present invention. At this time, if the cobalt content is less than 0.05 tit% and the nickel content is less than 0.1 wt%, the effect will not appear, so the lower limit of the cobalt content is set to 0.05 wt%.
exceeding the lower limit of nickel content. The upper wt% was set.
また、アノード用材料として通常用いられている形状ま
で加工が実質的にできうるためにはコバルトの上限を3
wt%とし,ニッケルの上限を7wt%とする必要があ
った。In addition, the upper limit of cobalt must be 3.5% in order to be able to practically process it into the shape normally used as an anode material.
It was necessary to set the upper limit of nickel to 7 wt%.
さらに,これに白金系元素を添加することにより、より
多くの電流が流せるとともに耐食性が格段に向上し,腐
食環境が非常に厳しい電解溶液中でも腐食することなく
使用できることが可能となり,本発明の3番目の発明を
見い出すに到った。Furthermore, by adding a platinum-based element to this, more current can flow and the corrosion resistance is significantly improved, making it possible to use it without corrosion even in an electrolytic solution with a very harsh corrosive environment. This led to his discovery of his second invention.
この際、Pt,Rh,Au,Pd,I r,Os,Ru
の濃度の合計の下限をO.OLtzt%としたのは、そ
れ未満では耐食性の向上が望めず、また上限を5wt%
以下としたのは,これより多く添加しても経済的な負担
に比べその効果が小さいためである.
〔実施例〕
次に、本発明の有効性を具体的な実施例に基づいて説明
する。At this time, Pt, Rh, Au, Pd, I r, Os, Ru
The lower limit of the total concentration of O. The reason for setting OLtzt% is that if it is less than that, no improvement in corrosion resistance can be expected, and the upper limit is set at 5wt%.
The reason for using the following values is that even if a larger amount is added, the effect is small compared to the economic burden. [Example] Next, the effectiveness of the present invention will be explained based on specific examples.
(実験1)
市販のスポンジチタンに純コバルト,純ニッケルを添加
し,真空アーク溶解にてインゴットを作製した後.90
0℃にて鍛造を行ない、その後900℃にて再加熱後熱
間圧延にて厚さ6mmの熱延阪を作製した。これを、冷
間圧延にて厚さ4mmに加工し、温度650℃で3時間
、真空焼鈍を行ない供試材とした。(Experiment 1) Pure cobalt and pure nickel were added to commercially available titanium sponge, and an ingot was made by vacuum arc melting. 90
Forging was performed at 0°C, then reheated at 900°C, and then hot rolled to produce a hot-rolled sheet with a thickness of 6 mm. This was processed into a thickness of 4 mm by cold rolling, and vacuum annealed at a temperature of 650° C. for 3 hours to obtain a test material.
各供試材のアノード特性評価方法は,室温で、0.35
moQ/N琉酸水溶液中にてカソードに白金、アノード
にパフ研摩上がりの供試材を用い、電流密度0.IA/
dmの定電流電解試験を実施し,浴電圧上昇がどのくら
いの時間で起こるかを調べ,アノード電極特性の評価と
した(第1図参照)。The anode characteristic evaluation method for each sample material was 0.35 at room temperature.
Using platinum as the cathode and a puff-polished test material as the anode in an moQ/N phosphoric acid aqueous solution, the current density was 0. IA/
A dm constant current electrolysis test was conducted to determine how long it took for the bath voltage to rise to evaluate the anode electrode characteristics (see Figure 1).
具体的には、浴電圧が5.0ボルトとなる時間を浴電圧
上昇時間と定義し,これの大小に基づきアノード電極特
性の評価を行なった.
第上表にTi−Co二元系合金の0.1及び0.5A/
dm定電流での通電試験によるアノード特性評価結果を
示す.
この表から判るようにコバルトを全く添加しない場合(
No.1:純チタン)は浴電圧上昇時間は非常に短いの
に対して、コバルトの濃度が0.05リヒ%を超えると
浴な圧上昇時間が長くなり,アノード=陽特性が向上す
るのが判る,このことからコバルト添加量の下限を0.
05tit%超えとする必要があることが判る,
また、第工表に示されているようにコバルトの量が3w
t%を越すと非常に加工しずらくなることが判明したの
で上限を3wt%とした,次に.Ti Co−Ni系
合金についてアノード電南特性を調査した結果を第2表
に示す。Specifically, the time for the bath voltage to reach 5.0 volts was defined as the bath voltage rise time, and the anode electrode characteristics were evaluated based on the magnitude of this time. The table above shows Ti-Co binary alloys with 0.1 and 0.5 A/
The results of anode characteristic evaluation by conducting a current test at DM constant current are shown. As you can see from this table, if no cobalt is added at all (
No. 1: pure titanium), the bath voltage rise time is very short, whereas when the cobalt concentration exceeds 0.05%, the bath pressure rise time becomes longer and the anode = positive characteristics are improved. , From this, the lower limit of the amount of cobalt added is set to 0.
It can be seen that it is necessary to exceed 0.05 tit%. Also, as shown in the work table, the amount of cobalt is 3w
It was found that exceeding t% made processing extremely difficult, so the upper limit was set at 3wt%.Next. Table 2 shows the results of investigating the anode electrical properties of TiCo-Ni alloys.
まず,コバルトの含有量をQ,5t++t%に固定し,
ニッケルの含有量を変化させた供試材の結果をNo.1
−No.9に示す,
第1表
T1 (o二元系合金の浴電圧上昇時間X印は本発明合
金(1)の範囲の材料
第2表
Ti−Co−Ni三元系合金の浴電圧上昇時間※印は本
発明合金(2)の範囲の材料
この結果から判るようにニッケルをQ.1wt%以上添
加することによりアノード電極特性が上昇しはじめ(浴
電圧上昇時間が長くなる),特にニッケル含有量がlv
t%以上になると格段に上昇することが判明した6この
ことからコバルト存在下におけるニッケル含有量の下限
は0.1wt%とし,好ましくは1wt%とする.
次に、ニッケルの量を3wt%に固定しコバルトの含有
量を変化させた結果No.10〜N o .18で判る
ようにTi−3%Niにコバルトを0.05tit%を
超えて添加するとアノード電陽持性が上昇しはじめ、特
にコバルト含有量が0.5wt%になると格段に上昇す
ることが判明した。First, the cobalt content is fixed at Q, 5t++t%,
The results of test materials with varying nickel contents are shown in No. 1
-No. 9, Table 1 T1 (bath voltage rise time of o binary alloy) The mark X indicates the bath voltage rise time of Ti-Co-Ni ternary alloy in Table 2 for materials in the range of the present invention alloy (1) * The marks indicate materials within the range of the invention alloy (2).As can be seen from these results, by adding Q.1wt% or more of nickel, the anode electrode characteristics begin to improve (bath voltage rise time becomes longer), especially when the nickel content is lv
It has been found that the content of nickel increases significantly when it exceeds t%.6 Based on this, the lower limit of the nickel content in the presence of cobalt is set to 0.1 wt%, preferably 1 wt%. Next, as a result of fixing the amount of nickel to 3 wt% and varying the content of cobalt, No. 10~No. As shown in No. 18, when cobalt is added to Ti-3%Ni in an amount exceeding 0.05 tit%, the anode electrolyte retention begins to increase, and in particular, it increases markedly when the cobalt content reaches 0.5 wt%. did.
この際,コバルト含有量が0,5wt%を越えたあたり
よりアノード電極特性は一定状態となり、それより多く
コバルトを添加してもほとんどアノード電陽持性は向上
せず、逆に3wt%を越えたあたりより低下し始める.
このことからニッケル存在下に於けるコバルト濃度の下
限を0.05vt%超えとし,上限を3wt%とじた。At this time, the anode electrode characteristics become constant when the cobalt content exceeds 0.5 wt%, and even if more cobalt is added, the anode electrolyte retention hardly improves; on the contrary, when the cobalt content exceeds 3 wt%, It starts to decline.
From this, the lower limit of the cobalt concentration in the presence of nickel was set to exceed 0.05 wt%, and the upper limit was set to 3 wt%.
最後に、ニッケルの上限を決定するためコバルト濃度を
上限3wt%とし、ニッケル濃度を増していった結果、
No.19 以下に示すように、ニッケルの量を増すと
浴電圧上昇が抑えら九る方向に進むことが判るが、コバ
ルト3wt%の時のニッケル含有量が7wt%となると
加工が非常に困難となり、10wt%では実質的に加工
がほとんど出来ないことが判明した。そこで、ニッケル
の上限は7督t%とした。Finally, in order to determine the upper limit of nickel, the upper limit of cobalt concentration was set at 3 wt%, and as a result of increasing the nickel concentration,
No. 19 As shown below, it can be seen that increasing the amount of nickel tends to suppress the rise in bath voltage, but when the nickel content becomes 7 wt% when the cobalt content is 3 wt%, processing becomes extremely difficult. It has been found that processing is virtually impossible at 10 wt%. Therefore, the upper limit of nickel was set at 7t%.
以上の実験例で判るように、純チタンに比べTi−0.
05vt%超え乃至3wt%COは電流をより多く流す
ことが出来ることが判明し、さらにTi−0.05wt
%超え乃至3wt%CoよりTi−0.05wt%超え
乃至3wt%Co−0.1乃至7wt%Niがより多く
の電流を流すことが出来ることが明らかとなり、優れた
アノード材科が得られた.
(実12)
電解二酸化マンガン製造用アノード材としても本発明合
金がいかに優れたものであるかを確かめるため市販スポ
ンジチタンに純コバルト.純ニッケル,白金元素を添加
し、真空アーク溶解にてインゴットを作製した後、90
0℃にて鍛造を行ない,その後900℃にて再加熱後熱
間圧延にて厚さ6mmの熱延板を作製した。これを,冷
間圧延にて厚さ4mmに加工し、温度6 5 0 ’C
で3時間真空焼鈍を行なった後,サンドブラスト処理を
施し供試材とし、評価試験を実施した。As can be seen from the above experimental examples, compared to pure titanium, Ti-0.
It was found that more current can flow with CO exceeding 0.05vt% or 3wt%;
It became clear that more current could flow in Ti-0.05wt%-3wt%Co-0.1-7wt%Ni than in Ti-0.05wt%-3wt%Co, and an excellent anode material was obtained. .. (Actual Example 12) In order to confirm how excellent the present alloy is as an anode material for electrolytic manganese dioxide production, pure cobalt was added to commercially available titanium sponge. After adding pure nickel and platinum elements and producing an ingot by vacuum arc melting,
Forging was performed at 0°C, then reheated at 900°C, and then hot rolled to produce a hot rolled plate with a thickness of 6 mm. This was processed into a thickness of 4 mm by cold rolling, and the temperature was 650'C.
After vacuum annealing for 3 hours, sandblasting was performed to prepare a sample material, and an evaluation test was conducted.
評価試験方法としては、第2図に示すように、まず実操
業とほぼ同等な条件にて定電流電気分解で供試材表面に
二酸化マンガンを析出させ,そのときの浴電圧上昇を調
べることにより、どこまで高い電流密度が流せるかを評
価した。この実験に使用した装置は第2図に示したよう
に0.35man/fla酸水溶液と0.55mofl
lD硫2マンガン水溶液とを混合した95℃の水槽中で
陽陽に供試材を、陰陽に白金を用いて定電流電気分解し
て供試材表面に二酸化マンガンを析出させるものである
。As shown in Figure 2, the evaluation test method was to first deposit manganese dioxide on the surface of the sample material by constant current electrolysis under conditions almost equivalent to actual operation, and then examine the rise in bath voltage at that time. We evaluated how high the current density could flow. As shown in Figure 2, the equipment used in this experiment is a 0.35 man/fla acid aqueous solution and a 0.55 mofl acid solution.
Manganese dioxide is precipitated on the surface of the test material by electrolyzing the test material at a constant current in a 95° C. water tank mixed with an aqueous solution of 1D dimanganese sulfur, using platinum as positive and negative, and platinum as positive and negative.
その判断基準としては96時間浴電圧が10ボルト以下
であればその電流密度で二酸化マンガンが問題なく製造
できるものとみなした。The criterion for this judgment was that if the bath voltage for 96 hours was 10 volts or less, manganese dioxide could be produced without problems at that current density.
このような判ifr基準にしたがい得られた試験結果を
第3表に示す。この表から判るように、現在の実操業に
おいて使用されている純チタン材(No.1.) よ
り明かに本発明合金の方が多くの電流を流せることが容
易に判る。Table 3 shows the test results obtained according to such IFR standards. As can be seen from this table, it is easy to see that the alloy of the present invention can pass a larger current than the pure titanium material (No. 1) currently used in actual operations.
以上の実験例1と2から,本発明材料はきわめて優れた
アノード電極特性を有し,しかも必要に応じてさらに浸
れた耐食性も得られろことが判った,
(実験3)
さらに,非常に厳しい腐食環境においてもアノード材と
して史用するためには,より高い耐食性が必要であるた
め、Ti−0.05vt%超え乃至3vt%Co−0.
t〜7wt%Niに白金系元素を添加することによりこ
れを解決した。もちろん、巳金糸元素を添加することに
より電流を流せる量が低下することはなく、むしろより
多くの電流を流せることも確認済みである。第4表に、
T i −0.05ut%超えGo−3wt%Niに白
金系元素を種々添加した場合の耐食性の変化を示す。試
験条件は、琉識水,溶液、沸騰中での供試材の腐食滅1
を測定したものである。From the above Experimental Examples 1 and 2, it was found that the material of the present invention has extremely excellent anode electrode properties, and can also provide even better corrosion resistance if necessary. (Experiment 3) In order to be used as an anode material even in a corrosive environment, higher corrosion resistance is required.
This problem was solved by adding a platinum-based element to t~7wt%Ni. Of course, it has been confirmed that adding the metal thread element does not reduce the amount of current that can be passed, and in fact allows more current to flow. In Table 4,
The changes in corrosion resistance when various platinum-based elements are added to Go-3wt%Ni exceeding T i −0.05ut% are shown. The test conditions were: corrosion of the sample material in Ryuki water, solution, and boiling.
was measured.
第4表から判るように、白金系元素の濃度が0.01w
t%以上になると酎食性の向上がみられ、0.5vt%
以上になると明らかに酎食性の向上がはっきりと認めら
れる。このことから白金系元素の含有量の下限を0.0
1wt%好ましくは0,5vt%以上にする必要がある
ことが判る。さらに,白金系元素の含有量を多く添加し
て行けば耐食性は向上して行くが,5wt%前後より添
加した量の割には耐食性が向上しなくなり、白金系元素
は非常に高価であることを考慮に入れると経済的な負担
からその上限を5tit%とした5
以上、白金系元素を添加することにより、耐食性が著し
く向上することが判明したが、これは,例えばアノード
電極として実際にアノード電位が印加している場合など
においては、アノード防食効果により腐食しない場合で
も、操業を停止した場合等の電位を印加しなくなった場
合に,たちどころに腐食が始まる場合があり、そのよう
なとき白金系元素を含有した上記合金が非常に効果を発
揮する。As can be seen from Table 4, the concentration of platinum-based elements is 0.01w.
When the concentration exceeds t%, an improvement in edibility is observed, and when the concentration exceeds 0.5vt%,
Above this level, an improvement in the edibility of drinking alcohol is clearly recognized. From this, the lower limit of the content of platinum-based elements is set to 0.0.
It can be seen that it is necessary to increase the content to 1wt%, preferably 0.5vt% or more. Furthermore, as the content of platinum-based elements increases, corrosion resistance improves, but after around 5 wt%, corrosion resistance stops improving for the amount added, and platinum-based elements are extremely expensive. Taking into account the above, the upper limit was set at 5 tit% due to the economic burden.5 It was found that the addition of platinum-based elements significantly improves corrosion resistance, but this does not mean that the corrosion resistance is actually used as an anode electrode, for example. Even if corrosion does not occur due to the anode corrosion protection effect when a potential is applied, corrosion may start immediately when the potential is no longer applied, such as when operations are stopped. The above alloys containing platinum-based elements are very effective.
なお,本発明材料は電解液と接するところに存在すれば
よく,例えばクラッドや溶接接合などのように内部に異
種金属を用い,表面のみ本発明材料から構成されている
電極材,あるいは溶射等の表面処理を施した後,それを
拡散処理して本発明の合金m或を形成する電極材も当然
本発明に含まれる。The material of the present invention only needs to be present in a place where it comes into contact with the electrolyte, such as an electrode material that uses a dissimilar metal inside, such as a cladding or a welded joint, and where only the surface is made of the material of the present invention, or a material that is made by thermal spraying, etc. Naturally, the present invention also includes an electrode material which is surface-treated and then subjected to a diffusion treatment to form the alloy of the present invention.
上記の本発明によれば、純チタンより格段に高い電流量
を流せるアノード材が得られ、耐食性も非常に高い。こ
のように非常に優れたアノード電極待性を有する本発明
合金は,めっき、電気分解等の不溶性アノードや、電解
二酸化マンガン製造時のアノード材としの工業用途とし
ても好適に使用出来ろ効果は少きい、According to the present invention described above, an anode material can be obtained that allows a much higher amount of current to flow than pure titanium, and has extremely high corrosion resistance. The alloy of the present invention, which has extremely excellent anode electrode durability, can be suitably used for industrial applications as an insoluble anode for plating, electrolysis, etc., and as an anode material for the production of electrolytic manganese dioxide. Hey,
第1図は@酸水溶液での浴電圧経時変化を示すグラフ、
第2囚は電解二酸化マンガンの製造装逼の説明図である
。Figure 1 is a graph showing the change in bath voltage over time in @acid aqueous solution.
The second figure is an explanatory diagram of the manufacturing equipment for electrolytic manganese dioxide.
Claims (3)
残部がチタン及び不可避的不純物からなることを特徴と
するアノード用材料。(1) Cobalt is more than 0.05wt% and less than 3wt%,
An anode material characterized in that the remainder consists of titanium and unavoidable impurities.
ッケルが0.1wt%以上7wt%以下で、残部がチタ
ン及び不可避的不純物からなることを特徴とするアノー
ド用材料。(2) An anode material characterized in that cobalt is more than 0.05 wt% and 3 wt% or less, nickel is 0.1 wt% and 7 wt% or less, and the balance is titanium and inevitable impurities.
ッケルが0.1wt%以上7wt%以下、白金族元素(
Pt、Au、Ru、Pd、Rh、Os、Ir)のトータ
ルの含有量が0.01wt%以上5wt%以下で、残部
がチタン及び不可避的不純物からなることを特徴とする
アノード用材料。(3) Cobalt is more than 0.05 wt% and less than 3 wt%, nickel is more than 0.1 wt% and less than 7 wt%, platinum group elements (
An anode material characterized in that the total content of Pt, Au, Ru, Pd, Rh, Os, Ir) is 0.01 wt% or more and 5 wt% or less, with the remainder consisting of titanium and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235195A JPH0397820A (en) | 1989-09-11 | 1989-09-11 | Titanium alloy for anode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1235195A JPH0397820A (en) | 1989-09-11 | 1989-09-11 | Titanium alloy for anode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0397820A true JPH0397820A (en) | 1991-04-23 |
Family
ID=16982490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1235195A Pending JPH0397820A (en) | 1989-09-11 | 1989-09-11 | Titanium alloy for anode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0397820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140161660A1 (en) * | 2011-07-26 | 2014-06-12 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy |
CN109022913A (en) * | 2018-10-08 | 2018-12-18 | 广州宇智科技有限公司 | Titanium alloy for fastening piece and its technique under a kind of space industry extremely low temperature |
-
1989
- 1989-09-11 JP JP1235195A patent/JPH0397820A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140161660A1 (en) * | 2011-07-26 | 2014-06-12 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy |
US10227677B2 (en) * | 2011-07-26 | 2019-03-12 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy |
CN109022913A (en) * | 2018-10-08 | 2018-12-18 | 广州宇智科技有限公司 | Titanium alloy for fastening piece and its technique under a kind of space industry extremely low temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI730967B (en) | Electrode for electrolytic processes | |
US3957600A (en) | Method of and anodes for use in electrowinning metals | |
JPS6022074B2 (en) | Durable electrolytic electrode and its manufacturing method | |
EP0213708A2 (en) | Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation | |
JPS6233790A (en) | Activated amorphous alloy electrode | |
US3616302A (en) | Insoluble anode for electrolysis and a method for its production | |
JP2516252B2 (en) | Titanium-based alloy composition and anode structure | |
US3503799A (en) | Method of preparing an electrode coated with a platinum metal | |
JPH0397820A (en) | Titanium alloy for anode | |
JPH04365828A (en) | Titanium alloy for anode | |
GB2146660A (en) | Surface-activated amorphous alloys for electrodes in the electrolysis of solutions | |
JP2528294B2 (en) | Electrode for electrolysis and method of manufacturing the same | |
US4997492A (en) | Method of producing anode materials for electrolytic uses | |
US3664832A (en) | Lead alloy | |
JP2577965B2 (en) | Insoluble anode material | |
JP2639950B2 (en) | Insoluble anode material | |
JPH0580558B2 (en) | ||
US5061358A (en) | Insoluble anodes for producing manganese dioxide consisting essentially of a titanium-nickel alloy | |
US5733425A (en) | Titanium alloy anode for electrolyzing manganese dioxide | |
JPH0397821A (en) | Titanium alloy for anode | |
US2744062A (en) | Production of metallic powders | |
JPH01176085A (en) | Anode material for producing electrolytic manganese dioxide | |
JP2511685B2 (en) | Material for insoluble anode | |
JPH03199360A (en) | Manufacture of anode material for electrolytic-refining manganese dioxide | |
JPH04110484A (en) | Production of electrolytic manganese dioxide |