JPH039711B2 - - Google Patents
Info
- Publication number
- JPH039711B2 JPH039711B2 JP59121537A JP12153784A JPH039711B2 JP H039711 B2 JPH039711 B2 JP H039711B2 JP 59121537 A JP59121537 A JP 59121537A JP 12153784 A JP12153784 A JP 12153784A JP H039711 B2 JPH039711 B2 JP H039711B2
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- voltage
- transistors
- inductance
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 19
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/538—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、直流・交流の電圧変換を行なうト
ランジスタ・インバータ装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a transistor inverter device that performs DC/AC voltage conversion.
従来この種のトランジスタ・インバータ装置と
して、第1図のような回路構成図のものがあつ
た。第1図において1は直流電源、2はインダク
タンス、3はキヤパシタ、4はトランス、5はコ
レクタ巻線、6はベース巻線、7,8はトランジ
スタ、9は抵抗、10は2次巻線、11は負荷で
ある。この出典は“Transistorized high−
voltage supplies、by R.E.Crosbie、
ELECTRONIC ENGINEERING、
DECEMBER 1967”による。
Conventionally, this type of transistor inverter device has a circuit configuration diagram as shown in FIG. In Figure 1, 1 is a DC power supply, 2 is an inductance, 3 is a capacitor, 4 is a transformer, 5 is a collector winding, 6 is a base winding, 7 and 8 are transistors, 9 is a resistor, 10 is a secondary winding, 11 is a load. This source is “Transistorized high−
voltage supplies, by RECrosbie,
ELECTRONIC ENGINEERING,
DECEMBER 1967”.
従来の装置においては、インダクタンス2によ
つてプツシユプル形トランジスタ・インバータか
ら直流電源1を見た時のインピーダンスを高めて
定電流源的な電力源としておき、キヤパシタ3
と、トランス4のコレクタ巻線5のインダクタン
スによる並列共振によつてトランス4の巻線電圧
を正弦波状の共振電圧とし、トランジスタ7,8
のスイツチング時におけるコレクタ電圧を0とし
てスイツチング損失を低減する。またトランジス
タ7,8の駆動はトランス4に設けたベース巻線
6により自励式で行ない、共振電圧が0から上昇
すると同時にコレクタ巻線5からベース巻線6に
電圧が発生して所定のトランジスタにベース電流
が供給されてトランジスタがオンとなり、共振電
圧が0に戻るとトランジスタがオフとなる。この
ようにしてプツシユプル形トランジスタ・インバ
ータが自励で動作し、負荷11へはトランス4の
2次巻線10を介して電力が伝送される。なお抵
抗9はベース電流の制限用である。第1図の各部
の電圧、電流波形を第2図に示す。 In the conventional device, the inductance 2 increases the impedance of the push-pull type transistor inverter when looking into the DC power source 1, creating a power source like a constant current source, and the capacitor 3
By parallel resonance due to the inductance of the collector winding 5 of the transformer 4, the winding voltage of the transformer 4 becomes a sinusoidal resonant voltage, and the transistors 7 and 8
Switching loss is reduced by setting the collector voltage to 0 during switching. The transistors 7 and 8 are driven in a self-excited manner by a base winding 6 provided on the transformer 4, and at the same time as the resonance voltage rises from 0, a voltage is generated from the collector winding 5 to the base winding 6, and the transistors are When the base current is supplied, the transistor is turned on, and when the resonant voltage returns to zero, the transistor is turned off. In this way, the push-pull type transistor inverter operates under self-excitation, and power is transmitted to the load 11 via the secondary winding 10 of the transformer 4. Note that the resistor 9 is for limiting the base current. FIG. 2 shows voltage and current waveforms at various parts in FIG. 1.
しかし、自励式インバータは、回路素子の諸元
の温度変動や劣化あるいは負荷変動によつて動作
周波数が変化し、用途によつては好ましくない場
合がある。例えばテレビジヨン装置では、スイツ
チング雑音の生じる、トランジスタのスイツチン
グのタイミングを、ブランキング期間(ブラウン
管上で画像の走査が行なわれていない期間)に入
れたり、あるいはスイツチング周波数を水平同期
信号に同期させて、画面へのランダム雑音の混入
を低減する事が行なわれている。また特定の周波
数帯域に高感度を有する通信装置では、スイツチ
ング周波数あるいはその高調波がその帯域にずれ
込むと通信性能を劣化させる。この様な用途で
は、トランジスタ7,8を自励式に駆動するので
はなく、個別の独立した発振器を有するトランジ
スタ駆動回路によつて外部より駆動し、動作周波
数を一定かつ安定にする事が従来より行なわれて
きた。 However, the operating frequency of a self-commutated inverter changes due to temperature fluctuations or deterioration of the specifications of circuit elements or load fluctuations, which may be undesirable depending on the application. For example, in television equipment, the timing of transistor switching, which causes switching noise, is set in the blanking period (the period when the image is not being scanned on the cathode ray tube), or the switching frequency is synchronized with the horizontal synchronizing signal. , attempts are being made to reduce the amount of random noise that enters the screen. Furthermore, in a communication device that is highly sensitive to a specific frequency band, communication performance deteriorates when the switching frequency or its harmonics deviate from that band. In such applications, it has been conventional practice to drive the transistors 7 and 8 externally using a transistor drive circuit with an independent oscillator, rather than driving them in a self-excited manner, to keep the operating frequency constant and stable. It has been done.
しかし、従来の第1図の回路を外部より駆動し
た場合、以下の様な不具合がある。すなわち、共
振回路の共振周波数と駆動信号の周波数は一致し
ないため、共振回路の共振電圧が正弦波状の弧を
描いて0に戻つた時刻と駆動信号の供給される時
刻が一致しない。それ故、共振電圧は0から負の
電圧となつてトランジスタ7,8のコレクタ・エ
ミツタ間に印加してこれらを損傷したり、ターン
オフ時のコレクタ電圧が0にならず、スイツチン
グ損失が増加する等の不具合があつた。上記動作
における各部の電圧、電流波形を第3図に示す。
第3図は共振周波数がスイツチング周波数より高
くなつた場合の動作波形を示しており、トランジ
スタのターンオフ前に逆電圧がコレクタ・エミツ
タ間に印加され、またターンオフ時のコレクタ・
エミツタ電圧が0にならない。 However, when the conventional circuit shown in FIG. 1 is driven externally, there are the following problems. That is, since the resonant frequency of the resonant circuit and the frequency of the drive signal do not match, the time when the resonant voltage of the resonant circuit returns to 0 in a sinusoidal arc does not match the time when the drive signal is supplied. Therefore, the resonant voltage changes from 0 to a negative voltage and is applied between the collector and emitter of transistors 7 and 8, damaging them, or the collector voltage at turn-off does not become 0, increasing switching loss, etc. There was a problem. FIG. 3 shows voltage and current waveforms at various parts during the above operation.
Figure 3 shows the operating waveforms when the resonant frequency becomes higher than the switching frequency, in which a reverse voltage is applied between the collector and emitter before the transistor is turned off, and when the transistor is turned off, a reverse voltage is applied between the collector and emitter.
The emitter voltage does not become 0.
この発明は、かかる欠点を改善する目的でなさ
れたもので、トランス4のコレクタ巻線5のイン
ダクタンスに蓄えられた電流の循環路を設ける事
により、共振回路の電圧がほぼ0のまま停滞でき
るようになしたトランジスタ・インバータ装置を
提案するものである。
This invention was made with the aim of improving this drawback, and by providing a circulation path for the current stored in the inductance of the collector winding 5 of the transformer 4, the voltage of the resonant circuit can be stagnated at almost 0. This paper proposes a transistor inverter device that achieves this.
第4図はこの発明によるトランジスタ・インバ
ータ装置の回路構成図であり、以下詳細に説明す
る。第4図において、1は直流電源、2はインダ
クタンス、3はキヤパシタ、4はトランス、5は
コレクタ巻線、7,8はトランジスタ、10は2
次巻線、11は負荷、12は駆動装置、13−
a,13−bは駆動信号、14,15はダイオー
ドである。駆動装置12は、トランジスタ7,8
の駆動信号13−a,13−bを発生する。トラ
ンジスタ7の駆動信号13−aと、トランジスタ
8の駆動信号13−bは以下の様に設定する。す
なわち、第一に駆動信号13−a,13−bの周
期は、回路素子の諸元の変動あるいは負荷変動を
含めて、最長となる共振周期以上とすること、第
二に一方の駆動信号がオフとなる前に、他方の駆
動信号をあらかじめオンにしておく事である。
FIG. 4 is a circuit diagram of a transistor inverter device according to the present invention, which will be described in detail below. In Figure 4, 1 is a DC power supply, 2 is an inductance, 3 is a capacitor, 4 is a transformer, 5 is a collector winding, 7 and 8 are transistors, and 10 is a 2
Next winding, 11 is load, 12 is drive device, 13-
a and 13-b are drive signals, and 14 and 15 are diodes. The driving device 12 includes transistors 7 and 8
drive signals 13-a and 13-b are generated. The drive signal 13-a for the transistor 7 and the drive signal 13-b for the transistor 8 are set as follows. That is, firstly, the period of the drive signals 13-a and 13-b should be equal to or longer than the longest resonance period, including fluctuations in the specifications of the circuit elements or load fluctuations, and secondly, if one of the driving signals Before turning off, the other drive signal must be turned on in advance.
第5図に第4図の発明における各部の電圧、電
流波形を示す。以下第5図に従つて、第4図の回
路の動作を述べる。駆動信号13−aがオンであ
り、駆動信号13−bがオンからオフに反転する
と、トランジスタ4のコレクタ巻線5のインダク
タンスに流れていた電流が断となり、キヤパシタ
3との間で共振を生じる。共振回路の等価回路は
第6図となる。第6図において、vは共振回路の
電圧、iは共振回路の電流である。共振の開始時
にはvはほぼ0であり、iはトランス4のコレク
タ巻線5のインダクタンスに流れていた電流の初
期値i0と等しい。第6図の系で次式が成立つ。 FIG. 5 shows voltage and current waveforms at various parts in the invention of FIG. 4. The operation of the circuit shown in FIG. 4 will be described below with reference to FIG. When the drive signal 13-a is on and the drive signal 13-b is reversed from on to off, the current flowing through the inductance of the collector winding 5 of the transistor 4 is cut off, causing resonance with the capacitor 3. . The equivalent circuit of the resonant circuit is shown in FIG. In FIG. 6, v is the voltage of the resonant circuit, and i is the current of the resonant circuit. At the start of resonance, v is approximately 0, and i is equal to the initial value i 0 of the current flowing through the inductance of the collector winding 5 of the transformer 4. In the system shown in Figure 6, the following equation holds true.
v=−L・di/dt
i=C・dv/dt
i(0)=i0
v(0)=0
上式でLはトランス4のコレクタ巻線5のイン
ダクタンス、Cはキヤパシタ3のキヤパシタン
ス、またi(0)、v(0)はそれぞれ電圧v、電
流iの時間0における値を示す。これらの式より
電圧v、電流iは以下の様になる。 v=-L・di/dt i=C・dv/dt i(0)=i 0 v(0)=0 In the above equation, L is the inductance of the collector winding 5 of the transformer 4, C is the capacitance of the capacitor 3, Further, i(0) and v(0) indicate the values of voltage v and current i at time 0, respectively. From these equations, the voltage v and current i are as follows.
v(t)=A・sin wt
i(t)=i0・cos wt
ここでAは、直流電源1の電圧E、上式で決ま
るw、ならびに駆動信号のタイミングで決まり、
自励式と同じタイミングで動作させ、トランジス
タ7,8および回路中の損失が0と想定した場合
A=π×Eとなる。 v(t)=A・sin wt i(t)=i 0・cos wt Here, A is determined by the voltage E of the DC power supply 1, w determined by the above formula, and the timing of the drive signal,
If it is operated at the same timing as the self-excited type and the loss in the transistors 7 and 8 and the circuit is assumed to be 0, then A=π×E.
上式より、電圧vは正弦波の弧を描き、共振周
期T=π√の後に再び0となる。また電流i
は方向が反転し、−i0となる。以上の期間の動作
は、従来の回路と変らないが、この後の動作が異
なる。 From the above equation, the voltage v draws a sinusoidal arc and becomes 0 again after the resonance period T=π√. Also, the current i
The direction is reversed and becomes −i 0 . The operation during the above period is the same as that of the conventional circuit, but the operation after this is different.
すなわちT=π√にてv=0となつた後、
vは共振の継続として負になろうとする。しか
し、v=−vd(vdはダイオード15の順方向電圧
降下)になるとダイオード15が導通し、電流i
はダイオード15のアノードからインダクタンス
L、トランジスタ7を経て再びダイオード15の
カソードに流れる経路で循環する。この動作の等
価回路は第7図となる。インダクタンスの両端電
圧vは、ほぼ−Vd(厳密には−vdにトランジスタ
7の電圧降下を加えた値)で約1V程度であるた
め、電流i0はほとんど減少せずに、循環をつづけ
る。(なぜならばL・di0/dt=−vdで、vdが小さい
ためほぼdi0/dt=0とみなせる。すなわちi0はほぼ
一定となる。)
この期間にトランジスタ8の駆動信号13−b
をオンにしておく。 That is, after v=0 at T=π√,
v tends to become negative as resonance continues. However, when v=-vd (vd is the forward voltage drop of the diode 15), the diode 15 becomes conductive and the current i
is circulated along a path that flows from the anode of the diode 15, through the inductance L, the transistor 7, and back to the cathode of the diode 15. The equivalent circuit for this operation is shown in FIG. Since the voltage v across the inductance is approximately -Vd (strictly speaking, the sum of -vd and the voltage drop of the transistor 7), which is approximately 1V, the current i 0 continues to circulate without substantially decreasing. (This is because L・di 0 /dt=-vd, and since v d is small, it can be considered that di 0 /dt=0. In other words, i 0 is almost constant.) During this period, the drive signal 13-b of the transistor 8
Turn on.
ついで、トランジスタ7の駆動信号13−aを
オフにする事により、上記の動作がプツシユプル
インバータ内で対称に行なわれ、継続してゆく。 Then, by turning off the drive signal 13-a of the transistor 7, the above operation is performed symmetrically within the push-pull inverter and continues.
このようにして、本発明ではインダクタンス電
流の循環経路が具備されているので、共振周期T
が変動してもインダクタンス電流の循環期間が増
減する範囲であれば動作に支障はなく、ターンオ
ン、ターンオフ時のトランジスタ7,8のコレク
タ・エミツタ電圧は共にほぼ0にする事ができ、
またコレクタ・エミツタ電圧に過大な逆電圧が印
加される事がない。第5図の波線に、共振周期が
短くなつた場合の動作波形を示している。 In this way, since the present invention is provided with a circulation path for the inductance current, the resonance period T
Even if the inductance current fluctuates, there is no problem with operation as long as the circulation period of the inductance current increases or decreases, and both the collector and emitter voltages of transistors 7 and 8 at turn-on and turn-off can be set to almost 0.
Moreover, an excessive reverse voltage is not applied to the collector-emitter voltage. The dotted line in FIG. 5 shows the operating waveform when the resonance period becomes shorter.
以上のように、この発明によるトランジスタ・
インバータ装置は、共振の周期と、駆動信号13
−a,13−bの周期が厳密に一致しなくても支
障なく動作するから、回路諸元の変動や、負荷変
動による共振周期の変化があつても、一定の駆動
周波数で動作でき、しかもトランジスタに逆電圧
が印加される事もなく、スイツチング時のトラン
ジスタのコレクタ・エミツタ電圧は必ず0となる
のでスイツチング損失が少ないという効果があ
る。
As described above, the transistor according to the present invention
The inverter device has a resonance period and a drive signal 13.
-a and 13-b can operate without problems even if their periods do not exactly match, so even if the resonance period changes due to variations in circuit specifications or load fluctuations, it can operate at a constant drive frequency. Since no reverse voltage is applied to the transistor and the collector-emitter voltage of the transistor is always 0 during switching, there is an effect that switching loss is small.
第1図は従来のトランジスタ・インバータ装置
の回路構成図、第2図は従来のトランジスタ・イ
ンバータ装置における各部の電圧、電流波形図、
第3図は従来のトランジスタ・インバータ装置を
外部より駆動した時の各部の電圧、電流波形図、
第4図はこの発明のトランジスタ・インバータ装
置の回路構成図、第5図はこの発明のトランジス
タ・インバータ装置における各部の電圧、電流波
形図、第6図は共振回路の等価回路を示す回路
図、第7図はインダクタンス電流の循環経路を示
す回路図である。
図中1は直流電源、2はインダクタンス、3は
キヤパシタ、4はトランス、5はコレクタ巻線、
6はベース巻線、7,8はトランジスタ、9は抵
抗、10は2次巻線、11は負荷、12は駆動装
置、13−a,13−bは駆動信号、14,15
はダイオードである。なお、図中同一あるいは相
当部分には同一符号を付して示してある。
Fig. 1 is a circuit configuration diagram of a conventional transistor inverter device, and Fig. 2 is a voltage and current waveform diagram of each part in a conventional transistor inverter device.
Figure 3 shows voltage and current waveform diagrams at various parts when a conventional transistor inverter device is driven externally.
FIG. 4 is a circuit configuration diagram of the transistor inverter device of the present invention, FIG. 5 is a voltage and current waveform diagram of each part in the transistor inverter device of the present invention, and FIG. 6 is a circuit diagram showing an equivalent circuit of a resonant circuit. FIG. 7 is a circuit diagram showing a circulation path of inductance current. In the figure, 1 is a DC power supply, 2 is an inductance, 3 is a capacitor, 4 is a transformer, 5 is a collector winding,
6 is a base winding, 7 and 8 are transistors, 9 is a resistor, 10 is a secondary winding, 11 is a load, 12 is a drive device, 13-a, 13-b are drive signals, 14, 15
is a diode. It should be noted that the same or corresponding parts in the drawings are designated by the same reference numerals.
Claims (1)
プル形トランジスタ・インバータとの間に直列に
挿入したインダクタンス素子と、上記インバータ
のトランスの一巻線に接続したキヤパシタと、上
記インバータのトランジスタをトランスの自己イ
ンダクタンスとキヤパシタの共振周期より長時間
に、かつかさなりを有しつつ交互に駆動する手段
とから構成されたトランジスタ・インバータ装置
において、上記インバータの2つのトランジスタ
と並列に、トランジスタの電流路と逆極性にダイ
オードを並列に接続した事を特徴とするトランジ
スタ・インバータ装置。1. An inductance element inserted in series between a DC power supply and a push-pull transistor inverter that performs DC/AC conversion, a capacitor connected to one winding of the transformer of the inverter, and a transistor of the inverter connected to the transformer's self. In a transistor inverter device consisting of an inductance and a means for driving alternately for a longer time than the resonance period of the capacitor and with an overlap, the transistors are connected in parallel with the two transistors of the inverter, with a polarity opposite to the current path of the transistors. A transistor inverter device characterized by having diodes connected in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59121537A JPS611275A (en) | 1984-06-13 | 1984-06-13 | Transistor inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59121537A JPS611275A (en) | 1984-06-13 | 1984-06-13 | Transistor inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS611275A JPS611275A (en) | 1986-01-07 |
JPH039711B2 true JPH039711B2 (en) | 1991-02-12 |
Family
ID=14813696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59121537A Granted JPS611275A (en) | 1984-06-13 | 1984-06-13 | Transistor inverter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS611275A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4882666A (en) * | 1989-03-23 | 1989-11-21 | North American Philips Corporation | High frequency high voltage power supply with controlled output power |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57132774A (en) * | 1981-02-07 | 1982-08-17 | Toshibumi Saruga | Large power generator using static induction transistor |
-
1984
- 1984-06-13 JP JP59121537A patent/JPS611275A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57132774A (en) * | 1981-02-07 | 1982-08-17 | Toshibumi Saruga | Large power generator using static induction transistor |
Also Published As
Publication number | Publication date |
---|---|
JPS611275A (en) | 1986-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4688159A (en) | Switched-mode power supply having a standby state | |
US4926304A (en) | Switched-mode power supply with low loss interrupted oscillation | |
US4695770A (en) | Circuit for switching current in an inductive load | |
US4733141A (en) | Horizontal output circuit for correcting pin cushion distortion of a raster | |
TW424392B (en) | Power supply for a deflection circuit operating at multi-scan frequencies | |
JPH02284587A (en) | Switching mode electric source | |
JPH0813094B2 (en) | Horizontal deflection circuit | |
JPH039711B2 (en) | ||
US4390818A (en) | Television receiver | |
JP2635553B2 (en) | Device that generates output current at input frequency | |
KR100276494B1 (en) | Deflection circuit | |
JP2870945B2 (en) | Induction heating cooker | |
JPS5928106B2 (en) | Switched mode power supply circuit | |
JP2742820B2 (en) | Power supply | |
JPH0740720B2 (en) | Switching power supply for multi-scan television receiver | |
JPH09200647A (en) | Image display device | |
JPH066967A (en) | Driving circuit for self-extinguishing element | |
JP3039609B2 (en) | Horizontal deflection excitation circuit | |
JPH0543228B2 (en) | ||
KR19990030093A (en) | Resonant power circuit | |
JPS60229576A (en) | Horizontal deflecting circuit having raster distortion correcting device | |
JP2000013633A (en) | High-voltage circuit | |
JPH11177838A (en) | Horizontal deflection excitation circuit | |
JPH0630291A (en) | High voltage generating circuit | |
JPH0349568A (en) | Inverter device |