JPH0396917A - Photodetection type optical function element and production thereof - Google Patents

Photodetection type optical function element and production thereof

Info

Publication number
JPH0396917A
JPH0396917A JP1232917A JP23291789A JPH0396917A JP H0396917 A JPH0396917 A JP H0396917A JP 1232917 A JP1232917 A JP 1232917A JP 23291789 A JP23291789 A JP 23291789A JP H0396917 A JPH0396917 A JP H0396917A
Authority
JP
Japan
Prior art keywords
light
quantum well
layer
optical waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232917A
Other languages
Japanese (ja)
Inventor
Koichi Wakita
紘一 脇田
Kenji Kono
健治 河野
Takeshi Yamada
武 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1232917A priority Critical patent/JPH0396917A/en
Publication of JPH0396917A publication Critical patent/JPH0396917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain the optical function element having a good matching property with optical fibers by laminating an optical waveguide structure having a multiple quantum well structure as a core, a reverse conductivity type layer and electrode on a semiconductor substrate of one conductive type and irradiating the core part perpendicularly cleaving the substrate with a laser beam. CONSTITUTION:An n-InAlAs clad layer 2, a light absorption layer (InGaAs clad) 3 of the non-added multiple quantum well structure MQW and a p-InGaAs gap 5 are superposed on the InP substrate 1 and are etched to cover the mesa with polyimide. The electrode 7 is provided thereon and the entire part is cloven in the prescribed manner to form a chip. The MQW 3 consists of the cycle of the multiple quantum well layers of InGaAs and barrier layers of InAlAs. The photodetecting sensitivity is improved, the absorption length is shortened and the element capacity is decreased by adopting the MQW structure of a large absorption coefft., by which the photodetector having the high sensitivity and high speed is obtd. The refractive index near the end face is lowered by the semiconductor structure of an end face incident type and the spot diameter of a waveguide mode is increased. The quantum efficiency as the photodetector is thus enhanced and the optical function element having the good matching property with the optical fibers is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型で光ファイバとの結合効率が高く,光受
光、光変調、光増幅が実現できる受光型光機能素子およ
びその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light-receiving optical functional element that is small in size, has high coupling efficiency with an optical fiber, and can realize light reception, light modulation, and light amplification, and a method for manufacturing the same. It is something.

〔従来の技術〕[Conventional technology]

受光素子は、従来、素子上面から光を検知する」二面受
光型が一般的であったが、各種の光素子を平面上に配置
し接続形成する、いわゆる、光集積回路に対する整合性
が悪かった。また、長距離・大容量光ファイバ伝送シス
テムの進展に伴い、より大きな高速応答性が求められて
いるが、受光素子の応答速度は吸収されたキャリアの走
行時間と素子の容量および抵抗(CRと呼ばれる)で決
定されており、受光素子は逆方向電圧で使用するため、
抵抗Rは大きく、回路との整合から50Ωが使われてい
る。一方、容量は素子面積で決定されるため受光径を小
さくする必要があるが,第3図に示すように、受光径が
縮小するに伴い、その周りの電極部分が素子容量に占め
る割合は増加し、高速性に難点がある。これらの欠点を
補うために、素子の側面から光を入射する、いわゆる端
面受光型の受光素子が提案されている(電子情報通信学
会光量子エレク1一ロニクス研究会:信学技報二〇QE
86−181 (1986))。上記端面受光型ホトダ
イオードは、入射光と結合長さを長くできるため,また
、素子容量が吸収層の厚さで決められるため小さくでき
る可能性があり、高速応答性が期待できる。しかし、光
導波構造から見ると、半導体導波路の一般的欠点といえ
ることであるが、層に平行な方向と垂直な方向とで、導
波される光のスポットサイズに非対称性が顕著であり、
通常用いられる光ファイバからの光スポノトサイズとの
不整合が大きく、結合効率が低いという欠点があった。
Conventionally, light-receiving elements have generally been of the two-sided type, which detects light from the top surface of the element, but this has poor compatibility with so-called optical integrated circuits, in which various optical elements are arranged and connected on a flat surface. Ta. In addition, with the development of long-distance, high-capacity optical fiber transmission systems, greater high-speed response is required. Since the photodetector is used with a reverse voltage,
The resistance R is large, and 50Ω is used for matching with the circuit. On the other hand, since the capacitance is determined by the element area, it is necessary to reduce the light-receiving diameter, but as shown in Figure 3, as the light-receiving diameter decreases, the ratio of the surrounding electrode portion to the element capacitance increases. However, there is a problem with high speed. In order to compensate for these shortcomings, a so-called edge-receiving type light-receiving element, in which light enters from the side of the element, has been proposed (IEICE Photon Quantum Electronics Study Group: IEICE Technical Report 20QE).
86-181 (1986)). The edge-light receiving type photodiode can be made small because the coupling length with the incident light can be made long, and because the element capacitance is determined by the thickness of the absorption layer, it can be expected to have high-speed response. However, from the perspective of the optical waveguide structure, there is a noticeable asymmetry in the spot size of the guided light between the directions parallel to and perpendicular to the layers, which is a general drawback of semiconductor waveguides. ,
The disadvantage is that there is a large mismatch in the size of the light beam from a commonly used optical fiber, and the coupling efficiency is low.

一方、光ファイバ伝送の長距離・大容量化に伴い、高速
で低雑音の受光素子開発が重要になり、表面入射型PI
NホトダイオードとFETとを同一基板上に集積化した
PIN/FETの研究が活発になっている(例えば、ア
イ・イー・イー・イ3 、ジャーナル・オブ・カンタム・エレクトロニクス(I
EEE J. Quantum Electronic
s) Q E 2 2、805頁(1986年)参照)
。これらはそれぞれデータが出ているが、作製プロセス
が複雑で歩留りを度外視しており、まだ実用的なものと
はいえない段階である。
On the other hand, as the long distance and capacity of optical fiber transmission increases, the development of high-speed, low-noise photodetectors has become important, and surface-illuminated PI
Research on PIN/FETs that integrate N photodiodes and FETs on the same substrate is becoming more active (for example, IEE3, Journal of Quantum Electronics (I
EEE J. Quantum Electronic
s) Q E 2 2, p. 805 (1986))
. Although data has been released for each of these, the manufacturing process is complex and yields have not been taken into account, so they are still at a stage where they cannot be considered practical.

また、最近SiとSi−Gea品を組合わせた多重量子
井戸構造(以下、MQW構造という)において、光導波
型のAPD (アバランシエ・ホ1一ダイオード)が提
案されている(Temkjnら、アプライド・フィジク
ス・レターズ(Applied PhysicsLet
ters) 4 9巻809頁(1986年))。上記
素子はもともと間接遷移型であるため,吸収係数が小さ
い上記材料によって光導波構造を採用することにより吸
収長を大きくし、量子効率の向上をねらったもので、一
応の特性は得られている。
In addition, recently, an optical waveguide type APD (avalanche diode) has been proposed in a multiple quantum well structure (hereinafter referred to as MQW structure) that combines Si and Si-Gea products (Temkjn et al., Applied Applied Physics Letters
ters) 4, 9, 809 (1986)). Since the above element is originally an indirect transition type, the aim was to increase the absorption length by adopting an optical waveguide structure using the above material with a small absorption coefficient, and to improve the quantum efficiency, and to some extent, the characteristics have been obtained. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら」二記従来技術は、素子内部に存在する残
留応力が大きく、暗電流も大きいという欠点を有してい
る。
However, the prior art described in Section 2 has the drawbacks of large residual stress existing inside the device and large dark current.

4 また、半導体光変調器においても、通常、光との相互作
用を大きくする目的で光導波構造を採用しているため、
上記同様、例えば電子情報通信学会光量子エレク1一ロ
ニクス研究会:信学技報OCS88−11またはOQE
 8 9−3 2に示されるように、結合損失が大きく
なる欠点を有している。
4 Also, semiconductor optical modulators usually employ an optical waveguide structure for the purpose of increasing interaction with light.
Same as above, for example, IEICE Technical Report OCS88-11 or OQE
As shown in 8 9-3 2, it has the disadvantage of large coupling loss.

さらに、半導体光増幅素子においても光ファイバとの結
合損失が大きく、その利得の半分近くが失われるという
問題があった(例えば信学技報OQE89−17)。
Furthermore, semiconductor optical amplification elements also have a problem in that coupling loss with optical fibers is large, and nearly half of the gain is lost (for example, IEICE Technical Report OQE89-17).

本発明は、吸収係数が大きいMQW構造を採用して受光
感度を高めるとともに、吸収長さを短かくして素子容量
を減らし、高感度・高速の受光器を得て、端面入射型の
半導体構造により端面付近の屈折率を下げ、導波モード
のスポット径を大きくし、入射光との結合効率を高め受
光器としての量子効率を向上し、導波スポッ1へ径を大
きくして光ファイバとの整合性をよくした光機能素子お
よびその製造方法を得ることを目的とする。
The present invention employs an MQW structure with a large absorption coefficient to increase the light receiving sensitivity, shortens the absorption length to reduce the element capacitance, and obtains a highly sensitive and high-speed light receiver. Lower the refractive index in the vicinity, increase the spot diameter of the waveguide mode, increase the coupling efficiency with the incident light, improve the quantum efficiency as a light receiver, and increase the diameter of the waveguide spot 1 to match with the optical fiber. The object of the present invention is to obtain an optical functional element with improved properties and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、一導電型の半導体基板上に、該基板と格子
整合する量子井戸層と障壁層とからなる多重量子井戸構
造をコアとする光導波構造を形成し、上記光導波構造の
上に上記半導体基板と反対の導電型を有する層と、上記
多重量子井戸層に丞直に所定の電界を印加する電極とを
設け、上記半導体基板および光導波構造からなる面と垂
直に基板を劈開して形成した受光面のコア部に、所定の
レーザ光を照射して得た混晶化により、光導波部内部の
スポット径に比して小さな光導波部モードスポット径を
得ることにより達成される。
The above object is to form an optical waveguide structure having a core of a multi-quantum well structure consisting of a quantum well layer and a barrier layer that are lattice-matched to the substrate on a semiconductor substrate of one conductivity type, and to form an optical waveguide structure on the optical waveguide structure. A layer having a conductivity type opposite to that of the semiconductor substrate and an electrode for directly applying a predetermined electric field to the multi-quantum well layer are provided, and the substrate is cleaved perpendicularly to the plane consisting of the semiconductor substrate and the optical waveguide structure. This is achieved by irradiating the core of the light-receiving surface formed by the process with a predetermined laser beam to create a mixed crystal, thereby obtaining an optical waveguide mode spot diameter that is smaller than the spot diameter inside the optical waveguide. .

〔作   用〕[For production]

本発明は、MQW構造をコアとする光導波構造により、
光を素子側面から入射する端面受光型光機能素子におい
て、端面付近の屈折率を制御して入射光との結合効率を
向上させることを主要な特徴とする。上記特徴を生かす
手段として、光導波部のコア近傍に、所定の波長・出力
のレーザ光を所定の時間端面近傍に照射し、上記MQW
構造を混晶化することにより、所望の屈折率分布を」二
記光導波部に形戒することを第2の特徴としている。
The present invention uses an optical waveguide structure having an MQW structure as its core.
The main feature of an edge-receiving optical functional element in which light enters from the side surface of the element is that the refractive index near the edge is controlled to improve coupling efficiency with incident light. As a means to take advantage of the above characteristics, a laser beam of a predetermined wavelength and output is irradiated near the end face of the optical waveguide for a predetermined period of time near the core of the MQW.
The second feature is that a desired refractive index distribution can be formed in the optical waveguide by making the structure a mixed crystal.

MQW構造においては、第4図に示すように室温でも励
起子吸収ピークが明瞭に観測され、そのピークにおいて
はバルクに較べて約3倍以上も吸収係数が大きい。した
がってバルクに比して約3分のlの長さでほぼ同じ光吸
収量が得られるため、素子長を短かくすることができ、
素子容量も小さくなって高速応答に適する。上記MQW
層の上に誘電体膜を付着し、短時間で急激な加熱・冷却
を繰返す熱処理法(ジャパニーズ・ジャーナル・オブ・
アプライド・フィジクス(J.J.A.P)28巻73
0頁(1989年))を用いると、MQW層に混晶化を
生し、第5図に示すような吸収係数の分光特性になる。
In the MQW structure, as shown in FIG. 4, an exciton absorption peak is clearly observed even at room temperature, and the absorption coefficient at this peak is about three times larger than that of the bulk. Therefore, approximately the same amount of light absorption can be obtained with a length of about 1/3 compared to the bulk, so the element length can be shortened.
The element capacitance is also reduced, making it suitable for high-speed response. The above MQW
A heat treatment method in which a dielectric film is attached on top of the layer and rapid heating and cooling are repeated in a short period of time (Japanese Journal of
Applied Physics (J.J.A.P) Volume 28 73
0 (1989)), mixed crystal formation occurs in the MQW layer, resulting in the spectral characteristics of the absorption coefficient as shown in FIG.

すなわち、吸収係数のピーク位置は高エネルギーの短波
長側にシフトし、その部分の屈折率も混晶化を生じる前
の値に較べて小さくなる(第6図)。このため、混晶化
を生じた部分での光1導波条件が変化し、混晶化を生じ
ない部分に較べクラッド層との屈折率差が小さくなり、
層に垂直な方向での光の閉し込めか弱くな7 り、モードのスポットサイズが大きくなって、光導波路
の光の進行方向の垂直面内における横方向と縦方向のス
ポット形状の差が減り、偏平楕円状から円に近くなり光
ファイバとの結合効率が向上する。しかし上記方法では
、誘電体膜が必要で、かつ.MQW層の上に直接上記膜
を形成する必要があるため、実用上問題があった(通常
、MQW層は光導波のコアとして使用する)。すなわち
、光入射部分に必ず上記スポットサイズ変換部が必要に
なるが、素子作製上におけるウエハの段階で上記部分を
形成するため、上記工程を経た後に、コア部までエッチ
ングした部分に再びクラツド層を再或長させて光導波構
造としなければならず、工程が非常に複雑になってしま
う。
That is, the peak position of the absorption coefficient shifts to the high energy, short wavelength side, and the refractive index of that portion also becomes smaller than the value before mixed crystal formation (FIG. 6). Therefore, the optical 1 waveguide conditions in the part where mixed crystallization has occurred change, and the difference in refractive index with the cladding layer becomes smaller than in the part where mixed crystallization does not occur.
The light confinement in the direction perpendicular to the layer becomes weaker, the mode spot size increases, and the difference between the horizontal and vertical spot shapes in the plane perpendicular to the light propagation direction of the optical waveguide decreases. , the shape changes from a flat ellipse to a shape close to a circle, improving the coupling efficiency with the optical fiber. However, the above method requires a dielectric film and... This poses a practical problem because it is necessary to form the film directly on the MQW layer (the MQW layer is usually used as the core of optical waveguide). In other words, the above spot size conversion section is always required at the light incident section, but since this section is formed at the wafer stage in device fabrication, after the above process, the cladding layer is re-attached to the section etched to the core section. It has to be re-lengthened to form an optical waveguide structure, which makes the process extremely complicated.

本発明はコア部に吸収される波長を発光波長にもつ高出
力レーザ光をコア部に照射すると、上記同様な効果を生
じることにもとすくもので、混晶化が比較的短時間のう
ちに望ましい部分だけに生じるため、誘電体膜をつける
必要も繰返し熱処理を行う必要もない。因みに、GaA
s/AAGa−8 AsのMQW構造では、Arレーザの照射により混品化
を生じている(アプライド・フイジクス・レターズ(A
ppl. Phys. Lett. ) 4 3巻21
号24頁(1986年))。
In the present invention, when the core part is irradiated with a high-power laser beam whose emission wavelength is the wavelength absorbed by the core part, the same effect as described above can be produced, and mixed crystal formation can be prevented in a relatively short time. Since it occurs only in desired areas, there is no need to apply a dielectric film or perform repeated heat treatments. By the way, GaA
In the MQW structure of s/AAGa-8 As, irradiation with Ar laser causes mixing of products (Applied Physics Letters).
ppl. Phys. Lett. ) 4 Volume 3 21
No. 24 (1986)).

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による受光型光機能素子の第l実施例を
示す図、第2図は本発明の第2実施例を示す図で、(a
)は斜視図、(b)は側面図である。
FIG. 1 is a diagram showing a first embodiment of a light-receiving optical functional element according to the present invention, and FIG. 2 is a diagram showing a second embodiment of the present invention.
) is a perspective view, and (b) is a side view.

第工図の第l実施例において、1はInP基板、2はn
  InAIIAsクラッド層、3はノンドープMQW
光吸収層(InGaAsまたはInGanAsクラッド
層、5はp − I n G a A sキャップ層、
6はn電極、7はP電極、8はポリイミドである。その
製法はInP基板1の上に、n−クラッド層2を0.2
〜0.4/ffi、MQWJI3を0.4〜1.0μ、
P−クラッド層4を1.0μ、キャップ層5を0.2p
m、分子線エビタキシャル或長法で順次戊長させる。そ
の後、通常のホトマスクを用いて幅3〜5IImを残し
、InP基板1まで反応性ドライエッチングまたは化学
エソチングでエッチングして、形成されたメサ部全体を
ポリイミドを用いスピンコーティングする。その後、電
極を蒸着によって設け、再びホトリソグラフィでパター
ニングし、ドライエッチングによりバット部(〜50μ
mX5Qμ)以外の部分を除去し、@3 0 0 tn
n、長さ100IM前後にgI開してチップとし、ボン
ディングワイヤをつける。上記MQW層3は、I n 
G a AsまたはInAuGaAsの量子井戸層(厚
さ60〜9 0A).I nAuAs障壁層(厚さ50
〜70入)、20〜40周期からなっており,各層は不
純物をドープしていない。光は層と平行に入射し、電圧
はn.pクラッド層2、4に挾まれたMQW層3にかか
るようになっている。この第工実施例では、外部変調器
に本発明を適用した場合であり、入射光1.55戸の光
に対し印加電圧4〜7■で消光比20dB、3dB劣化
周波数帯域@ 2 0 G H z以上が得られている
,本実施例では光入射端面より光導波層の内部に向かっ
て3〜5岬の長さにわたって、屈折率分布が漸増するよ
うになっている。これはArレーザ(λ=488nm)
を、コア部にレンズを絞って500mWの出力で数秒照
射することで、コア部のMQW層3に混晶化が生じたた
めである。上記照射によって、I n G a A s
とInAIIAsとの間でGaとAnとが混合し、In
GaA11Asという混合物が形成され、光が照射され
ていない部分では混晶化を生じない。混晶化を生じてい
る部分の屈折率は、I n G a A s / I 
n An A s系のMQWの場合に約IXIO−’程
度減少している。この大きな変化は励起子吸収の存在に
よっている。混晶化領域の屈折率はMQWを構威してい
る量子井戸層および障壁層の屈折率平均値に最大で近づ
くが、この場合は完全に混晶化が進んだ場合であり、通
常は混晶化の程度によりO〜3%程度の変化がある。こ
のため、クラッド層InuAsとの屈折率差は減少し、
層に垂直な方向のモードスポット径も大きくなる。例え
ば、InAllAsクラッド層でコアを1nGaAs/
InAQAsMQWとした場合は、MQWMの厚さが0
.4,xのとき、モード−11 スボノ1〜径は0,36μから0.40pに増加するの
で、結合効率は1dB程度向上する。上記MQW/Wの
厚さが薄い場合にはさらに顕著になり、例えば、厚さ0
.25−に対してはモードスポット径が0.33ρから
0.40um、厚さ0.15虜に対しては0.3’71
rmから0.45μmに増加し、結合効率はともに約7
dB増加する。この傾向はクラッド層の屈折率を上げる
か、コア部の屈折率を下げるかして、あるいは導波路そ
のものの厚さを薄くして等価屈折率を下げることにより
、モードスポット径を大きくすればより顕著になる。
In the first embodiment of the first drawing, 1 is an InP substrate, 2 is an n
InAIIAs cladding layer, 3 is non-doped MQW
Light absorption layer (InGaAs or InGanAs cladding layer, 5 is p-InGaAs cap layer,
6 is an n electrode, 7 is a p electrode, and 8 is polyimide. The manufacturing method is to place an n-cladding layer 2 on an InP substrate 1 with a thickness of 0.2
~0.4/ffi, MQWJI3 0.4~1.0μ,
P-cladding layer 4 is 1.0μ, cap layer 5 is 0.2p
m, sequentially elongated using the molecular beam epitaxial elongation method. Thereafter, using an ordinary photomask, etching is performed by reactive dry etching or chemical etching up to the InP substrate 1, leaving a width of 3 to 5 IIm, and the entire formed mesa portion is spin-coated with polyimide. After that, electrodes were provided by vapor deposition, patterned again by photolithography, and dry etched to the butt part (~50 μm).
mX5Qμ)) and @3 0 0 tn
gI is opened to a length of about 100 IM to form a chip, and a bonding wire is attached. The MQW layer 3 is I n
Quantum well layer of GaAs or InAuGaAs (thickness 60-90A). I nAuAs barrier layer (thickness 50
~70 layers), consisting of 20 to 40 periods, and each layer is not doped with impurities. The light is incident parallel to the layer and the voltage is n. It extends over the MQW layer 3 sandwiched between the p-cladding layers 2 and 4. In this first embodiment, the present invention is applied to an external modulator, and the extinction ratio is 20 dB and the frequency band degraded by 3 dB @ 20 GH at an applied voltage of 4 to 7 cm for the incident light of 1.55 mm. In this example, in which a value of z or more is obtained, the refractive index distribution gradually increases over a length of 3 to 5 capes from the light incident end face toward the inside of the optical waveguide layer. This is an Ar laser (λ=488nm)
This is because mixed crystal formation occurred in the MQW layer 3 in the core portion by irradiating the core portion with a focused lens for several seconds at an output of 500 mW. By the above irradiation, In Ga As
Ga and An are mixed between InAIIAs and InAIIAs, and InAIIAs
A mixture of GaA11As is formed, and no mixed crystal formation occurs in areas that are not irradiated with light. The refractive index of the part where mixed crystallization has occurred is In Ga As / I
In the case of n An As -based MQW, it decreases by about IXIO-'. This large change is due to the presence of exciton absorption. The refractive index of the mixed crystal region is at most close to the average refractive index of the quantum well layer and barrier layer that make up the MQW, but in this case it is a case where the mixed crystal has completely progressed. There is a change of about 0 to 3% depending on the degree of crystallization. Therefore, the refractive index difference with the cladding layer InuAs decreases,
The mode spot diameter in the direction perpendicular to the layer also increases. For example, the core is made of 1nGaAs/InAllAs cladding layer.
In the case of InAQAsMQW, the thickness of MQWM is 0.
.. 4.x, the mode-11 Subono 1 diameter increases from 0.36μ to 0.40p, so the coupling efficiency improves by about 1 dB. This becomes even more noticeable when the thickness of the MQW/W is thin, for example, when the thickness is 0
.. The mode spot diameter is 0.33ρ to 0.40um for 25-, and 0.3'71 for thickness 0.15μ.
rm to 0.45 μm, and the coupling efficiency is both about 7
Increases by dB. This tendency can be improved by increasing the mode spot diameter by increasing the refractive index of the cladding layer, lowering the refractive index of the core, or reducing the thickness of the waveguide itself to lower the equivalent refractive index. become noticeable.

第2図は上記効果を実現する本発明の第2実施例を示す
説明図であって、光の入射部分に、光の進行方向に対し
てコア部の厚さをテーパ状に形成している。これは半導
体結晶の選択エッチングにより形成が可能であり、MQ
W層よりなる導波路コア部].3、13’の厚さが滑ら
かに形成してあるため、凹凸などによる放射損失を低減
することができる。図において、11は基板、12はn
 一クラッド層、王3はMQW#、13’は混晶化M1
2ー QWN、14はpクラッド層、15はキャップ層、工6
、17はそれぞれn.p電極、18はポリイミド、19
はモード変換部、20は半絶縁性InPまたはInAu
As埋込み層である。なお、上記P電極l7を一部欠除
しておき、光導波部上方から光が照射できるようになっ
ている。このため,劈開端面から光照射する方法と較べ
て、光導波部の長手方向に長く混晶化することができる
。ラッパ状に拡がったコア部の厚さの変化に伴って、屈
折率変化もゆるやかに変化し、光導波路内に急激な屈折
率変化がなく、光導波路のモードスポット形状はゆるや
かに変換されるので、モード変換に伴う散乱損失などは
小さくすることができる。
FIG. 2 is an explanatory diagram showing a second embodiment of the present invention that achieves the above effects, in which the thickness of the core portion is formed in a tapered shape with respect to the traveling direction of the light at the light incident portion. . This can be formed by selective etching of semiconductor crystals, and MQ
Waveguide core section consisting of W layer]. Since the thicknesses 3 and 13' are formed smoothly, radiation loss due to unevenness etc. can be reduced. In the figure, 11 is the substrate, 12 is n
One cladding layer, King 3 is MQW#, 13' is mixed crystal M1
2-QWN, 14 is p cladding layer, 15 is cap layer, process 6
, 17 are n. p electrode, 18 polyimide, 19
is a mode converter, 20 is a semi-insulating InP or InAu
This is an As buried layer. Note that a portion of the P electrode 17 is removed so that light can be irradiated from above the optical waveguide. Therefore, compared to the method of irradiating light from the cleavage end face, it is possible to form a mixed crystal longer in the longitudinal direction of the optical waveguide. As the thickness of the trumpet-shaped core changes, the refractive index changes gradually, and there is no sudden refractive index change within the optical waveguide, and the mode spot shape of the optical waveguide is gradually transformed. , scattering loss associated with mode conversion, etc. can be reduced.

あらかじめ波長1.55−の光に対して、励起子吸収ピ
ークの位置を上記波長に合わせておけば、前記したレー
ザ照射の工程から大幅な屈折率変化が可能で、モードス
ポット径の整合がとれ、量子効率0.3A/Wが得られ
,また、その周波数特性は、ボンディングバット部の下
にポリイミドを用いて浮遊容量を減らしたので、0.1
p・F前後となり3dB劣化周波数帯域として50GH
zが得られた。
If the position of the exciton absorption peak is adjusted in advance to the above wavelength for light with a wavelength of 1.55, it is possible to change the refractive index significantly from the laser irradiation process described above, and the mode spot diameter can be matched. , a quantum efficiency of 0.3 A/W was obtained, and the frequency characteristics were 0.1 because polyimide was used under the bonding butt to reduce stray capacitance.
It is around p・F, which is 50GH as a 3dB deterioration frequency band.
z was obtained.

また、光変調素子においても、結合損失が工5dB前後
であったものを10dB以下の損失に改善できた。さら
に、光増幅素子においても同様な結合損失の低減を達或
することができた。
Furthermore, in the optical modulation element, the coupling loss was improved from around 5 dB to 10 dB or less. Furthermore, a similar reduction in coupling loss could be achieved in the optical amplification element as well.

量子井戸層としてInGaAs、障壁層としてInAl
lAsについて説明したが、量子井戸層としてInGa
AsP.GaAs.AflGaAs.GaSb.Afl
GaSb等の材料を用いても同様の効果が得られる。
InGaAs as quantum well layer, InAl as barrier layer
Although IAs has been explained, InGa as a quantum well layer is also used.
AsP. GaAs. AflGaAs. GaSb. Affl
Similar effects can be obtained using materials such as GaSb.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による受光型光機能素子は、一導電
型の半導体基板上に、該基板と格子整合する量子井戸層
と障壁層とからなる多重量子井戸構造をコアとする光導
波構造を形成し、上記光導波構造の上に、上記半導体基
板と反対の導電型を有する層と、上記多重量子井戸層に
垂直に所定の電界を印加する電極とを設け、上記半導体
基板および光導波構造からなる面と垂直に基板を劈開し
て受光面を形成したことにより、光入射部分のスポット
径を,スポット径変換導波路により適当な大きさの寸法
にすることができるので,結合効率が向上し外部量子効
率が大きくなる。また、端面入射構戒であるため、例え
ば、受光素子では低容量、高速で、低電圧動作が可能と
なり、光集積化にも適した光機能素子を得ることができ
る。
As described above, the light-receiving optical functional device according to the present invention has an optical waveguide structure having a core of a multi-quantum well structure consisting of a quantum well layer and a barrier layer that are lattice-matched to the substrate on a semiconductor substrate of one conductivity type. a layer having a conductivity type opposite to that of the semiconductor substrate and an electrode for applying a predetermined electric field perpendicularly to the multi-quantum well layer on the optical waveguide structure; By forming the light-receiving surface by cleaving the substrate perpendicular to the plane consisting of the light-receiving surface, the spot diameter of the light incident area can be adjusted to an appropriate size using the spot diameter conversion waveguide, improving coupling efficiency. This increases the external quantum efficiency. In addition, since it is an end-illuminated structure, for example, the light-receiving element can be operated with low capacitance, high speed, and low voltage, and an optical functional element suitable for optical integration can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明による受光型光機能素子の第l実施例を
示す図、第2図は本発明の第2実施例を示す図で、(a
)は斜視図、(b)は側面図、第3図は従来の上面受光
型光検出器の素子接合容量と受光径との関係を示す図、
第4図はバルクとMQW構造とにおける吸収係数の相異
を示す図、第5図は急激な熱処理でMQW構造の光吸収
スペクトルが短波長側にシフトするのを示す図、第6図
は上記第5図における吸収係数変化を示す試料の屈折率
の波長依存性を示す図である。 1、工1・・・半導体基板 3、工3・・・多重量子井戸構造(MQW)ー15ー 3’.13’・・・混晶化MQW層 6、l6・・・n電極 7、17・・・p電極 −16ー
FIG. 1 is a diagram showing a first embodiment of the light-receiving optical functional element according to the present invention, and FIG. 2 is a diagram showing a second embodiment of the present invention.
) is a perspective view, (b) is a side view, and FIG. 3 is a diagram showing the relationship between element junction capacitance and light receiving diameter of a conventional top-light receiving type photodetector.
Figure 4 is a diagram showing the difference in absorption coefficient between the bulk and MQW structure, Figure 5 is a diagram showing that the light absorption spectrum of the MQW structure shifts to the short wavelength side due to rapid heat treatment, and Figure 6 is the diagram shown above. 6 is a diagram showing the wavelength dependence of the refractive index of the sample showing the absorption coefficient change in FIG. 5. FIG. 1, Step 1...Semiconductor substrate 3, Step 3...Multiple quantum well structure (MQW)-15-3'. 13'...Mixed crystal MQW layer 6, l6...n electrode 7, 17...p electrode-16-

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板上に、該基板と格子整合する
量子井戸層と障壁層とからなる多重量子井戸構造をコア
とする光導波構造を形成し、上記光導波構造の上に、上
記半導体基板と反対の導電型を有する層と、上記多重量
子井戸層に垂直に所定の電界を印加する電極とを設け、
上記半導体基板および光導波構造からなる面と垂直に基
板を劈開して、受光面を形成した受光型光機能素子。 2、上記光導波構造は、等価屈折率が減少している部分
における屈折率分布が、端面から内部に向って次第に増
加し、所定の長さで内部屈折率と同じになることを特徴
とする特許請求の範囲第1項に記載した受光型光機能素
子。 3、一導電型の半導体基板上に、該基板と格子整合する
量子井戸層と障壁層とからなる多重量子井戸構造をコア
とする光導波構造を形成し、上記光導波構造の上に、上
記半導体基板と反対の導電型を有する層と、上記多重量
子井戸層に垂直に所定の電界を印加する電極とを設け、
上記多重量子井戸層に垂直に上記基板を劈開して受光面
を形成し、上記受光面のコア部に、該コア部で吸収され
る発光波長を有するレーザ光を、外部から所定の入力パ
ワーで所定時間照射し、上記コア部の量子井戸層を混晶
化し、上記光導波部のモードスポット径を、受光面から
所定の長さ内部におけるスポット径に比して小さくした
受光型光機能素子の製造方法。 4、上記受光面は、電極を所定の長さだけ上記劈開面よ
り内側に短かく形成し、上記電極が存在しない部分に、
基板および導波部分に垂直方向から所定のレーザ光を照
射したのち、劈開面が上記照射部分となるように形成し
たことを特徴とする特許請求の範囲第3項に記載した受
光型光機能素子の製造方法。
[Claims] 1. An optical waveguide structure having a core of a multiple quantum well structure consisting of a quantum well layer and a barrier layer lattice-matched to the substrate is formed on a semiconductor substrate of one conductivity type, and the optical waveguide A layer having a conductivity type opposite to that of the semiconductor substrate and an electrode for applying a predetermined electric field perpendicularly to the multiple quantum well layer are provided on the structure,
A light-receiving type optical functional element in which a light-receiving surface is formed by cleaving a substrate perpendicular to a plane made of the semiconductor substrate and optical waveguide structure. 2. The optical waveguide structure is characterized in that the refractive index distribution in the portion where the equivalent refractive index decreases gradually increases from the end face toward the inside, and becomes the same as the internal refractive index at a predetermined length. A light-receiving optical functional element according to claim 1. 3. On a semiconductor substrate of one conductivity type, an optical waveguide structure having a core of a multi-quantum well structure consisting of a quantum well layer and a barrier layer lattice-matched to the substrate is formed, and on the optical waveguide structure, the above-mentioned a layer having a conductivity type opposite to that of the semiconductor substrate, and an electrode for applying a predetermined electric field perpendicular to the multiple quantum well layer;
The substrate is cleaved perpendicularly to the multi-quantum well layer to form a light-receiving surface, and a laser beam having an emission wavelength that is absorbed by the core portion is externally applied to the core portion of the light-receiving surface at a predetermined input power. A light-receiving type optical functional element in which the quantum well layer in the core portion is mixed crystallized by irradiation for a predetermined period of time, and the mode spot diameter of the optical waveguide portion is made smaller than the spot diameter within a predetermined length from the light-receiving surface. Production method. 4. On the light-receiving surface, an electrode is formed short by a predetermined length inside the cleavage plane, and in the part where the electrode is not present,
The light-receiving type optical functional device according to claim 3, wherein the substrate and the waveguide portion are irradiated with a predetermined laser beam from a vertical direction, and then the cleavage plane is formed such that the irradiated portion becomes the irradiated portion. manufacturing method.
JP1232917A 1989-09-11 1989-09-11 Photodetection type optical function element and production thereof Pending JPH0396917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232917A JPH0396917A (en) 1989-09-11 1989-09-11 Photodetection type optical function element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232917A JPH0396917A (en) 1989-09-11 1989-09-11 Photodetection type optical function element and production thereof

Publications (1)

Publication Number Publication Date
JPH0396917A true JPH0396917A (en) 1991-04-22

Family

ID=16946866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232917A Pending JPH0396917A (en) 1989-09-11 1989-09-11 Photodetection type optical function element and production thereof

Country Status (1)

Country Link
JP (1) JPH0396917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008757A1 (en) * 1995-08-29 1997-03-06 The Furukawa Electric Co., Ltd. Waveguide type photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008757A1 (en) * 1995-08-29 1997-03-06 The Furukawa Electric Co., Ltd. Waveguide type photodetector
US5926585A (en) * 1995-08-29 1999-07-20 The Furukawa Electric Co., Ltd. Waveguide type light receiving element

Similar Documents

Publication Publication Date Title
US7359588B2 (en) Electroabsorption modulator and method of manufacturing the same
US10241267B2 (en) Semiconductor optical integrated device including a reduced thickness upper cladding layer in a ridge waveguide portion, and method of manufacturing the same
JPH02124540A (en) Quantum interference optical element
US11211773B2 (en) Quantum cascade laser with monolithically integrated passive waveguide
JP2003533896A (en) Integrated photon detector with multiple asymmetric waveguides
JPH04254380A (en) Monolithic integrated photoamplifier and photodetector
US5742423A (en) Semiconductor optical modulator
US7409113B2 (en) Semiconductor electro-absorption optical modulator, semiconductor electro-absorption optical modulator integrated laser, optical transmitter module and optical module
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
US6646317B2 (en) High power photodiode
JPH0396917A (en) Photodetection type optical function element and production thereof
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
JPH0410582A (en) Semiconductor optical element
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2001320076A (en) Semiconductor photodetector
JP7444290B2 (en) semiconductor optical device
JPH05291695A (en) Optical integrated circuit
JP2001042149A (en) Optical element with ridge type optical waveguide
US10969543B2 (en) Semiconductor integrated optical device, and method of fabricating semiconductor integrated optical device
JP3890291B2 (en) Electroabsorption modulator
JP5017300B2 (en) Absorption type semiconductor optical modulator
WO2023233508A1 (en) Semiconductor light receiver and semiconductor element
JP2001290114A (en) Optical transmitting module
JP3441385B2 (en) Optical coupling device