JPH039647B2 - - Google Patents

Info

Publication number
JPH039647B2
JPH039647B2 JP58088440A JP8844083A JPH039647B2 JP H039647 B2 JPH039647 B2 JP H039647B2 JP 58088440 A JP58088440 A JP 58088440A JP 8844083 A JP8844083 A JP 8844083A JP H039647 B2 JPH039647 B2 JP H039647B2
Authority
JP
Japan
Prior art keywords
potential
voltage
fetq
fet
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58088440A
Other languages
Japanese (ja)
Other versions
JPS59214316A (en
Inventor
Takashi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58088440A priority Critical patent/JPS59214316A/en
Publication of JPS59214316A publication Critical patent/JPS59214316A/en
Publication of JPH039647B2 publication Critical patent/JPH039647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3565Bistables with hysteresis, e.g. Schmitt trigger

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はヒステリシス回路に関する。 従来ヒステリシス特性を持つ比較器は第1図に
示すように、比較器CM、抵抗R1,R2、基準電圧
源VREF等により構成され、入力電圧VINが接地レ
ベルから徐々に電源電圧VDDまで上昇する際に、
出力電圧VOUTが電源電圧VDDレベルより接地レベ
ルに遷移するときの入力電圧VIN,Hは(1)式でほぼ
与えられ、同様に入力電圧VINが電源電圧VDD
ベルより徐々に接地レベルまで下降し、出力電圧
VOUTが接地レベルから電源電圧VDDレベルに遷移
するときの入力電圧VIN,Lは(2)式で与えられる。 VIN,H=R2/R1+R2VREF+R1/R1+R2VDD (1) VIN,L=R2/R1+R2VREF (2) ただし、こゝでVREFは基準電圧源VREFの電位で
あり、0VREF<VDDとする。したがつて、この
従来の回路は、VH=VIN,H−VIN,L=R1/R1+R2VDDの ヒステリシス幅をもつヒステリシス回路となり、
入力電圧VINに重畳する電気的雑音による誤動作
の低減を行なえる。 しかし、これらは比較器CM基準電圧源VREF
理想的なものと仮定した場合であり、このままの
回路構成では以下の理由により、集積回路化に適
さない。まず基準電圧源VREFの内部インピーダン
スによりVIN,HおよびVIN,Lは変動するためこの内
部インピーダンスは極めて低くする必要があり、
集積回路化した場合、基準電圧源を他の回路にも
印加するようなときには簡単な電源電圧の抵抗分
割等では構成できず、緩衝段が必要となる欠点が
ある。また、比較器CMの出力インピーダンスは
理想的にはゼロであるが、実際にはゼロではな
く、VIN,HおよびVIN,Lは変動する。この変動を抑
圧するためには、R1,R2の抵抗値を比較器CMの
出力インピーダンスに比較して十分、高く選択す
る必要があり、集積回路化した場合には抵抗値の
絶対値を大きくとるか、あるいは比較器CMの出
力トランジスタの寸法を大きくして出力インピー
ダンスを下げるなどの工夫が必要であり、いづれ
も素子寸法の増大につながるため不利である。 これらの点に鑑み、本発明は、基準電圧源VREF
の内部インピーダンスによらず、また基準電圧源
にも影響を及ぼさず、少ない素子数で、特に
CMOS集積回路化に好適な比較器構成のヒステ
リシス回路を提供せんとするものである。 本発明によれば、一対の電界効果トランジスタ
の一方のゲートに入力電圧を印加し、他方のゲー
トには基準電圧を印加して構成された差動増幅器
の互いに逆相となる二出力のそれぞれをゲートに
接続した一導電型の第1、第2のトランジスタ、
およびこれらのトランジスタのそれぞれと直列接
続された他導電型の第3、第4のトランジスタを
含み、前記第3、第4のトランジスタのドレイン
はそれぞれ他方のトランジスタのゲートに交叉接
続され、前記第1、第2のトランジスタの電流供
給能力は、それぞれ前記第3、第4のトランジス
タの電流供給能力より小さいことを特徴とするヒ
ステリシス回路。 次に本発明をその実施例に従い、図面を用いて
詳細に説明する。 第2図は、本発明の一実施例を示す回路接続図
であり、電界効果トランジスタ(以下FETと記
す)9,10、負荷7,8、定電流源11よりな
る差動増幅器12に基準電圧源VREF、入力電圧
VINを印加し、負荷7とFET9のドレインの接続
点N1より得られる1つの出力と、負荷8とFET
10のドレインの接続点N2より得られるもう1
つの出力とを、FETQ1,Q2,Q3,Q4よりなる回
路で電圧振幅変換した後に、FETQ5,Q6よりな
るインバータ回路を緩衝増幅器13として増幅し
出力端子Voに出力するものである。 以下、図面をもとにして、この回路の動作およ
びヒステリシス特性を説明する。 第2図の回路においてFETQ1とQ2,FETQ3
Q4,FET9と10、および負荷7と8が各々対
称な素子であるとする。これらは集積回路上で、
隣接した位置に素子を配置したり、マスク上のパ
ターンを同一にする等の方法により、容易に整合
をとることが可能である。今、FETQ1,Q2の電
流供給能力がFETQ3,Q4の電流吸入能力に比較
して十分大きな場合には、接点N1,N2,N3
N4の入力電圧VINに対する直流伝達特性は例えば
第3図に示すようにVIN=VREFなる直線について
N1とN2,N3とN4が各々左右対称となり、この
場合には、VINを低い電位から高い電位に変化さ
せた時と、高い電位から低い電位に変化させた時
の接点N4の変化が、同一軌跡上を通るためイン
バータ回路13の回路スレシホールドを電源電圧
の1/2とすれば、第3図のVIN=Vthの位置で出力
端子Voの電位が反転しヒステリシス特性を持た
ない。この発明は、特に、FETQ3,Q4
FETQ1,Q2に対する素子寸法比の選定により、
FETQ1,Q2の電流供給能力をFETQ3,Q4の電流
吸入能力に対し、比較的小さくすることにより、
入力電圧VINの変化に対する接点N3あるいは接点
N4の電位の上昇する割合を比較的緩やかにし、
入力電圧VINを低い電位から高い電位に変化する
ときと高い電位から低い電位に変化するときの接
点N3と接点N4の軌跡をVIN=VREFに対して非対称
とすることによりヒステリシス特性を得るもので
ある。 以下、このヒステリシス特性を定量的に説明す
る。ここで、FETの電流供給能力を定量的に評
価するために、(3)式および(4)式を定義する。 IDS=β/2(VGS−VT2 ―(3) IDS=β〔(VGS−VT)・VDS−VDS 2/2〕―(4) ただし(3)式におけるIDSはFETが飽和領域にあ
るときのドレインソース間電流で、(4)式における
IDSはFETがトライオード領域にあるときのドレ
インソース間電流で、VGS,VDS,VTは各々、ゲ
ート・ソース間電圧、ドレイン・ソース間電圧お
よびFETの素子しきい値電圧の絶対値を示すも
ので、βはA/V2の単位を持つパラメータで、
β=K・W/Lというように、プロセスに固有の
A/V2の単位を持つKと、FETのチヤンネル巾
W、チヤンネル長Lの比の乗算で得られる。以
後、各FETのVGS,VT,βに、各々のFETの番
号をサフイツクスとして付加する事により、各
FETの電流を示すこととする。 第4図は入力電圧VINを低い電位から高い電位
に変化させたときの接点N3とN4の直流伝達特性
を、第5図は入力電圧VINを高い電位から低い電
位に変化させたときの接点N3とN4の直流伝達特
性を、第6図は入力電圧VINの変化に対する接点
N1とN2の直流伝達特性をそれぞれ示す。まず第
4図において入力電圧VINが基準電圧VREFに対し
てはるかに低い電位であるとすると定電流源11
の電流はほとんど負荷8とFET10の電流路を
流れ、接点N1はほぼ電源電圧VDDの電位に近づ
き、接点N2の電位は定電流源11の電流値と負
荷8により決まる電圧降下分だけ電源電圧VDD
り下降した電位となる。これによりFETQ1,Q4
は非導通、FETQ2,Q3が導通となり、接点N3
電位はほぼ電源電圧VSSの電位、接点N4の電位は
ほぼ電源電圧VDDとなり、出力端子Voは接点N4
の反転した出力、すなわち電源電圧VSSの電位と
なる。この状態から入力電圧VINの電位を徐々に
上昇することにより、負荷7,FET9の電流路
にも定電流源11の一部の電流が流れ始め、負荷
8,FET10の電流は、この分だけ減少する。
負荷7と8,FET9と10各々対称な素子であ
るから、この電流の増減の割合はVIN=VREFにつ
いて対称で、接点N1とN2の電位の増減の割合も
VIN=VREFについて対称となる。これにより、
FETQ1の電流供給能力はしだいに増加し、
FETQ2の電流供給能力はしだいに減少する。こ
の状態から、さらに入力電圧VINを上昇させる
と、FETQ1の電流能力はさらに増加するため、
接点N3の電位は電源電圧VSSの電位からしだいに
上昇するようになり、非導通状態にあつた
FETQ4の電流能力もしだいに増加する。ここで
出力端子Voの電位が電源電圧VSSから電源電圧
VDDの電位に遷移する点は、FETQ2とFETQ4
電流能力が等しくなつた時であり、(5)式が成立す
るときで、このときに必要なFETQ4のゲートソ
ース間電圧VGS4は(5)式より(6)式のように導出され
る。 β2/2(VGS2−VT22=β4/2(VGS4−VT42―(5
) また、このとき同時に、接点N3において、飽
和領域にあるFETQ1とトライオード領域にある
FETQ3の電流が等しいから次の(7)式が成立する。
ただし、以後簡単のため、VSS=0とする。 β1/2(VGS1−VT12=β3〔(VDD−VT3) ・VG
S4
−VGS4 2/2〕 ―(7) なお、このとき、VDS3=VGS4が成立することは
いうまでもなく、FETQ3のゲート電位は、遷移
の直前まで、ほぼ電源電圧VDDの電位である。上
式(6)式および(7)式が同時に成立するから、(6)式を
(7)式に代入する事により、次の(8)式を得る。 ここでVGS1,VGS2は各々電源電圧VDDの電位と
接点N1,N2の電位との電位差で与えられ、これ
らはVIN=VREFに対して対称となるから、VIN
VREFにおけるVGS1,VGS2をVcと置き、変数xを
以下の(9),(10)式のように定義でき、この様子は第
6図に示される。 VGS1=Vc+x ―(9) VGS2=Vc−x ―(10) (9),(10)式を(8)式に代入し、xについての2次方
程式を解くことにより、xは(11)式に示すように求
まる。ただし、β2/β4=β1/β3,VT1=VT2,VT3
=VT4とする。 x=−C/2+1/2{C2−4〔(Vc−VT1−C)(Vc −VT1)− 1/2・β3/β1・VT3・(2VDD−3VT3)〕}1/2―(11
) ただし、
The present invention relates to hysteresis circuits. As shown in Figure 1, a conventional comparator with hysteresis characteristics consists of a comparator CM, resistors R 1 and R 2 , a reference voltage source V REF, etc., and the input voltage V IN gradually increases from the ground level to the power supply voltage V When rising to DD ,
The input voltage V IN , H when the output voltage V OUT transitions from the power supply voltage V DD level to the ground level is approximately given by equation (1), and similarly, the input voltage V IN gradually transitions from the power supply voltage V DD level to the ground level. level, the output voltage
The input voltage V IN , L when V OUT transitions from the ground level to the power supply voltage V DD level is given by equation (2). V IN , H = R 2 /R 1 +R 2 V REF +R 1 /R 1 +R 2 V DD (1) V IN , L = R 2 /R 1 +R 2 V REF (2) However, here V REF is the potential of the reference voltage source V REF , and 0V REF <V DD . Therefore, this conventional circuit becomes a hysteresis circuit with a hysteresis width of V H = V IN , H − V IN , L = R 1 /R 1 + R 2 V DD ,
Malfunctions caused by electrical noise superimposed on the input voltage V IN can be reduced. However, these are cases where it is assumed that the comparator CM reference voltage source V REF is ideal, and the circuit configuration as it is is not suitable for integration into an integrated circuit for the following reasons. First, V IN , H and V IN , L fluctuate due to the internal impedance of the reference voltage source V REF , so this internal impedance must be extremely low.
In the case of an integrated circuit, when the reference voltage source is applied to other circuits, it cannot be constructed by simply resistor division of the power supply voltage, and a buffer stage is required. Furthermore, although the output impedance of the comparator CM is ideally zero, it is actually not zero, and V IN , H and V IN , L vary. In order to suppress this fluctuation, it is necessary to select the resistance values of R 1 and R 2 sufficiently high compared to the output impedance of the comparator CM. It is necessary to take measures such as increasing the size or increasing the size of the output transistor of the comparator CM to lower the output impedance, both of which are disadvantageous because they lead to an increase in the element size. In view of these points, the present invention provides a reference voltage source V REF
It does not depend on the internal impedance of the
The present invention aims to provide a hysteresis circuit with a comparator configuration suitable for CMOS integrated circuits. According to the present invention, each of two outputs having opposite phases to each other of a differential amplifier configured by applying an input voltage to one gate of a pair of field effect transistors and applying a reference voltage to the other gate is first and second transistors of one conductivity type connected to the gate;
and third and fourth transistors of other conductivity types connected in series with each of these transistors, the drains of the third and fourth transistors being cross-connected to the gates of the other transistor, respectively, and the drains of the third and fourth transistors being cross-connected to the gates of the other transistor, , a hysteresis circuit characterized in that the current supply capacity of the second transistor is smaller than the current supply capacity of the third and fourth transistors, respectively. Next, the present invention will be explained in detail according to an embodiment thereof using the drawings. FIG. 2 is a circuit connection diagram showing one embodiment of the present invention. Source V REF , input voltage
V IN is applied, one output obtained from the connection point N 1 of the drain of load 7 and FET 9, and one output obtained from the connection point N 1 of the drain of load 7 and FET 9.
Another one obtained from the connection point N 2 of the drain of 10
After converting the voltage amplitude of the two outputs by a circuit consisting of FETQ 1 , Q 2 , Q 3 , and Q 4 , the inverter circuit consisting of FETQ 5 and Q 6 is used as a buffer amplifier 13 to amplify and output to the output terminal Vo. be. The operation and hysteresis characteristics of this circuit will be explained below based on the drawings. In the circuit shown in Figure 2, FETQ 1 and Q 2 , FETQ 3 and
It is assumed that Q 4 , FETs 9 and 10, and loads 7 and 8 are each symmetrical elements. These are on integrated circuits.
Matching can be easily achieved by arranging elements at adjacent positions or using the same pattern on a mask. Now, if the current supply capacity of FETQ 1 and Q 2 is sufficiently large compared to the current suction capacity of FETQ 3 and Q 4 , the contacts N 1 , N 2 , N 3 ,
For example, as shown in Figure 3, the DC transfer characteristic for input voltage V IN of N 4 is based on the straight line V IN = V REF .
N 1 and N 2 and N 3 and N 4 are symmetrical, and in this case, the contact point N when V IN is changed from a low potential to a high potential and when it is changed from a high potential to a low potential. 4 pass on the same trajectory, so if the circuit threshold of the inverter circuit 13 is set to 1/2 of the power supply voltage, the potential of the output terminal Vo is reversed at the position of V IN = Vth in Figure 3, causing hysteresis. Has no characteristics. This invention particularly applies to FETQ 3 and Q 4 .
By selecting the element size ratio for FETQ 1 and Q 2 ,
By making the current supply capacity of FETQ 1 and Q 2 relatively smaller than the current absorption capacity of FETQ 3 and Q 4 ,
Contact N 3 or contact for changes in input voltage V IN
The rate of increase in the potential of N 4 is made relatively slow,
Hysteresis characteristics are achieved by making the trajectories of contact N3 and contact N4 asymmetrical with respect to V IN = V REF when the input voltage V IN changes from a low potential to a high potential and from a high potential to a low potential. This is what you get. This hysteresis characteristic will be quantitatively explained below. Here, in order to quantitatively evaluate the current supply ability of the FET, equations (3) and (4) are defined. I DS = β / 2 (V GS - V T ) 2 - (3) I DS = β [(V GS - V T )・V DS - V DS 2 /2] - (4) However, in equation (3) I DS is the drain-source current when the FET is in the saturation region, and is
I DS is the drain-source current when the FET is in the triode region, and V GS , V DS , and V T are the absolute values of the gate-source voltage, drain-source voltage, and FET element threshold voltage, respectively. where β is a parameter with the unit of A/V 2 ,
It is obtained by multiplying K, which has a unit of A/V 2 specific to the process, by the ratio of the channel width W and channel length L of the FET, such as β=K·W/L. After that, by adding the number of each FET as a suffix to V GS , V T , and β of each FET, each
Let us show the current of the FET. Figure 4 shows the DC transfer characteristics of contacts N 3 and N 4 when the input voltage V IN is changed from a low potential to a high potential, and Figure 5 shows the DC transfer characteristics of contacts N 3 and N 4 when the input voltage V IN is changed from a high potential to a low potential. Figure 6 shows the DC transfer characteristics of contacts N 3 and N 4 when the input voltage V IN changes.
The DC transfer characteristics of N 1 and N 2 are shown respectively. First, in Fig. 4, if the input voltage V IN is at a much lower potential than the reference voltage V REF , the constant current source 11
Most of the current flows through the current path between the load 8 and the FET 10, the potential of the contact N1 is almost close to the potential of the power supply voltage VDD , and the potential of the contact N2 is only the voltage drop determined by the current value of the constant current source 11 and the load 8. The potential is lower than the power supply voltage VDD . This allows FETQ 1 , Q 4
is non-conductive, FETQ 2 and Q 3 are conductive, the potential of contact N 3 is approximately the potential of the power supply voltage V SS , the potential of contact N 4 is approximately the potential of the power supply voltage V DD , and the output terminal Vo is approximately the potential of contact N 4
This is the inverted output of , that is, the potential of the power supply voltage V SS . By gradually increasing the potential of the input voltage V IN from this state, a part of the current of the constant current source 11 begins to flow in the current path of the load 7 and FET 9, and the current of the load 8 and FET 10 increases by this amount. Decrease.
Since loads 7 and 8 and FETs 9 and 10 are symmetrical elements, the rate of increase/decrease in this current is symmetrical with respect to V IN =V REF , and the rate of increase/decrease in the potential of contacts N 1 and N 2 is also symmetrical.
It is symmetrical about V IN =V REF . This results in
The current supply capability of FETQ 1 gradually increases,
The current supply capability of FETQ 2 gradually decreases. If the input voltage V IN is further increased from this state, the current capability of FETQ 1 will further increase, so
The potential of contact N3 gradually rises from the potential of the power supply voltage V SS , and it is in a non-conducting state.
The current capability of FETQ 4 also increases gradually. Here, the potential of the output terminal Vo changes from the power supply voltage V SS to the power supply voltage
The point where the potential transitions to V DD is when the current capabilities of FETQ 2 and FETQ 4 become equal, and when equation (5) holds true, at which time the required gate-source voltage of FETQ 4 V GS4 is derived from equation (5) as shown in equation (6). β 2 /2 (V GS2 - V T2 ) 2 = β 4 /2 (V GS4 - V T4 ) 2 -(5
) At the same time, at contact N 3 , FETQ 1 is in the saturation region and FETQ 1 is in the triode region.
Since the currents of FETQ 3 are equal, the following equation (7) holds true.
However, from now on, for the sake of simplicity, we will assume that V SS =0. β 1 /2 (V GS1 −V T1 ) 2 = β 3 [(V DD −V T3 ) ・V G
S4
−V GS4 2 /2] - (7) At this time, it goes without saying that V DS3 = V GS4 holds true, and the gate potential of FETQ 3 is almost equal to the power supply voltage V DD until just before the transition. It is electric potential. Since the above equations (6) and (7) hold simultaneously, equation (6) can be
By substituting into equation (7), the following equation (8) is obtained. Here, V GS1 and V GS2 are each given by the potential difference between the potential of the power supply voltage V DD and the potential of contacts N 1 and N 2 , and these are symmetrical with respect to V IN = V REF , so V IN =
V GS1 and V GS2 in V REF are set as Vc, and the variable x can be defined as shown in the following equations (9) and (10), as shown in FIG. V GS1 = Vc + x - (9) V GS2 = Vc - x - (10) By substituting equations (9) and (10) into equation (8) and solving the quadratic equation for x, x becomes (11 ) can be obtained as shown in the formula. However, β 2 / β 4 = β 1 / β 3 , V T1 = V T2 , V T3
= V T4 . x=-C/2+1/2 {C 2 -4 [(Vc-V T1 -C) (Vc -V T1 )-1/2・β 31・V T3・(2V DD −3V T3 )] } 1/2 -(11
) however,

【式】 すなわち、入力電圧VINを低い電位から徐々に
上昇させたとき、出力端子Voの電位が反転する
点は、接点N1,N2の電位が(9),(10)式を満たすと
きであり、このときのxの値が、例えば第7図の
ように、(11)式を用いてβ1/β3をパラメータとして
計算される。なお第7図の計算例は、以下の条件
による。 曲線A:VDD=5V,各FETのVT=1V,Vc=
1.5V 曲線B:VDD=3V,各FETのVT=0.5V,Vc=
0.8V 曲線C:VDD=10V,各FETのVT=1V,Vc=
2.0V 曲線D:VDD=20V,各FETのVT=1V,Vc=
2.5V 曲線E:VDD=30V,各FETのVT=1V,Vc=
3V 曲線F:VDD=40V,各FETのVT=2V,Vc=
4V 曲線G:VDD=50V,各FETのVT=2.5V,Vc
=5V 曲線H:VDD=60V,各FETのVT=3V,Vc=
6V なお、一度、出力端子Voの電位が反転した後
に、入力電圧VINをさらに上昇させても、出力端
子Voの状態の変化は起こらない。 ここで、入力電圧VINに対する差動増幅器12
の直流電圧利得をAVとおけば、第6図よりりAV
は(12)式で定義される。 AV=x/VH−VREF ―(12) ただし、VHは、この遷移の起こる入力電圧VIN
の値であり、これにより、片側のヒステリシス幅
VH−VREFは(13)式で得られる。 VH−VREF=x/AV ―(13) 以上は、入力電圧VINは低い電位から上昇させ
た場合であるが、次に、入力電圧VINを基準電圧
VREFよりもはるかに高い電位から下降させたとき
の接点N3,N4の直流伝達特性は、第6図に示す
ように、FETQ1,Q2,Q3,Q4および差動増幅器
12の対称性により、第5図の接点N3,N4の軌
跡をVIN=VREFに対称とした場合と等価になり、
この対称性により、VIN=VLのときに出力端子
Voの電位が電源電圧VDDの電位から電源電圧VSS
の電位に反転し、このときのVLは同様にして
(14)式で与えられる。 VREF−VL=x/AV ―(14) この場合も、入力電圧VINをVLよりもさらに下
降させても状態の変化は起こらない。 すなわち、(13)式および(14)式より本発明
の回路は、VH−VL=2x/AVのヒステリシス幅を有 するヒステリシス回路となり、このヒステリシス
幅はβ1/β3および差動増幅器12の直流電圧利得
AVを適宜選定すことにより、任意に選択できる。 このとき、第7図の計算例で見るように、この
回路はC−MOSプロセスで実現できる。例えば
VDDを3V〜60Vとしたときに対し、β1/β3を適度
に選ぶことによりヒステリシス特性を持たせるこ
とが可能である。また、この回路において基準電
圧源はFET10のゲートのハイインピーダンス
で受けているため、基準電圧源の内部インピーダ
ンスによらず安定で、かつ基準電圧源に悪影響を
与えることもない。さらに、以上の説明で
FETQ1,Q2はPチヤンネルFET,FETQ3,Q4
9,10はNチヤンネルFETとし、VDD>VSS
仮定をしたが、各FETの極性、および電源電圧
の関係を反対にする事によつても同様のヒステリ
シス回路が得られる事は言うまでもない。 以上のように本発明によれば非常に少ない素子
数、および簡単な回路構成により容易にヒステリ
シス特性を得られ、かつ、ヒステリシス幅を決定
するパラメータがβ1/β3および差動増幅器の直流
電圧利得AV等の制御の容易な要素であるため安
定な特性を示し、集積回路化に好適なヒステリシ
ス回路を提供でき、これによる実用上の利益は多
大である。
[Formula] In other words, when the input voltage V IN is gradually increased from a low potential, the point at which the potential of the output terminal Vo is reversed is when the potentials of contacts N 1 and N 2 satisfy equations (9) and (10). The value of x at this time is calculated using equation (11) using β 13 as a parameter, as shown in FIG. 7, for example. Note that the calculation example shown in FIG. 7 is based on the following conditions. Curve A: V DD = 5V, V T = 1V for each FET, Vc =
1.5V Curve B: V DD = 3V, V T of each FET = 0.5V, Vc =
0.8V Curve C: V DD = 10V, V T = 1V for each FET, Vc =
2.0V Curve D: V DD = 20V, V T = 1V for each FET, Vc =
2.5V Curve E: V DD = 30V, V T of each FET = 1V, Vc =
3V curve F: V DD = 40V, V T = 2V of each FET, Vc =
4V curve G: V DD = 50V, V T = 2.5V for each FET, Vc
= 5V Curve H: V DD = 60V, V T of each FET = 3V, Vc =
6V Note that once the potential of the output terminal Vo is inverted, even if the input voltage V IN is further increased, the state of the output terminal Vo does not change. Here, the differential amplifier 12 for the input voltage V IN
Let A V be the DC voltage gain of A V
is defined by equation (12). A V = x/V H −V REF - (12) However, V H is the input voltage V IN where this transition occurs
is the value of , which gives the hysteresis width on one side
V H −V REF is obtained by equation (13). V H −V REF = x/A V − (13) The above is a case where the input voltage V IN is raised from a low potential. Next, let us change the input voltage V IN to the reference voltage
The DC transfer characteristics of contacts N 3 and N 4 when lowered from a potential much higher than V REF are as shown in FIG . Due to the symmetry of
Due to this symmetry, when V IN = V L , the output terminal
The potential of Vo changes from the potential of the power supply voltage V DD to the power supply voltage V SS
V L at this time is similarly given by equation (14). V REF - V L = x/A V - (14) In this case as well, no change in state occurs even if the input voltage V IN is lowered further than V L. That is, from equations (13) and (14), the circuit of the present invention becomes a hysteresis circuit with a hysteresis width of V H −V L = 2x/A V , and this hysteresis width is determined by β 13 and the differential amplifier. DC voltage gain of 12
It can be arbitrarily selected by selecting A V appropriately. At this time, as shown in the calculation example in FIG. 7, this circuit can be realized using a C-MOS process. for example
When V DD is set to 3V to 60V, it is possible to provide hysteresis characteristics by appropriately selecting β 13 . Furthermore, in this circuit, the reference voltage source is received at high impedance at the gate of the FET 10, so it is stable regardless of the internal impedance of the reference voltage source, and does not adversely affect the reference voltage source. Furthermore, the above explanation
FETQ 1 , Q 2 are P channel FETs, FETQ 3 , Q 4 ,
9 and 10 are N-channel FETs, and it is assumed that V DD > V SS , but it goes without saying that a similar hysteresis circuit can be obtained by reversing the polarity of each FET and the relationship between the power supply voltages. . As described above, according to the present invention, hysteresis characteristics can be easily obtained with a very small number of elements and a simple circuit configuration, and the parameters that determine the hysteresis width are β 13 and the DC voltage of the differential amplifier. Since it is an element that is easy to control, such as the gain A V , it exhibits stable characteristics and can provide a hysteresis circuit suitable for integration into an integrated circuit, which has great practical benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来回路例を示す。第2図は本発明の
一実施例の回路接続図を示す。第3図は本発明の
回路構成でヒステリシス動作を示さない場合の直
流伝達特性を示す。第4図、第5図、第6図はそ
れぞれ本発明のヒステリシス特性を説明する直流
伝達特性を示す。第7図はヒステリシス幅の計算
例を示す。 VDDVSS:電源ライン、VIN:入力電圧、VS:出
力端子、R1,R2:抵抗、VREF:基準電圧源、Q1
Q2,Q3,Q4,Q5,Q6,9,10:FET:7,
8:負荷、11:定電流源、12:差動増幅器、
13:インバータ回路、N1,N2,N3,N4:接
点。
FIG. 1 shows an example of a conventional circuit. FIG. 2 shows a circuit connection diagram of an embodiment of the present invention. FIG. 3 shows DC transfer characteristics when the circuit configuration of the present invention does not exhibit hysteresis operation. FIG. 4, FIG. 5, and FIG. 6 each show DC transfer characteristics explaining the hysteresis characteristics of the present invention. FIG. 7 shows an example of calculating the hysteresis width. V DD V SS : Power supply line, V IN : Input voltage, V S : Output terminal, R 1 , R 2 : Resistance, V REF : Reference voltage source, Q 1 ,
Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , 9, 10: FET: 7,
8: load, 11: constant current source, 12: differential amplifier,
13: Inverter circuit, N 1 , N 2 , N 3 , N 4 : Contact.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電界効果トランジスタの一方のゲート
に入力電圧を印加し、他方のゲートには基準電圧
を印加して差動増幅器を構成し、前記差動増幅器
の互いに逆相となる二出力のそれぞれをゲートに
接続した一導電型の第1および第2のトランジス
タ並びにこれらのトランジスタのそれぞれと直列
接続された他導電型の第3および第4のトランジ
スタを含み、前記第3および第4のトランジスタ
のドレインはそれぞれ他方のトランジスタのゲー
トに交叉接続され、前記第1および第2のトラン
ジスタの電流供給能力は、それぞれ前記第3およ
び第4のトランジスタの電流供給能力より小さい
ことを特徴とするヒステリシス回路。
1 A differential amplifier is constructed by applying an input voltage to one gate of a pair of field effect transistors and a reference voltage to the other gate, and each of the two outputs of the differential amplifier having opposite phases to each other. comprising first and second transistors of one conductivity type connected to the gates and third and fourth transistors of the other conductivity type connected in series with each of these transistors, the drains of the third and fourth transistors; are each cross-connected to the gate of the other transistor, and the current supply capabilities of the first and second transistors are smaller than the current supply capabilities of the third and fourth transistors, respectively.
JP58088440A 1983-05-20 1983-05-20 Hysteresis circuit Granted JPS59214316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088440A JPS59214316A (en) 1983-05-20 1983-05-20 Hysteresis circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088440A JPS59214316A (en) 1983-05-20 1983-05-20 Hysteresis circuit

Publications (2)

Publication Number Publication Date
JPS59214316A JPS59214316A (en) 1984-12-04
JPH039647B2 true JPH039647B2 (en) 1991-02-08

Family

ID=13942857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088440A Granted JPS59214316A (en) 1983-05-20 1983-05-20 Hysteresis circuit

Country Status (1)

Country Link
JP (1) JPS59214316A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125246A (en) * 1974-03-25 1975-10-02
JPS536555A (en) * 1976-07-07 1978-01-21 Mitsubishi Electric Corp Differential amplifier circuit
JPS54124964A (en) * 1978-03-10 1979-09-28 Rockwell International Corp Voltage level shifter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122841U (en) * 1974-03-22 1975-10-07
JPH02838Y2 (en) * 1981-01-16 1990-01-10

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125246A (en) * 1974-03-25 1975-10-02
JPS536555A (en) * 1976-07-07 1978-01-21 Mitsubishi Electric Corp Differential amplifier circuit
JPS54124964A (en) * 1978-03-10 1979-09-28 Rockwell International Corp Voltage level shifter

Also Published As

Publication number Publication date
JPS59214316A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US5525897A (en) Transistor circuit for use in a voltage to current converter circuit
KR940010678B1 (en) Input circuit
US5266887A (en) Bidirectional voltage to current converter
JPH0119297B2 (en)
JPH0319425A (en) Driver circuit
US7443200B2 (en) Capacitor-coupled level shifter with duty-cycle independence and supply referenced bias configuration
EP0405319B1 (en) Delay circuit having stable delay time
CN1524340A (en) High-bandwidth low-voltage gain cell and voltage follower having an enhanced transconductance
US5021730A (en) Voltage to current converter with extended dynamic range
US8228111B2 (en) Bias voltage generation for capacitor-coupled level shifter with supply voltage tracking and compensation for input duty-cycle variation
US20090184752A1 (en) Bias circuit
JPH04313907A (en) Signal processing unit
EP1435693B1 (en) Amplification circuit
US6815997B2 (en) Field effect transistor square multiplier
US5648734A (en) Buffer circuit and bias circuit
EP1804375A1 (en) Differential amplifier circuit operable with wide range of input voltages
KR100280492B1 (en) Integrator input circuit
JPH039647B2 (en)
JP2651246B2 (en) CMOS input buffer circuit
JP2705169B2 (en) Constant current supply circuit
EP0420183B1 (en) Push-pull circuit
JPS60182207A (en) Differential amplifier circuit
US5296754A (en) Push-pull circuit resistant to power supply and temperature induced distortion
US20050068095A1 (en) Low pass filter
TWI763688B (en) Input device