JPH0396062A - Color information input device - Google Patents

Color information input device

Info

Publication number
JPH0396062A
JPH0396062A JP1232410A JP23241089A JPH0396062A JP H0396062 A JPH0396062 A JP H0396062A JP 1232410 A JP1232410 A JP 1232410A JP 23241089 A JP23241089 A JP 23241089A JP H0396062 A JPH0396062 A JP H0396062A
Authority
JP
Japan
Prior art keywords
color
photoelectric conversion
conversion element
light
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232410A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fujita
和弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1232410A priority Critical patent/JPH0396062A/en
Publication of JPH0396062A publication Critical patent/JPH0396062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Color Television Image Signal Generators (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To fetch correct color input information without losing color balance among each color by forming the light receiving plane of each photoelectric conversion element in shape so that the change of an element area in a main scan direction can be kept constant in each photoelectric conversion element group. CONSTITUTION:The shape of the light receiving plane of the photoelectric conversion element of each color of R, G, and B in the photoelectric conversion element group is divided and formed in stripe shape with equal width in a direction of 45 deg. against the main scan direction M(arranging direction) and a subscan direction(scanning direction) S. The output of each color goes to R=R1+R2+R3, G=G1+G2, and B=B1+B2, respectively, and the change of the area of the light receiving plane of each color is expressed in the change of length in the subscan direction assuming the main scan direction as an axis of obscissa in one group, and R, G, and B is kept constant, respectively. Therefore, the input intensity of each color in each group of (n-1), (n), and (n+1) can be set uniformly among each color by receiving light with the light intensity of a black and white pattern A, which enables precise input information to be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カラー情報入力装置に間する。[Detailed description of the invention] Industrial applications The present invention relates to a color information input device.

従来の技術 カラー複写機、カラーファクシミリ等に使用される撮像
素子としては、原稿面を走査しながら画像内容を行単位
で読取るCCDリニアイメージセンサが一般的である。
2. Description of the Related Art As an image sensor used in color copying machines, color facsimile machines, etc., a CCD linear image sensor is generally used, which reads image contents line by line while scanning the surface of a document.

ここに、原稿面上の画像内容は、レンズ又はルーフミラ
ーレンズアレイなどの等倍結像素子により直線上の受光
部に結像される。受光部は、直線に沿って配列された微
小なグループ(各々3画素についての読取りを分担する
)の集合体として構成され、通常、緑G、青B、赤Rの
3原色に対応する光電変換素子により構威される。行単
位に光電変換された画像情報は、各グループ毎に順次変
換されて外部回路に出力される。
Here, the image content on the document surface is imaged onto a linear light receiving section by a 1-magnification imaging element such as a lens or a roof mirror lens array. The light-receiving section is configured as a collection of minute groups (each responsible for reading three pixels) arranged along a straight line, and usually performs photoelectric conversion corresponding to the three primary colors of green G, blue B, and red R. It is determined by the element. The image information photoelectrically converted row by row is sequentially converted for each group and output to an external circuit.

第6図(b)は従来のカラー撮像素子(CCDリニアイ
メージセンサ)の受光部の構成例を示す。
FIG. 6(b) shows an example of the configuration of a light receiving section of a conventional color image sensor (CCD linear image sensor).

即ち、R,G,Bで示す各光電変換素子を1組として〜
 (n−l) v ne  ( n + 1 ) v〜
で示すような光電変換素子グループを構威し、主走査方
向Mに規則的に配列させてなる。光電変換素子としては
、一般に、フォトダイオードが使用される。
That is, each photoelectric conversion element indicated by R, G, and B is set as one set.
(n-l) v ne (n + 1) v~
It consists of photoelectric conversion element groups as shown in , which are regularly arranged in the main scanning direction M. A photodiode is generally used as a photoelectric conversion element.

発明が解決しようとする課題 このようなカラー撮像素子は、結像された原稿の照度が
各グループの受光面内で均一とみなし得る場合には、極
めて満足な結果が得られる。しかし、原稿面上の画像濃
度が変化する場合には、これに対応する撮像素子受光部
上の結像の照度の変動を生じ、各グループ内で一定とは
みなし得なくなり、次のような問題点が生じる。
Problems to be Solved by the Invention With such a color imaging device, extremely satisfactory results can be obtained if the illuminance of the imaged document can be considered to be uniform within the light-receiving surface of each group. However, if the image density on the document surface changes, the illuminance of the image formed on the image sensor light receiving section will change correspondingly, and it can no longer be considered constant within each group, resulting in the following problems. A point occurs.

まず、第6図(a)に示すように、原稿上の画像が黒一
白領域の近傍を同図(b)に示すようなカラー撮像素子
が走査しながら読取る場合を考える。
First, as shown in FIG. 6(a), consider a case in which an image on a document is scanned and read in the vicinity of a black and white area by a color image pickup device as shown in FIG. 6(b).

例えば、透過原稿をカラー撮像素子に密着させ、その上
から照射する時は、原稿上の黒白2分割パターンAはそ
のままカラー撮像素子上にパターンAで照射される。こ
こで、黒レベルを0、白レベルをlOで表すと、各グル
ープの各光電変換素子の出力は、第1表のようになる。
For example, when a transparent original is brought into close contact with a color image sensor and irradiated from above, the black and white two-division pattern A on the original is irradiated as pattern A onto the color image sensor. Here, if the black level is represented by 0 and the white level is represented by lO, the output of each photoelectric conversion element in each group is as shown in Table 1.

また、反射原稿を照明し、その反射光をレンズ等の結像
光学系でカラー撮像素子上に結像させる場合は、原稿上
の黒白2分割パターンAは、レンズの解像度MTFの値
が空間周波数が上がるに従って1に近づくので、第6図
(a)中にBで示すようなパターンでカラー撮像素子上
に結像する。この場合の各グループの各光電変換素子の
出力は、第2表のようになる。
In addition, when a reflective original is illuminated and the reflected light is imaged on a color image sensor using an imaging optical system such as a lens, the black and white two-split pattern A on the original has a spatial frequency that is equal to the resolution MTF of the lens. As the value increases, it approaches 1, so an image is formed on the color image sensor in a pattern as shown by B in FIG. 6(a). In this case, the output of each photoelectric conversion element in each group is as shown in Table 2.

一方、デジタル複写機においては、ある任意の1点の情
報を、R,G,Bの3原色の色信号として必要とする。
On the other hand, in a digital copying machine, information on any one point is required as color signals of the three primary colors R, G, and B.

この場合、黒白パターンの例では、各グループのR,G
,Bの出力は、R,G,Bが等量でなくてはならない。
In this case, in the example of a black and white pattern, R, G of each group
, B must have equal amounts of R, G, and B.

等量でないと、灰色又は黒に色のついたデータ、即ち、
カラーバランスの崩れたデータとして入力されてしまう
からである。
If the amounts are not equal, the data will be colored gray or black, i.e.
This is because the data will be input as color-balanced data.

しかるに、第1表、第2表に示したように、R,G,B
は、各々異なった出力となっており、第1表の場合は1
00%、第2表の場合は最大65%もカラーバランスが
狂ったものとなっている。
However, as shown in Tables 1 and 2, R, G, B
have different outputs, and in the case of Table 1, 1
00%, and in the case of Table 2, the color balance is out of order by up to 65%.

これは、第7図(b)のように、各R,G,Bの受光面
形状を斜めにしたものでも、同図(a)に示すような光
強度を持った黒白パターンBで結像されると、各グルー
プの各光電変換素子の出力は、第3表のようになり、上
記の場合と同様にカラーバランスの崩れた情報となって
しまう。
Even if the shape of each R, G, and B light-receiving surface is oblique as shown in Figure 7(b), the image is formed in black and white pattern B with the light intensity as shown in Figure 7(a). In this case, the output of each photoelectric conversion element in each group will be as shown in Table 3, and the color balance will be out of order as in the above case.

課題を解決するための手段 互いに異なる波長対の光に応答して作動する複数種の光
電変換素子よりなる光電変換素子グループを少なくとも
一次元主走査方向に規則的に配設したカラー情報入力装
置において、請求項l記載の発明では、各光電変換素子
の受光面を、主走査方向の素子面積変化が各光電変換素
子グループ内で一定となる形状に形成し、これに加え、
請求項2記載の発明では、各光電変換素子の受光面を、
副走査方向の素子面積変化が各光電変換素子グループ内
で一定となる形状に形威した。
Means for Solving the Problems In a color information input device in which photoelectric conversion element groups consisting of a plurality of types of photoelectric conversion elements that operate in response to light of different wavelength pairs are arranged regularly in at least one-dimensional main scanning direction. In the invention described in claim 1, the light-receiving surface of each photoelectric conversion element is formed in a shape such that the element area change in the main scanning direction is constant within each photoelectric conversion element group, and in addition to this,
In the invention according to claim 2, the light receiving surface of each photoelectric conversion element is
The element area change in the sub-scanning direction was shaped to be constant within each photoelectric conversion element group.

作用 原稿濃度の変化した部分が素子内の何れの個所を通過し
ても、光′a変換素子グループ内での各色の光電変換素
子の受光面面積は主走査方向においては一定であるので
、各色間の入力強度は主走査方向の何れの位置でも等量
であり、各色間のカラーバランスが狂うことがなく、正
しいカラ一人力情報を取り込むことができる。
No matter where in the element the part where the density of the working original has changed passes, the light-receiving surface area of the photoelectric conversion element of each color in the light'a conversion element group is constant in the main scanning direction. The input intensity between the two is the same at any position in the main scanning direction, so the color balance between each color is not disturbed, and accurate color information can be captured.

この場合、副走査方向についても受光面面積の変化が一
定となるようにすれば、電気的な補正処置等を要せず、
副走査方向の何れの位置に対してもカラーバランスのず
れのない読取りが可能となる。
In this case, if the change in the light-receiving surface area is made constant in the sub-scanning direction, no electrical correction is required.
Reading without deviation of color balance is possible at any position in the sub-scanning direction.

実施例 本発明の第一の実施例を第1図ないし第3図に基づいて
説明する6まず、第1図(a)は1つの光電変換素子グ
ループ内のR,G,B各色の光電変換素子の受光面形状
を示すもので、主走査方向(配列方向)Mと副走査方向
(スキャニング方向)Sとに対し45゜の方向に等幅ス
トライプ形状に分割形成してなる。ここに、各色の配列
順は任意であるが、本実施例ではR,G,Bの順である
Embodiment A first embodiment of the present invention will be explained based on FIGS. 1 to 3.6 First, FIG. 1(a) shows photoelectric conversion of each color of R, G, and B in one photoelectric conversion element group. This shows the shape of the light-receiving surface of the element, which is formed by dividing into equal-width stripes in the direction of 45 degrees with respect to the main scanning direction (array direction) M and the sub-scanning direction (scanning direction) S. Although the colors can be arranged in any order, in this embodiment, the colors are arranged in the order of R, G, and B.

ここに、各色の出力は、R = R, + R, + 
R,、 G= G, 十G,、B=B,+B,となるも
のであり、各々の色の受光面面積の変化は、lグループ
内で主走査方向を横軸にとると、副走査方向の長さ変化
で表されるが、第l図(b)に示すようにR,G,B各
々一定の状態となる。これは副走査方向を横軸にとり主
走査方向の各色R,G,Bに対する長さ変化も第1図(
b)の場合と同様に一定である。
Here, the output of each color is R = R, + R, +
R,, G=G, 10G,, B=B, +B, and the change in the light-receiving surface area of each color is, if the main scanning direction is taken as the horizontal axis within l group, then the sub-scanning direction is Although it is expressed as a change in length in the direction, each of R, G, and B remains constant as shown in FIG. 1(b). The horizontal axis is the sub-scanning direction, and the length changes for each color R, G, and B in the main scanning direction are also shown in Figure 1 (
It is constant as in case b).

なお、第1図(b)では各色R,G,Bの面積変化一定
の様子が同じ直線で示されるが、R,G,Bの受光感度
や入力信号の処理の都合によっては、同一直線(即ち、
同一幅)でなくてもよい。
In Fig. 1(b), the constant area change of each color R, G, and B is shown by the same straight line, but depending on the light receiving sensitivity of R, G, and B and the processing of the input signal, the same straight line ( That is,
They do not have to be the same width).

このような光電変換素子グループが第2図(b)や第3
図(b)に〜 (n−1),n,(n+1)r〜で示す
如く、主走査方向Mに多数配列される。
Such photoelectric conversion element groups are shown in Figures 2(b) and 3.
A large number of them are arranged in the main scanning direction M, as shown by ~(n-1), n, (n+1)r~ in FIG. 2(b).

このような構成によれば、例えば前述したような黒白パ
ターンがカラー撮像素子上に密着されて、第2図(a)
に示すような黒白パターンAの光強度で受光したとする
と、(n−1),n,(n+1)の各グループでの各色
の入力強度は、第4表のようになり、 力は、第5表のようになり、結像系のMTFにより多少
なりとも光の強弱は変化するものの、カラ一バランスが
崩れることはない。
According to such a configuration, for example, the black and white pattern as described above is closely attached to the color image sensor, as shown in FIG. 2(a).
If light is received with the light intensity of black and white pattern A as shown in Table 4, the input intensity of each color in each group of (n-1), n, and (n+1) is as shown in Table 4, and the power is As shown in Table 5, although the intensity of the light changes somewhat depending on the MTF of the imaging system, the color balance will not be disrupted.

各色間で均等であり、正確な入力情報が得られる。It is uniform between each color and accurate input information can be obtained.

これは、結像光学系により黒白パターンBのように崩れ
た場合であっても、センサ密度に対応する解像度MTF
を有する結像系であれば、隣接するグループの光強度に
影響することなく、結果として第5表の場合と同様に各
色間で正しいカラーバランスが維持される。
This means that even if the image forming optical system distorts the black and white pattern B, the resolution MTF corresponding to the sensor density is
If the imaging system has the following, the correct color balance between each color is maintained as in the case of Table 5 without affecting the light intensity of adjacent groups.

また、第3図(a)に示すように、黒白パターンBが1
グループのどの部分を通過しても(例えば、図示のよう
にグループ間)、この場合の各色の出これは、黒白パタ
ーンが副走査方向のどの部分で現れても同様である。
Furthermore, as shown in FIG. 3(a), the black and white pattern B is 1
Regardless of where the black and white pattern appears in the sub-scanning direction, the appearance of each color in this case is the same no matter where in the group it passes (for example, between groups as shown).

つづいて、本発明の第二の実施例を第4図により説明す
る。本実施例は、l画素内(1グループ内)において、
R,G,B各色の光電変換素子の受光面を等幅ストライ
プ状として副走査方向に配設し、主走査方向の面積変化
のみが一定となるようにしたものである。300dpi
の場合であれば約8 4 pm, 4 0 0dpiの
場合であれば約63pmの正力形がlグループをなす1
画素の大きさとなる。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, within l pixels (within one group),
The light-receiving surfaces of the photoelectric conversion elements for each color of R, G, and B are arranged in the form of equal-width stripes in the sub-scanning direction, so that only the change in area in the main-scanning direction is constant. 300dpi
In the case of 84 pm, in the case of 400 dpi, the positive force form of about 63 pm forms l group 1.
This is the size of a pixel.

本実施例の場合、カラーバランス維持の効果は主走査方
向にのみ現れ、副走査方向には現れないが、副走査方向
については、スキャナ走行体の速度に応じて各色の光強
度の入力情報を遅らせて取り込む等の電気的な補正で対
処し得る。
In the case of this embodiment, the effect of maintaining color balance appears only in the main scanning direction and not in the sub-scanning direction, but in the sub-scanning direction, the input information of the light intensity of each color is adjusted according to the speed of the scanner traveling body. This can be dealt with by electrical correction such as delayed capture.

なお、第5図に示すように、R,G,B各色の光電変換
素子の受光面積を、各色の受光感度に応じて異なる幅の
ストライブ状として副走査方向に配設し、主走査方向の
面積変化のみが一定となるようにしてもよい。
As shown in FIG. 5, the light-receiving areas of the photoelectric conversion elements for each color of R, G, and B are arranged in the sub-scanning direction as stripes with different widths depending on the light-receiving sensitivity of each color. Alternatively, only the area change may be made constant.

発明の効果 本発明は、上述したように光電変換素子グループ内での
各色の光電変換素子の受光面を主走査方向の素子面積変
化が一定となる形状としたので、原稿濃度の変化した部
分が素子内の何れの個所を通過しても、各色の光電変換
素子間の入力強度が主走査方向の何れの位置でも等量と
なり、各色間のカラーバランスが狂うことがなく、正し
いカラ一人力情報を取り込むことができ、特に、副走査
方向についても受光面面積の変化が一定となるようにし
たので、電気的な補正等を要せずに、副走査方向の何れ
の位置に対してもカラーバランスのずれのない読取りを
可能とすることができる。
Effects of the Invention In the present invention, as described above, the light-receiving surface of each color photoelectric conversion element in a photoelectric conversion element group is shaped so that the change in element area in the main scanning direction is constant. Regardless of where the photoelectric conversion element passes through the element, the input intensity between the photoelectric conversion elements of each color is the same at any position in the main scanning direction, so the color balance between each color is not disturbed, and accurate color information can be obtained. In particular, since the change in the light-receiving surface area remains constant even in the sub-scanning direction, color correction can be performed at any position in the sub-scanning direction without the need for electrical correction. It is possible to perform reading without shifting the balance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示す受光面形状及び面
積変化特性を示す説明図、第2図は黒白パターンの光強
度及び受光部構成を示す説明図、第3図は黒白パターン
の光強度及び受光部構成を示す説明図、第4図は本発明
の第二の実施例を示す受光画形状の説明図、第5図は変
形例を示す受光面形状の説明図、第6図は従来の黒白パ
ターンの光強度及び受光部構成例を示す説明図、第7図
は異なる従来例の黒白パターンの光強度及び受光部構成
例を示す説明図である。 R,G,B・・・光電変換素子、n−1,n,n+l・
・・光電変換素子グループ 1 7回
Fig. 1 is an explanatory diagram showing the light receiving surface shape and area change characteristics showing the first embodiment of the present invention, Fig. 2 is an explanatory diagram showing the light intensity and light receiving part configuration of a black and white pattern, and Fig. 3 is an explanatory diagram showing the black and white pattern. FIG. 4 is an explanatory diagram showing the light intensity and configuration of the light-receiving section, FIG. 4 is an explanatory diagram of the shape of the light-receiving image showing the second embodiment of the present invention, FIG. FIG. 7 is an explanatory diagram showing an example of the light intensity and the configuration of the light receiving section of a conventional black and white pattern, and FIG. 7 is an explanatory diagram showing an example of the light intensity and the configuration of the light receiving section of a different conventional black and white pattern. R, G, B... photoelectric conversion element, n-1, n, n+l.
...Photoelectric conversion element group 1 7 times

Claims (1)

【特許請求の範囲】 1、互いに異なる波長対の光に応答して作動する複数種
の光電変換素子よりなる光電変換素子グループを少なく
とも一次元主走査方向に規則的に配設したカラー情報入
力装置において、各光電変換素子の受光面を、主走査方
向の素子面積変化が各光電変換素子グループ内で一定と
なる形状に形成したことを特徴とするカラー情報入力装
置。 2、各光電変換素子の受光面を、副走査方向の素子面積
変化が各光電変換素子グループ内で一定となる形状に形
成したことを特徴とする請求項1記載のカラー情報入力
装置。
[Claims] 1. A color information input device in which a photoelectric conversion element group consisting of a plurality of types of photoelectric conversion elements that operate in response to light of mutually different wavelength pairs is regularly arranged in at least one-dimensional main scanning direction. A color information input device characterized in that the light-receiving surface of each photoelectric conversion element is formed in a shape such that a change in element area in the main scanning direction is constant within each photoelectric conversion element group. 2. The color information input device according to claim 1, wherein the light-receiving surface of each photoelectric conversion element is formed in a shape such that a change in element area in the sub-scanning direction is constant within each photoelectric conversion element group.
JP1232410A 1989-09-07 1989-09-07 Color information input device Pending JPH0396062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232410A JPH0396062A (en) 1989-09-07 1989-09-07 Color information input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232410A JPH0396062A (en) 1989-09-07 1989-09-07 Color information input device

Publications (1)

Publication Number Publication Date
JPH0396062A true JPH0396062A (en) 1991-04-22

Family

ID=16938814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232410A Pending JPH0396062A (en) 1989-09-07 1989-09-07 Color information input device

Country Status (1)

Country Link
JP (1) JPH0396062A (en)

Similar Documents

Publication Publication Date Title
US6184929B1 (en) Solid state imaging device and image read apparatus with polygonal photosensitive pixels
EP1096785B1 (en) Method of scanning using a photosensor with multiple sensor areas of different sizes
US5055921A (en) Color reading line sensor
US6924840B1 (en) Color image capturing device and image reader using the color image capturing device
US6646682B1 (en) Linear tri-color image sensors
US4855817A (en) Color image sensor with optical diffusion members covering sets of color filters and separated by light shields to obtain accurate color reproduction
JPS6128260B2 (en)
JPH0396062A (en) Color information input device
US6593559B2 (en) Image readout apparatus and image readout method using the same
CN1173548C (en) Improved arrangement of light detector in colour image sensor
EP1148710A2 (en) Color image pickup element, image reader using the pickup element, and image reading method
JPS63164753A (en) Color image pickup element
JPH04170853A (en) Picture reader
JPH11150627A (en) Color line sensor and color image reader
JPH05196894A (en) Image reader
JPH0562502B2 (en)
JPS63174469A (en) Color image reader
JPH01268343A (en) Color document reader
JPH10308845A (en) Image reader
JPS60256266A (en) Scanner of unmagnification
JPS6172464A (en) Picture reader
JPH0626412B2 (en) Document reader
JPH0630188A (en) Image sensor and perfect contact type image sensor unit using the same
JPH11317839A (en) Image reader
JPH0766948A (en) Picture reader