JPH0395802A - High polymer solid electrolyte and positive electrode complex - Google Patents

High polymer solid electrolyte and positive electrode complex

Info

Publication number
JPH0395802A
JPH0395802A JP1233516A JP23351689A JPH0395802A JP H0395802 A JPH0395802 A JP H0395802A JP 1233516 A JP1233516 A JP 1233516A JP 23351689 A JP23351689 A JP 23351689A JP H0395802 A JPH0395802 A JP H0395802A
Authority
JP
Japan
Prior art keywords
positive electrode
polymer
salt
solid electrolyte
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233516A
Other languages
Japanese (ja)
Inventor
Hiroshi Imachi
宏 井町
Shuichi Ido
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1233516A priority Critical patent/JPH0395802A/en
Publication of JPH0395802A publication Critical patent/JPH0395802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve mechanical strength and ion conductivity by having ion dissociative salt singly or together with a solvent which can solve the ion dissociative salt contained in a compatibly solved substance of a polymer which can solve ion dissociative salt and a hydrocarbonaceous polymer. CONSTITUTION:A high polymer solid electrolyte composed of polymers which can solve ion dissociative salt such as polyethylene oxide, polypropylene oxide or a copolymer of both is mixed and solved in a solvent which can solve ion dissociative salt such as acetonitrile. A solid substance obtained by solving ion dissociative salt such as lithium perchlorate in this solution is fused and mixed into a high polymer solid electrolyte composed of hydrocarbonaceous polymers such as granular low density polyethylene, and after the mixture is extended, it is rapidly cooled to be a film. Thus ion conductivity of the high polymer solid electrolyte is improved as well as mechanical strength of a positive electrode complex is improved by using this electrolyte as a binding agent of a positive electrode substance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一次電池、二次電池、エレクトロクロミック
ディヌデレイ、電気化学センサーイオントフォレVス、
コンデンサーその他の電気化学的グバイスに用いる高分
子固体電解質、及び一次電池、二次電池に用いる正極複
合物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to primary batteries, secondary batteries, electrochromic diodelays, electrochemical sensors iontophores,
The present invention relates to polymer solid electrolytes used in capacitors and other electrochemical devices, and positive electrode composites used in primary batteries and secondary batteries.

従来技術とその問題点 アρカリ金!!4塩、アρカリ土類金属虫等を溶解させ
たポリエーテμは、比較的高いイオン伝導性を示すこと
から、固体電解質としての応用面で広く関心を集めてい
る。
Conventional technology and its problems Akali gold! ! Polyether μ, which is made by dissolving 4-salts, alkaline earth metals, etc., exhibits relatively high ionic conductivity, and is therefore attracting wide interest in its application as a solid electrolyte.

ボリエーテμとしては、ポリエチレンオキシドがしばし
ば用いられるが、単独で用いた場合には室温以下では結
晶化しイオン伝導度は低いものとなる。結晶化を防ぐ方
法としてポリエチレンオキVドを架橋する方法、ポリエ
チレンオキVドとデロビレンオキVドのコポリマーを架
橋する方法などがあるが、いずれの方法もボリエーテ/
V鎖の運動性が制限されるためにイオン伝導度は不十分
である。
Polyethylene oxide is often used as polyethylene oxide, but when used alone, it crystallizes below room temperature and has low ionic conductivity. Methods for preventing crystallization include a method of crosslinking polyethylene oxide V-dos and a method of cross-linking a copolymer of polyethylene oxide V-dos and delobylene oxide V-dos.
Ionic conductivity is poor due to limited mobility of the V chains.

一方、櫛形ポリマーの枝ポリマーとしてポリエーテルを
用いて固体電解質とする提案がある。
On the other hand, there is a proposal to use polyether as a branch polymer of a comb-shaped polymer to form a solid electrolyte.

しかしこの場合、架橋体タイプと比較して約10倍高い
イオン伝導度を持つが、機械的強度が非常に弱いという
問題点がある。
However, in this case, although the ionic conductivity is about 10 times higher than that of the crosslinked type, there is a problem that the mechanical strength is very weak.

発明の目的 本発明は、上記従来の問題点Elmみなされたものであ
り、機械的強度に優れ、イオン伝導度の高い高分子固体
電解質及び機械的強度に優れた正極複合物を提供するこ
とを目的とするものである。
OBJECTS OF THE INVENTION The present invention addresses the above-mentioned conventional problems, and aims to provide a solid polymer electrolyte with excellent mechanical strength and high ionic conductivity, and a positive electrode composite with excellent mechanical strength. This is the purpose.

発明の構或 本発明は、イオン解離性塩を溶解可能なポリマーと炭化
水素系ポリマーとの相溶化物が、イオン解離性塩のみ又
はイオン解離性塩を溶解可能な溶剤と該イオン性解離性
堆とを共に含むことを特徴とする高分子固体電解質であ
る。
Structure of the Invention The present invention provides that a compatibilized product of a polymer capable of dissolving an ionically dissociative salt and a hydrocarbon polymer is composed of only the ionically dissociable salt or a solvent capable of dissolving the ionically dissociative salt and the ionicly dissociative salt. This is a solid polymer electrolyte characterized by containing both a carbonaceous substance and a carbonaceous substance.

又、イオン解離性塩を溶解可能なポリマーがポリエチレ
ンオキVド、またはポリプロピレンオキVド、またはエ
チレンオキVドとプロピレンオキVドのコポリマーであ
る前記の高分子固体電解質である。
Further, the polymer solid electrolyte is one in which the polymer capable of dissolving the ionically dissociable salt is polyethylene oxide, polypropylene oxide, or a copolymer of ethylene oxide and propylene oxide.

又、炭化水素系ポリマーがポリエチレンまたはボリデロ
ビレンである前記の高分子固体電解質である。
Further, the above-mentioned solid polymer electrolyte is one in which the hydrocarbon polymer is polyethylene or borideropylene.

又〜ポリエチレンが低密度ポリエチレンである前紀の高
分子固体電解質である。
It is also a former polymer solid electrolyte in which the polyethylene is low density polyethylene.

又、前記の高分子固体電解質を正極活物質の結着剤とし
て用いたことを特徴とする正極複合物である〇 作用 ボリエーテpの結晶化を防ぐために、ボリエーテμと相
溶性のある第2のポリマーを混合する●これは、第2の
ポリマーの分子釦とポリエーテルの分子鎖とが相互に侵
入し、ボリエーデ〃鎖同士を近づきに<<シた。
In addition, a positive electrode composite characterized in that the polymer solid electrolyte described above is used as a binder for a positive electrode active material. Mixing the polymers●This means that the molecular buttons of the second polymer and the molecular chains of the polyether penetrate into each other, bringing the polyadene chains closer together.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 ポリエチレンオキシド(平均分子量1oooo>5重量
部をア七ト=}!I/&1503k量部に混合溶解し、
さらに、過塩素酸リチウム0.5重量部を混合溶解した
。この混合物の溶剤分を50℃で減圧留去し、白色の固
形物を得た。この固形物と粒状低密度ポリエチレン5重
量部をア〃ゴン雰囲気下150℃で5時間溶融混合し、
そのまま80℃に保温したステンレス板上に流延した。
Example 1 Polyethylene oxide (average molecular weight 1oooo>5 parts by weight was mixed and dissolved in 7 parts by weight of 7!I/&1503k,
Furthermore, 0.5 parts by weight of lithium perchlorate was mixed and dissolved. The solvent in this mixture was distilled off under reduced pressure at 50°C to obtain a white solid. This solid substance and 5 parts by weight of granular low-density polyethylene were melt-mixed at 150°C for 5 hours in an agonist atmosphere,
The mixture was cast onto a stainless steel plate kept at 80°C.

流延後急速に冷却し、厚み100p*のフィルムを得た
。このフィ〃ムの室温でのイオン伝導度を複素インピー
ダンス法で測定し3 X 1 0−5を得た。この7イ
μムの機械的強度は、引っ張り強度で3 5 kgcm
−2を示した。
After casting, it was rapidly cooled to obtain a film with a thickness of 100p*. The ionic conductivity of this film at room temperature was measured by the complex impedance method and was found to be 3×10-5. The mechanical strength of this 7 μm is 35 kgcm in tensile strength.
-2 was shown.

実施例2 実施例1のフィμムに5重量部のプロピレンカーポネー
トを含浸した0このフィμムの室温でのイオン伝導度を
複素インピーダンス法で測定し6×10 を得た●この
フィルムの機械的強度は、引っ張り強度で25#ell
l  を示した。
Example 2 The film of Example 1 was impregnated with 5 parts by weight of propylene carbonate.The ionic conductivity of this film at room temperature was measured by the complex impedance method and was found to be 6 x 10. Mechanical strength is 25#ell in terms of tensile strength.
l was shown.

比較例1 ポリエチレンオキVド(平均分子量ioooo>5重量
部をアセ}=}+J/I/150重量部に混合溶解し、
さらに、過塩素酸リチウム0.5重量部を混合溶解した
。この混合物の溶剤分を50℃で減圧留去し、白色の固
形物を得た。この固形物をア〃ゴン雰囲気下100℃で
溶融し8(1に保温したステンレス板上に流延した。流
延後急速に冷却し、厚み100μ調のフィμムを得た〇
このフィルムの室温でのイオン伝導度を複素インピーダ
ンス法で測定し2 X 1 0−’を得た。
Comparative Example 1 Polyethylene oxide V (average molecular weight ioooo>5 parts by weight was mixed and dissolved in 150 parts by weight of ace}+J/I/
Furthermore, 0.5 parts by weight of lithium perchlorate was mixed and dissolved. The solvent in this mixture was distilled off under reduced pressure at 50°C to obtain a white solid. This solid material was melted at 100°C in an argon atmosphere and cast onto a stainless steel plate kept at 8 (1). After casting, it was rapidly cooled to obtain a film with a thickness of 100μ. The ionic conductivity at room temperature was measured by the complex impedance method and 2 x 1 0-' was obtained.

実施例3 実施例1の白色の固形物と粒状低密度ポリエチレン5重
量部をアルゴン雰囲気下150℃で3時間溶融混合し、
この混合物と43重量部の二酸化マンガンと7重量部の
アセチレンプフフクとを、自動乳鉢を用いて1時間混練
し、80℃に保温したステンレス板上に流延し、ローラ
ープレスで厚みを調整し、100声解の黒色のフィ〃ム
を得た。このフィ〃ムの機械的強度は、引っ張り強度で
1 2 kgcm−2を示した。
Example 3 The white solid of Example 1 and 5 parts by weight of granular low-density polyethylene were melt-mixed at 150°C for 3 hours in an argon atmosphere.
This mixture, 43 parts by weight of manganese dioxide, and 7 parts by weight of acetylene powder were kneaded for 1 hour using an automatic mortar, then cast onto a stainless steel plate kept at 80°C, and the thickness was adjusted using a roller press. , I got a black film with 100 voices. The mechanical strength of this film was 12 kgcm-2 in terms of tensile strength.

比較例2 43重量部の二酸化マンガンと7重量部のアセチレンブ
ラックと2重量部のテフロンを自動乳鉢で1時間混練し
、ローフーデレスにより400一mのP + }に戒形
した。このフィNムの機械的強度は、引っ張り強度で5
 kgcm−2を示した。
Comparative Example 2 43 parts by weight of manganese dioxide, 7 parts by weight of acetylene black, and 2 parts by weight of Teflon were kneaded in an automatic mortar for 1 hour, and shaped into 4001 m of P + } using a low food res. The mechanical strength of this film is 5 in terms of tensile strength.
kgcm-2.

イオン解離性塩な溶解可能なポリマーとしては、ポリエ
ーテルが好適に用いられるが、特にポリエチレンオキシ
ドが好適である。ポリエチレンオキシドなどのポリエー
テμは、室温付近で結晶化するものが多く、そのために
室温以下の温度ではイオン伝導度がきわめて低い。ポリ
エーテルの結晶化を防ぐ方法として、ポリエーテルと相
溶性のある第2のポリマーを混合する方法がある。これ
は、第2のポリマーの分子鎖とボリエーテ〃の分子鎖と
が相互に侵入し〜ボリエーテ/L/glどうしを近づき
にくくする効果によるものである。このとき、ポリエー
テ〃と第2のポリマーとの相互作用は強すぎないことが
必要である。ある種の炭化水素系ポリマーは、ボリエー
テρと相溶し、かつ弱い相互作用を持つため、tpJ2
のポリマーとして好適に用いることができる●炭化水素
系ポリマーとしては、ポリエチレン、ボリデ宵ビレンな
どがあるが、相溶性の点では低密度ポリエチレンが最も
優れている。
Polyether is preferably used as the ionically dissociable salt-soluble polymer, and polyethylene oxide is particularly suitable. Many polyether μ such as polyethylene oxide crystallize around room temperature, and therefore have extremely low ionic conductivity at temperatures below room temperature. As a method for preventing crystallization of polyether, there is a method of mixing a second polymer that is compatible with polyether. This is due to the effect that the molecular chains of the second polymer and the molecular chains of boliate invade each other and make it difficult for boliate/L/gl to approach each other. At this time, it is necessary that the interaction between the polyether and the second polymer is not too strong. Certain hydrocarbon polymers are compatible with polyate ρ and have weak interactions, so tpJ2
●Hydrocarbon polymers that can be suitably used as polymers include polyethylene and bolide, but low-density polyethylene is the best in terms of compatibility.

イオン解離性塩を溶解可能な溶剤としては、デトフヒド
ロ7フン、2メチルテトフヒドロフフン、1,5ジオキ
ンフン、4メチ〃ジオキソヲン、ガンマプチロフクトン
、エチレンカーボネート、プロピレンカーボネート、プ
チレンカーボネート、ス〃ホフン)3メチμスμホフン
、1,2ジメトキVエタン、エトキシメトキンエタン、
メチ〃ジグフイム1メチ〃トリグフイム、エチルモノグ
ライム、エチμジグライム、グチ〃ジグライムが好まし
いが、限定はしない。
Examples of solvents that can dissolve ionically dissociable salts include detofhydro-7, 2-methyltetofhydrof, 1,5-dioquinone, 4-methyl-dioxone, gamma petilofucton, ethylene carbonate, propylene carbonate, butylene carbonate, and sulphof. ) 3 methoxy phophon, 1,2 dimethoxy V ethane, ethoxymethine ethane,
Preferred are, but are not limited to, methyl diglyme, 1 methy triglyme, ethyl monoglyme, ethyl diglyme, and guthi diglyme.

?オン解離性塊としては、LiOIO4、LiBF4、
Li▲SF6、LiOF5SO3、LiPF6、LiI
、LiBr,LiSONs Ma工、NaBrx Na
SCN%KSONsMg01■、Mg(0104)2、
(CH.)4NBF4、(CJ) 4NBr % (0
2”5) 4”104、(C2}15)4NI、(C5
H7)4NBr, (n−04H?)4NC10+、(
n 04H9)4NI、(n−05111)4NIが好
ましいが、限定はしない。
? On-dissociable lumps include LiOIO4, LiBF4,
Li▲SF6, LiOF5SO3, LiPF6, LiI
, LiBr, LiSONs Ma, NaBrx Na
SCN%KSONsMg01■, Mg(0104)2,
(CH.)4NBF4, (CJ)4NBr% (0
2”5) 4”104, (C2}15)4NI, (C5
H7)4NBr, (n-04H?)4NC10+, (
n04H9)4NI and (n-05111)4NI are preferred, but are not limited thereto.

発明の効果 上述した如く、本発明は機械的強1tに優れ、イオン伝
導度の高い高分子固体電解質及び機械的強度に優れた正
極複合物を提供することができる。
Effects of the Invention As described above, the present invention can provide a solid polymer electrolyte with excellent mechanical strength 1t and high ionic conductivity, and a positive electrode composite with excellent mechanical strength.

Claims (5)

【特許請求の範囲】[Claims] (1)イオン解離性塩を溶解可能なポリマーと炭化水素
系ポリマーとの相溶化物が、イオン解離性塩のみ又はイ
オン解離性塩を溶解可能な溶剤と該イオン性解離性塩と
を共に含むことを特徴とする高分子固体電解質。
(1) A compatibilized product of a polymer capable of dissolving an ionically dissociative salt and a hydrocarbon polymer contains only the ionically dissociable salt or both a solvent capable of dissolving the ionically dissociative salt and the ionic dissociative salt. A polymer solid electrolyte characterized by:
(2)イオン解離性塩を溶解可能なポリマーがポリエチ
レンオキシド、またはポリプロピレンオキシド、または
エチレンオキシドとプロピレンオキシドのコポリマーで
ある請求項1記載の高分子固体電解質。
(2) The solid polymer electrolyte according to claim 1, wherein the polymer capable of dissolving the ionically dissociable salt is polyethylene oxide, polypropylene oxide, or a copolymer of ethylene oxide and propylene oxide.
(3)炭化水素系ポリマーがポリエチレンまたはポリプ
ロピレンである請求項、記載の高分子固体電解質。
(3) The solid polymer electrolyte according to claim 1, wherein the hydrocarbon polymer is polyethylene or polypropylene.
(4)ポリエチレンが低密度ポリエチレンである請求項
3記載の高分子固体電解質。
(4) The solid polymer electrolyte according to claim 3, wherein the polyethylene is low density polyethylene.
(5)請求項1記載の高分子固体電解質を正極活物質の
結着剤として用いたことを特徴とする正極複合物。
(5) A positive electrode composite characterized in that the solid polymer electrolyte according to claim 1 is used as a binder for a positive electrode active material.
JP1233516A 1989-09-08 1989-09-08 High polymer solid electrolyte and positive electrode complex Pending JPH0395802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233516A JPH0395802A (en) 1989-09-08 1989-09-08 High polymer solid electrolyte and positive electrode complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233516A JPH0395802A (en) 1989-09-08 1989-09-08 High polymer solid electrolyte and positive electrode complex

Publications (1)

Publication Number Publication Date
JPH0395802A true JPH0395802A (en) 1991-04-22

Family

ID=16956255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233516A Pending JPH0395802A (en) 1989-09-08 1989-09-08 High polymer solid electrolyte and positive electrode complex

Country Status (1)

Country Link
JP (1) JPH0395802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte

Similar Documents

Publication Publication Date Title
JP2914388B2 (en) Polymer solid electrolyte
CA1282825C (en) Non-aqueous electrochemical cell
US11302924B2 (en) Dual electron-ion conductive polymer composite
JPH0256870A (en) Chargeable electrochemical generator
JPH08508850A (en) Solid electrolyte and battery
JP2022125249A (en) lithium ion capacitor
CN102237526A (en) Lithium ion battery cathode slurry, cathode and battery
CN102237527A (en) Lithium ion battery and lithium ion battery electrode as well as electrode material and paste for lithium ion battery
CN101735589B (en) Polymer electrolyte, preparation method thereof and battery comprising polymer electrolyte
JP2008235249A (en) Electrode for secondary battery and method for making same, and secondary battery using this electrode
JP3623050B2 (en) Polymer electrolytes and electrochemical devices
JP4899361B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3098248B2 (en) Ion conductor or electrolyte for batteries
CN109728339A (en) Electrolyte composition, all solid state electrolyte film and preparation method thereof, anode and all-solid lithium-ion battery
Orue et al. Concerted ionic-electronic conductivity enables high-rate capability Li-metal solid-state batteries
JPH0676828A (en) Solid electrolyte mold body
JPH0395802A (en) High polymer solid electrolyte and positive electrode complex
Pan et al. Enhanced mechanical strength and conductivity of PVFM based membrane and its supporting polymer electrolytes
Alzate-Carvajal et al. A comparative study on the influence of the polymeric host for the operation of all-solid-state batteries at different temperatures
JP2001297796A (en) Lithium secondary cell
JPH10324719A (en) Vinyl acetate-based copolymer, gel polyelectrolyte composition containing the same and lithium-based polymeric secondary battery
JPH10321232A (en) Electrode composition
Lemordant et al. Artificial SEI for lithium-ion battery anodes: impact of fluorinated and nonfluorinated additives
JP3279650B2 (en) Solid electrolyte battery
JPH0737419A (en) Polymer electrolyte