JPH0395742A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPH0395742A
JPH0395742A JP23028989A JP23028989A JPH0395742A JP H0395742 A JPH0395742 A JP H0395742A JP 23028989 A JP23028989 A JP 23028989A JP 23028989 A JP23028989 A JP 23028989A JP H0395742 A JPH0395742 A JP H0395742A
Authority
JP
Japan
Prior art keywords
magneto
layers
recording
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23028989A
Other languages
Japanese (ja)
Other versions
JP2814604B2 (en
Inventor
Shunichi Hashimoto
俊一 橋本
Yoshitaka Ochiai
落合 祥隆
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16905485&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0395742(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23028989A priority Critical patent/JP2814604B2/en
Publication of JPH0395742A publication Critical patent/JPH0395742A/en
Application granted granted Critical
Publication of JP2814604B2 publication Critical patent/JP2814604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attain the magneto-optical recording at a high recording density and high CN by forming artificial grid films alternately laminated with Co layers, Pt layers and/or Pd layers as a recording layer and combining the layer with a light source which radiates the light of <=600nm wavelength. CONSTITUTION:The magneto-optical recording medium consisting of the artificial grid films alternately laminated with the Co layers, the Pt layers A, B and/or the Pd layers C as the recording layer is used. The artificial grid films exhibit excellent magneto-optical characteristics even at 780 to 850nm which is the wavelength region of a semiconductor laser used generally as the light source. Against that the magneto-optical characteristics of E-TM films D, E, such as Tb-Fe-Co, are extremely degraded at <=600nm, the tendency to the maintenance of nearly the specified magneto-optical characteristics or a slight increase therein is recognized for the artificial grid films A to C and the reproduction at the higher CN than with the RE-TM films is possible. Thus, the high-grade and high-density recording and reproducing utilizing the light of the short wavelength are possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光学効果を利用してレーザー光等により
情報の記録・再生を行う光6B気記録システムに関し、
特に記録・再生波長の短波長化に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical 6B recording system that records and reproduces information using a laser beam or the like using magneto-optic effect.
In particular, it relates to shortening recording/reproducing wavelengths.

〔発明の概要] 本発明は、CoNとPtNおよび/またはPd層とが交
互に積層された人工格子膜を記録層とする光磁気記録媒
体に対し、波長600nm以下の光を使用して記録・再
生を行うことにより、光磁気記録における高記録密度化
,高速化,CN比の向上を可能とするものである。
[Summary of the Invention] The present invention provides recording and recording using light with a wavelength of 600 nm or less on a magneto-optical recording medium whose recording layer is an artificial lattice film in which CoN, PtN and/or Pd layers are alternately laminated. By performing reproduction, it is possible to increase the recording density, increase the speed, and improve the CN ratio in magneto-optical recording.

〔従来の技術〕[Conventional technology]

近年、書漠え可能な高密度記録方式として、半導体レー
ザー光等の熱工不ルギーを用いて磁性薄膜に磁区を書き
込んで情報を記録し、磁気光学効果を用いてこの情報を
読み出す光磁気記録方式が注目されている。
In recent years, magneto-optical recording, which records information by writing magnetic domains on a magnetic thin film using thermodynamics such as semiconductor laser light, has been developed as a high-density recording method that can be used to record data easily. The method is attracting attention.

この光磁気記録方式に使用される記録材料としては、C
d,Tb.Dy等の希土類元素とFe,Co等の遷移元
素とを組み合わせた非品質合金膜(以下、RE−TM膜
と称する。)が代表的なものである。RE−TM膜は、
■フェリ磁性であるために、キュリー点よりかなり低い
温度領域でも磁化が小さく.また垂直異方性エネルギー
が大夫いので高密度記録に必要な垂直磁化膜となり易い
、■非品質であるため媒体ノイズが小さい、■力一回転
角θKが比較的大きい、■キュリー点が低く(150〜
200 ’C),  記録・消去パワーを市販の半導体
レーザー(20〜40mW)で実現できる等の数々の利
点を有している。特に希土類元素としてTbを含むTb
FeCo膜,GdTbFe膜等は垂直磁気異方性が大き
く、研究報告例も多い。
The recording material used in this magneto-optical recording method is C
d, Tb. A typical example is a non-quality alloy film (hereinafter referred to as RE-TM film) which is a combination of rare earth elements such as Dy and transition elements such as Fe and Co. The RE-TM membrane is
■Because it is ferrimagnetic, its magnetization is small even in the temperature range considerably lower than the Curie point. In addition, since the perpendicular anisotropy energy is large, it is easy to form a perpendicularly magnetized film required for high-density recording; ■ Medium noise is small due to low quality; ■ Force-per-rotation angle θK is relatively large; ■ Curie point is low ( 150~
It has a number of advantages, such as being able to achieve recording/erasing power of 200'C) and recording/erasing power using a commercially available semiconductor laser (20 to 40 mW). In particular, Tb containing Tb as a rare earth element
FeCo films, GdTbFe films, etc. have large perpendicular magnetic anisotropy, and there are many research reports.

ところで、高度情報化社会の要望に対応して光磁気記録
媒体の記録容量を媒体の体積を増すことなく増大させる
ためには、記録密度の向上が必須となる。記録密度は、
光源からの光(主としてレーザー光)をレンズで絞った
ときの媒体面上におけるビームスボント径が小さいほど
高くなる。このビームスボノト径を小さくする手段とし
ては、レンズの開口数を大きくする方法と、光源からの
光を短波長化する方法とがある。しかし、開口数の大き
なレンズを低収差に.安価に,軽量に製造することが極
めて困難であることを考えると、光の短波長化の方が早
期実現性が高い方法と言える。
Incidentally, in order to increase the recording capacity of a magneto-optical recording medium without increasing the volume of the medium in response to the demands of a highly information-oriented society, it is essential to improve the recording density. The recording density is
The smaller the beam diameter on the medium surface when the light from the light source (mainly laser light) is condensed by a lens, the higher the diameter. Means for reducing the beam diameter include increasing the numerical aperture of the lens and shortening the wavelength of light from the light source. However, a lens with a large numerical aperture has low aberrations. Considering that it is extremely difficult to produce light weight and at low cost, shortening the wavelength of light is a method that is more likely to be realized quickly.

かかる背景から、光源としても、従来のGaAsAE系
化合物に代表されるlit−V族化合物半導体レーザー
のように近赤外領域の光を放出する光源に代わり、より
短波長の光を放出できる光源の開発が進められでいる。
Against this background, light sources that can emit light at shorter wavelengths are being used instead of light sources that emit light in the near-infrared region, such as conventional lit-V group compound semiconductor lasers typified by GaAsAE-based compounds. Development is underway.

たとえばZn−Se系化合物に代表されるII−Vl族
化合物を利用した青色LED(発光ダイオード).さら
にはレーザー素子の開発が進められている。あるいは、
レーザー光の波長を一挙に半減させることにより、たと
えば従来の半導体レーザーを励起源として青色ないし近
紫外域の光を得ることが可能な第二高調波発生素子の開
発も盛んである。
For example, a blue LED (light emitting diode) using II-Vl group compounds represented by Zn-Se compounds. Furthermore, the development of laser elements is progressing. or,
There is also active development of second harmonic generation elements that can obtain light in the blue to near-ultraviolet region by using, for example, a conventional semiconductor laser as an excitation source by halving the wavelength of laser light at once.

〔発明が解決しようとする課題] ところで、記録再生用の光が短波長化されれば、当然の
ことながら光Lil気記録媒体にもかかる波長帯域にお
ける特性が良好であることが要求される。
[Problems to be Solved by the Invention] By the way, if the wavelength of light for recording and reproduction is shortened, it goes without saying that optical recording media are required to have good characteristics in the wavelength band.

しかしながら、従来のRE−TM膜には光が短波長とな
るにつれてカー回転角θ、と反射率Rが単調に減少し、
実用上十分な記録再生速度やCN比が達成できないとい
う問題があった。
However, in the conventional RE-TM film, as the wavelength of light becomes shorter, the Kerr rotation angle θ and the reflectance R decrease monotonically.
There was a problem that a practically sufficient recording/reproducing speed and CN ratio could not be achieved.

そこで本発明は、短波長域における優れた磁気光学特性
を利用することができる光磁気記録システムの提供を目
的とする。
Therefore, an object of the present invention is to provide a magneto-optical recording system that can utilize excellent magneto-optical properties in a short wavelength range.

(課題を解決するための手段〕 本発明者らは、上述の目的を達戒するために鋭意検討を
重ねた結果、co層とpt層および/またはPd層とが
交互に積層された人工格子膜を記録層とする光磁気記録
媒体が600nm以下の短波長域において極めて優れた
磁気光学特性を発揮することを見出し、本発明を完成す
るに至ったものである。
(Means for Solving the Problems) As a result of intensive studies to achieve the above-mentioned object, the present inventors have developed an artificial lattice in which CO layers, PT layers, and/or Pd layers are alternately laminated. The inventors have discovered that a magneto-optical recording medium having a film as a recording layer exhibits extremely excellent magneto-optical properties in a short wavelength region of 600 nm or less, leading to the completion of the present invention.

すなわち、本発明にかかる光磁気記録システムは、Co
層とPL層および/またはPd層とが交互に積層された
人工格子膜を記録層とする光磁気記録媒体に対し、波長
600nm以下の光を使用して記録・再生が行われるこ
とを特徴とするものである。
That is, the magneto-optical recording system according to the present invention uses Co
A magneto-optical recording medium whose recording layer is an artificial lattice film in which layers, PL layers and/or Pd layers are alternately laminated, is characterized in that recording and reproduction are performed using light with a wavelength of 600 nm or less. It is something to do.

まず、本発明の光磁気記録システムで使用される光磁気
記録媒体は、CO層とPL層および/またはPd層とが
交互に積層された人工格子膜を記録層とするものである
。上記人工格子膜は、具体的にはCO啼とPL層を交互
に積層したCo−PL系人工格子膜、CO層とPd層を
交互に積層したCO−Pd系人工格子膜、およびCo層
,PL層,Pd層(ただし、後二者はPt一Pd合金層
としても良い。)を任意の順序にて積層したCo−Pt
−Pd系人工格子膜のいずれかである。
First, the magneto-optical recording medium used in the magneto-optical recording system of the present invention has, as a recording layer, an artificial lattice film in which CO layers, PL layers, and/or Pd layers are alternately laminated. Specifically, the above-mentioned superlattice film includes a Co-PL superlattice film in which CO layers and PL layers are alternately laminated, a CO-Pd-based superlattice film in which CO layers and Pd layers are alternately laminated, and a Co layer, Co-Pt with a PL layer and a Pd layer (however, the latter two may be Pt-Pd alloy layers) laminated in any order.
- Any Pd-based superlattice film.

いずれの場合にも人工格子膜の全厚は、実用上必要十分
な磁気光学特性を達成する観点から、50〜400入と
することが望ましい。
In either case, the total thickness of the superlattice film is desirably 50 to 400 mm from the viewpoint of achieving practically necessary and sufficient magneto-optical properties.

さらに、Co−PL系人工格子膜においてはCO層の層
厚を2〜8人,PL層の層厚は3〜40人、またCo−
Pd系人工格子膜においてはCO層の層厚を1〜9人,
Pd層の層厚を2〜40入に選ぶことが望ましい。これ
らの層厚のiili間は、磁気光学特性を最適化する観
点から設定されたものであり、いずれの場合にも上記範
囲外では満足な特性は得られない。
Furthermore, in the Co-PL superlattice film, the thickness of the CO layer is 2 to 8 layers, and the thickness of the PL layer is 3 to 40 layers.
In the Pd-based superlattice film, the thickness of the CO layer is 1 to 9,
It is desirable to select the layer thickness of the Pd layer from 2 to 40 layers. These layer thickness ranges are set from the viewpoint of optimizing the magneto-optical properties, and in any case, satisfactory properties cannot be obtained outside the above range.

なお、上述の各人工格子膜は各金属層の界面が互いに入
り乱れずに平坦に形威された、いわゆる超格子構造とさ
れていることが理想的であるが、界面にやや乱れを生し
ながらも全体としては一定の周期を保って組戒が変動す
る組戒変調構造を有するものであっても良い。たとえば
、上述の金属層の層厚の範囲をみると、各金属の金属結
合半径(C o =1.25人.Pd=1.38人 P
 t =1.39入)から考えて下限が1原子分に満た
ない場合があるが、これも組或変調構造を考慮した結果
である。
Ideally, each of the superlattice films described above should have a so-called superlattice structure, in which the interfaces of each metal layer are flat and do not mix with each other. It may also have a group precept modulation structure in which the group precept changes while maintaining a constant period as a whole. For example, looking at the range of the layer thickness of the metal layer mentioned above, the metal bond radius of each metal (C o = 1.25 people. Pd = 1.38 people P
t = 1.39), the lower limit may be less than one atom, but this is also a result of consideration of the set or modulation structure.

上記人工格子膜は、最も一般的にはスパッタリングによ
り作威される。スパンタリングの際の舊発源は、Co−
PL系,Co−Pd系のような二元系の人工格子膜を作
威する場合には、各金属戒分について独立に用意する必
要がある。また、Co−Pt−Pd系のような三元系の
人工格子膜を作或する場合には、各戒分金属について独
立に芸発源を用意する方法の他、特にPdおよびptに
関してはこれらを組み合わせて合金蒸発源とする方法や
、どちらか少ない方の戒分のチップを多い方の戒分のタ
ーゲノトの上に載置した複合茎発源とする方法が考えら
れる。
The superlattice film is most commonly produced by sputtering. The source of energy during sputtering is Co-
When producing a binary artificial lattice film such as PL system or Co-Pd system, it is necessary to prepare each metal component independently. In addition, when creating a ternary artificial lattice film such as Co-Pt-Pd system, in addition to preparing an independent source for each predetermined metal, especially for Pd and pt, Possible methods include using a combination of these as an alloy evaporation source, or using a compound stalk source in which the chip of the smaller number of precepts is placed on the target node of the larger precept.

上記人工格子膜の成膜方法としては、上述のスバノタリ
ング以外にも、真空草着や分子線エビタキシー(MBE
)等が適用できる。
In addition to the above-mentioned subanotaling, methods for forming the artificial lattice film include vacuum welding and molecular beam epitaxy (MBE).
) etc. can be applied.

さらに、上記人工格子膜を基板上に戒膜するに先立ち、
必要に応して金属下地膜を成膜しても良く、これにより
人工格子膜の膜質を制御し、力一回転角θ、を増大させ
ることができる。この場合の金属下地膜としては、面心
立方構造を有し、格子定数が人工格子膜をfI或する金
属層に近似しているものが特に好ましい。
Furthermore, before coating the artificial lattice film on the substrate,
If necessary, a metal base film may be formed, thereby controlling the film quality of the artificial lattice film and increasing the force rotation angle θ. In this case, it is particularly preferable that the metal base film has a face-centered cubic structure and has a lattice constant similar to that of a metal layer whose lattice constant is fI of the artificial lattice film.

本発明では、上述のような人工格子膜を記録層として有
する光磁気記録媒体に対する記録・再生を、波長600
nm以下の光を使用して行う。かかる光を得る手段とし
ては、相応のバンドギャップエネルギーを有する半導体
を用いてレーザー素子をtl戒するか、あるいは従来使
用されている半導体レーザー素子と第二高調波発生素子
を組み合わせること等が考えられる。
In the present invention, recording/reproduction on a magneto-optical recording medium having the above-mentioned artificial lattice film as a recording layer is performed at a wavelength of 600.
This is done using light of nm or less. As a means of obtaining such light, it is possible to use a semiconductor having a suitable band gap energy to suppress the laser element, or to combine a conventionally used semiconductor laser element and a second harmonic generation element. .

(作用) 本発明の光磁気記録システムでは、記録層がCo層とp
t層および/またはPdNを交互に積層した人工格子膜
からなる光磁気記録媒体が使用される。上記人工格子膜
は、従来光源として一般に使用されている半導体レーザ
ーの波長域である780〜850nmにおいても優れた
磁気光学特性を示す。しかし、600nm以下ではRE
−TM膜の磁気光学特性が著しく低下するのに対し、上
記人工格子膜ではほぼ一定,もしくは若干増大する傾向
が認められ、RE−TM膜と比べてCN比の高い再生が
可能となる。したがって、短波長の光を利用した高品位
な高密度記録・再生が可能となる。
(Function) In the magneto-optical recording system of the present invention, the recording layer is a Co layer and a P layer.
A magneto-optical recording medium consisting of an artificial lattice film in which t-layers and/or PdN are alternately laminated is used. The artificial lattice film exhibits excellent magneto-optical properties even in the wavelength range of 780 to 850 nm, which is the wavelength range of semiconductor lasers commonly used as conventional light sources. However, below 600 nm, RE
While the magneto-optical properties of the -TM film are markedly degraded, the above-mentioned superlattice film tends to remain almost constant or to increase slightly, making it possible to reproduce with a higher CN ratio than with the RE-TM film. Therefore, high-quality, high-density recording and reproduction using short wavelength light becomes possible.

〔実施例] 以下、本発明の好適な実施例について実験結果にもとづ
いて説明する。
[Example] Hereinafter, preferred examples of the present invention will be described based on experimental results.

まず、以下の各製造例において、サンプルディスクA〜
サンプルディスクEを製造した。
First, in each manufacturing example below, sample disks A to
Sample disk E was manufactured.

製造例1 本製造例は、ガラス基板上にCo−PL系人工格子膜を
二元同時マグネトロン・スバソタリングにより戒膜し、
サンプルディスクを製造した例である。
Production Example 1 In this production example, a Co-PL superlattice film was formed on a glass substrate by dual simultaneous magnetron subsotering.
This is an example of manufacturing a sample disk.

まず、マグネトロン・スパンタリング装置のチャンバー
内に100mm径のCoターゲノトとPt夕一ゲット、
およびこれらのターゲノトと対向する位置にガラス基板
を設置した。続いて八ノクグラウンド真空度を5 X 
10−’Torr,アルゴンガス圧を5 XIO−’ 
Torrとし、ガラス基板を水冷しながらCoについて
は直流スパンタリング(投入パワー:o.2〜IA, 
300 V) 、P tについては直流スパンタリング
(投入パワ一二0.2〜IA,300V),  もしく
は高周波スパッタリング(投入パワー :  200 
〜500 W)を行い、層厚5人のCo層と層厚8人の
Pt層を交互に積層して全厚150人のCo−PL系人
工格子膜を戒膜し、サンプルディスク八とした。
First, a Co target with a diameter of 100 mm and a Pt target were placed in the chamber of the magnetron sputtering device.
A glass substrate was placed in a position facing these target nodes. Next, increase the vacuum level of the Hachinoku Ground to 5X.
10-' Torr, argon gas pressure 5 XIO-'
Torr, while cooling the glass substrate with water, for Co, DC sputtering (input power: o.2 ~ IA,
300 V), for Pt, DC sputtering (input power: 120.2 to IA, 300 V), or high frequency sputtering (input power: 200 V).
~500 W), a Co layer with a thickness of 5 layers and a Pt layer with a thickness of 8 layers were alternately laminated to form a Co-PL superlattice film with a total thickness of 150 layers, and sample disk 8 was obtained. .

製造例2 Co−Pt系人工格子膜の全厚を320入とした以外は
、製造例lと同様の方法によりサンプルディスクBを製
造した。
Production Example 2 Sample disk B was produced in the same manner as Production Example 1, except that the total thickness of the Co--Pt superlattice film was 320 pieces.

− :  200 〜500 W)を行い、層厚5人の
co層と層厚8大のPd層を交互に積層して全r¥15
0入のCo−Pd系人工格子膜を成膜し、サンプルディ
スクCとした。
-: 200 to 500 W), and a Co layer with a thickness of 5 and a Pd layer with a thickness of 8 were alternately laminated for a total cost of ¥15.
A sample disk C was formed by forming a Co-Pd-based superlattice film containing 0.

製造例3 本製造例は、ガラス基板上にCo−Pd系人工格子膜を
二元同時マグ不トロン・スパンタリングにより威膜し、
サンプルディスクを製造した例である。
Production Example 3 In this production example, a Co-Pd-based superlattice film was formed on a glass substrate by dual simultaneous magnetron sputtering.
This is an example of manufacturing a sample disk.

まず、マグネトロン・スバノタリング装置のチャンバー
内に100mm径のCoターゲントとptターゲット、
およびこれらのターゲットと対向する位置にガラス基板
を設置した。続いてバックグラウンド真空度を5 X 
10−’Torr,アルゴンガス圧を5 XIO−’ 
Torrとし、ガラス基板を水冷しながらCoについて
は直流スパノタリング(投入パワー;0.2〜IA, 
300 V) 、Pdについては直流スパッタリング(
投入パワー=0.2〜I A.. 300■), もし
くは高周波スバノタリング(投入パワ製造例4 本製造例では、比較のためにガラス基板上にTbFeC
o系非晶譬合金欣を二元同時スパソクリングにより戒膜
し、サンプルディスクを製造した例である。
First, a Co target with a diameter of 100 mm and a PT target were placed in the chamber of a magnetron/subanotaring device.
And a glass substrate was installed at a position facing these targets. Then increase the background vacuum level to 5
10-' Torr, argon gas pressure 5 XIO-'
Torr, and while cooling the glass substrate with water, Co was subjected to direct current spanotaring (input power: 0.2 to IA,
300 V), and for Pd, DC sputtering (
Input power = 0.2~I A. .. 300■), or high-frequency subanotaring (input power production example 4) In this production example, TbFeC was placed on a glass substrate for comparison.
This is an example in which a sample disk was manufactured by forming an o-based amorphous alloy by simultaneous binary supersokling.

すなわち、スパッタリング装置のチャンバー内に100
mm径のTbターゲントとFeCo合金ターゲット、お
よびこれらのターゲントと対向する位置にガラス基板を
設置した。続いてハンクグラウンド真空度を5 X 1
0−’Torr,アルゴンガス圧を3 XIO−3To
rrとし、ガラス基板を水冷しなから膜厚2000入の
TbzzFeb7cOx膜を成膜し、サンプルディスク
Dとした。
In other words, 100
A Tb target and a FeCo alloy target with a diameter of mm were placed, and a glass substrate was placed at a position facing these targets. Next, increase the Hank Ground vacuum level to 5 x 1.
0-'Torr, argon gas pressure 3XIO-3To
rr, and while cooling the glass substrate with water, a TbzzFeb7cOx film with a film thickness of 2,000 ml was formed to form a sample disk D.

製造例5 木製造例では、さらなる比較のためにガラス基板上にT
bFe系非品質合金膜を二元同時スパンタリングにより
戒膜し、サンプルディスクを製造した例である。
Production Example 5 In the wood production example, T was placed on a glass substrate for further comparison.
This is an example in which a sample disk was manufactured by forming a bFe-based non-quality alloy film by simultaneous dual sputtering.

すなわち、スバ,タリング装置のチャンハー内に100
mm径のTbターゲノトとFeターゲント、およびこれ
らのターゲントと対向する位置にガラス基板を設置した
。続いてハンクグラウンド真空度を5 X 10− ’
Torr,アルゴンガス圧を3 XIO−’ Torr
とし、ガラス基板を水冷しなから膜厚2000入のTb
zaFeqb膜を戒膜し、サンプルディスク巳とした。
In other words, there are 100
A Tb target and a Fe target with a diameter of mm were placed, and a glass substrate was placed at a position facing these targets. Then apply Hank ground vacuum to 5 x 10-'
Torr, argon gas pressure 3 XIO-' Torr
Then, the glass substrate was water-cooled and a Tb film with a film thickness of 2000 was applied.
The zaFeqb film was coated to form a sample disk.

以上の各製造例において作威されたサンプルディスクA
〜サンプルディスクEについて、記録層の戒膜後ただち
に該記録層側から近紫外域〜近赤外域の種々の波長の光
を照射し、力一回転角θ、と反射率Rを測定し、さらに
これらの値にもとづいて性能指数R1″・θ、を算出し
た。この性能指数はSN比に比例し、ひいてはCN比の
良否を判断ずる目安となるものである。結果を第l図に
示す。図中、縦軸は性能指数Rl/l・θ,、横軸は記
録再生光の波長(nm)をそれぞれ表し、曲!ffAA
ないし曲線EはそれぞれサンプルディスクAないしサン
プルディスクEの特性に対応している。
Sample disk A produced in each of the above production examples
~ Immediately after coating the recording layer on sample disk E, light of various wavelengths in the near-ultraviolet to near-infrared regions was irradiated from the recording layer side, and the force rotation angle θ and reflectance R were measured. Based on these values, a performance index R1''·θ was calculated. This performance index is proportional to the SN ratio and serves as a guideline for determining the quality of the CN ratio. The results are shown in FIG. In the figure, the vertical axis represents the figure of merit Rl/l・θ, and the horizontal axis represents the wavelength (nm) of the recording/reproducing light.
Curve E corresponds to the characteristics of sample disc A to sample disc E, respectively.

この図より、まずサンプルディスクA(記録層:Co−
Pt人工格子膜)およびサンプルディスクB C記録層
: Go−P L人工格子II!) ハifiII定波
長帯域の全域にわたって高い性能指数を示すことが明ら
かである。特に、青色波長域(400〜450nm)で
は近赤外領域における値と同等以上の性能指数が得られ
た。また、サンプルディスクC(記録層:Co−Pd人
工格子膜)では近赤外領域から赤色領域にかけては後述
のサンプルディスクD(記録層:Tb2zFeb7CO
zllff)にやや劣るものの、より低波長側ではむし
ろ性能指数が向上し、短波長記録には適していることが
わかる。
From this figure, first, sample disk A (recording layer: Co-
Pt superlattice film) and sample disk B C recording layer: Go-P L superlattice II! ) It is clear that a high figure of merit is exhibited over the entire Hifi II constant wavelength band. In particular, in the blue wavelength region (400 to 450 nm), a figure of merit equivalent to or higher than the value in the near-infrared region was obtained. In addition, in sample disk C (recording layer: Co-Pd superlattice film), from the near-infrared region to the red region, sample disk D (recording layer: Tb2zFeb7CO), which will be described later,
Although it is slightly inferior to zllff), the figure of merit is rather improved on the lower wavelength side, indicating that it is suitable for short wavelength recording.

これに対し、比較となるサンプルディスクDおよびサン
プルディスクEC記録層はTbzaFeq、膜)では、
いずれも波長が短くなるにつれてほぼ単調に性能指数が
低下した。これらのディスクの400nmにおける性能
指数は800nmにおける値の約半分であり、さらに4
00 n mにおけるサンプルディスクAおよびサンプ
ルディスクBの値の約1/3であった。
On the other hand, the recording layer of sample disc D and sample disc EC for comparison was TbzaFeq (film),
In both cases, the figure of merit decreased almost monotonically as the wavelength became shorter. The figure of merit at 400 nm for these disks is about half that at 800 nm, and an additional 4
It was about 1/3 of the value of sample disk A and sample disk B at 00 nm.

上述の結果から、サンプルディスクAないしサンプルデ
ィスクCは、600nm以下の記録再生光をfII用す
る適当な周辺光学系と組み合わされた場合に、極めて良
好な光磁気記録システムを構成できることが明らかであ
る。
From the above results, it is clear that sample disks A to C can constitute an extremely good magneto-optical recording system when combined with a suitable peripheral optical system that uses fII recording and reproducing light of 600 nm or less. .

〔発明の効果] 以上の説明からも明らかなように、本発明にかかる光磁
気記録システムは、Co層とPt層および/またはPd
層とが交互に積層された人工格子膜を記録層とする光磁
気記録媒体を使用し、これに波長600nm以下の光を
放出する光源、およびかかる波長域にて好適な性能を発
揮する周辺光学系を組み合わて構戒されるものであり、
高記録密度1高CN比の光磁気記録を可能とするもので
[Effects of the Invention] As is clear from the above description, the magneto-optical recording system according to the present invention has a Co layer, a Pt layer and/or a Pd layer.
A magneto-optical recording medium whose recording layer is an artificial lattice film in which layers are alternately laminated is used, and a light source that emits light with a wavelength of 600 nm or less and peripheral optics that exhibit suitable performance in this wavelength range are used. It is something that can be observed by combining systems.
It enables magneto-optical recording with high recording density and high C/N ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCo−PL系人工格子膜.Co−Pd系人工格
子膜,TbFeCo系非品質合金膜,TbFe系非晶譬
合金膜をそれぞれ記録層とする光磁気記録媒体の性能指
数の波長依存性を示す特性図である。
Figure 1 shows a Co-PL superlattice film. FIG. 2 is a characteristic diagram showing the wavelength dependence of the figure of merit of a magneto-optical recording medium having a Co--Pd superlattice film, a TbFeCo-based non-quality alloy film, and a TbFe-based amorphous alloy film as recording layers, respectively.

Claims (1)

【特許請求の範囲】[Claims] Co層とPt層および/またはPd層とが交互に積層さ
れた人工格子膜を記録層とする光磁気記録媒体に対し、
波長600nm以下の光を使用して記録・再生が行われ
ることを特徴とする光磁気記録システム。
For magneto-optical recording media whose recording layer is an artificial lattice film in which Co layers and Pt layers and/or Pd layers are alternately laminated,
A magneto-optical recording system characterized in that recording and reproduction are performed using light with a wavelength of 600 nm or less.
JP23028989A 1989-09-07 1989-09-07 Recording / playback method Expired - Lifetime JP2814604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23028989A JP2814604B2 (en) 1989-09-07 1989-09-07 Recording / playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23028989A JP2814604B2 (en) 1989-09-07 1989-09-07 Recording / playback method

Publications (2)

Publication Number Publication Date
JPH0395742A true JPH0395742A (en) 1991-04-22
JP2814604B2 JP2814604B2 (en) 1998-10-27

Family

ID=16905485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23028989A Expired - Lifetime JP2814604B2 (en) 1989-09-07 1989-09-07 Recording / playback method

Country Status (1)

Country Link
JP (1) JP2814604B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162737A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Magneto-optical recording medium
EP0520813A2 (en) * 1991-06-27 1992-12-30 Mitsubishi Denki Kabushiki Kaisha Magneto-optical recording and reproducing apparatus
US6163509A (en) * 1996-07-11 2000-12-19 Toyota Jidosha Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recorder using the medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162737A (en) * 1989-11-20 1991-07-12 Sanyo Electric Co Ltd Magneto-optical recording medium
US5511048A (en) * 1991-01-04 1996-04-23 Mitsubishi Denki Kabushiki Kaisha Magneto-optical recording and reproducing apparatus
EP0520813A2 (en) * 1991-06-27 1992-12-30 Mitsubishi Denki Kabushiki Kaisha Magneto-optical recording and reproducing apparatus
US6163509A (en) * 1996-07-11 2000-12-19 Toyota Jidosha Kabushiki Kaisha Magneto-optical recording medium and magneto-optical recorder using the medium

Also Published As

Publication number Publication date
JP2814604B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US6333899B1 (en) High density magneto-optical recording medium and production method thereof
JPH0395742A (en) Magneto-optical recording system
JPS61196445A (en) Photomagnetic disk
JPS63285738A (en) Magneto-optical recording medium
JPS61193886A (en) Optical recording medium
JP3649964B2 (en) Magneto-optical recording medium and manufacturing method thereof
JP2957260B2 (en) Magneto-optical recording medium
JP2674275B2 (en) Magneto-optical recording medium and magneto-optical recording method
US20040180238A1 (en) sAgneto-optical recording medium and its production method
JPH04186707A (en) Structure of magnetooptic recording film
KR100225108B1 (en) Optic-magneto recording medium
JPH0476834A (en) Optical memory disk
JPS6342053A (en) Information recording medium
EP0524449A1 (en) Magneto-optical recording medium
JPS61202352A (en) Photomagnetic recording medium
JPH05242525A (en) Optical recording medium
JPS6190349A (en) Photomagnetic recording medium
JPS62234251A (en) Magneto-optical recording medium
JPS62293538A (en) Production of magneto-optical recording medium
JPH02273348A (en) Magneto-optical recording medium
JPH04258827A (en) Magneto-optical recording medium
JPH06162583A (en) Magneto-optical recording medium
JPH0341644A (en) Magneto-optical recoding medium
JPS6314344A (en) Information recording medium
JPH03235237A (en) Structure of magneto-optical recording medium