JPH039552A - Member with high thermal conductivity - Google Patents

Member with high thermal conductivity

Info

Publication number
JPH039552A
JPH039552A JP1145977A JP14597789A JPH039552A JP H039552 A JPH039552 A JP H039552A JP 1145977 A JP1145977 A JP 1145977A JP 14597789 A JP14597789 A JP 14597789A JP H039552 A JPH039552 A JP H039552A
Authority
JP
Japan
Prior art keywords
diamonds
thermal conductivity
diamond
thermally conductive
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145977A
Other languages
Japanese (ja)
Inventor
Atsuhiko Masuda
増田 敦彦
Satoshi Katsumata
聡 勝又
Toshimichi Ito
伊藤 利通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1145977A priority Critical patent/JPH039552A/en
Publication of JPH039552A publication Critical patent/JPH039552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable a member of a high thermal conductivity and arbitrary thickness to be easily manufactured by a method wherein needlelike diamonds are scattered in a matrix comprising a thermal conductive material. CONSTITUTION:Multiple needlelike diamonds 5 are scattered in a matrix comprising ceramics or a metal almost in parallel with the bottom surface of the member thereof. The title member of high thermal conductivity can be manufactured by combining the ceramic with the needlelike diamonds 5 to be sintered or combining the metal with the needlelike diamonds 5 to be sintered or melt and impregnated. In such a case, as for the needlelike diamonds 5, the needlelike diamonds 5 formed on a substrate by vapor phase synthesis and etching process are easily prepared by melting and releasing the substrate. Through these procedures, the member in high thermal conductivity and arbitrary thickness can be easily manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱伝導率が高く、製造も容易で、安価な絶縁性
放熱板として好適に用いられる高熱伝導性部材に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a highly thermally conductive member that has high thermal conductivity, is easy to manufacture, and is suitably used as an inexpensive insulating heat sink.

[従来の技術および発明が解決すべき課題]近年、LS
Iの高集積化に伴ない、熱伝導率の高い絶縁性の放熱板
の需要か増えている。
[Prior art and problems to be solved by the invention] In recent years, LS
As ICs become more highly integrated, the demand for insulating heat sinks with high thermal conductivity is increasing.

この需要に応じるために、炭化ケイ素や窒化アルミニウ
ムからなる絶縁性部材が既に開発されているが、今後の
高集積化に対しては件部が不十分であり、よりすぐれた
絶縁性部材がさらに要求されている。
In order to meet this demand, insulating materials made of silicon carbide and aluminum nitride have already been developed, but the material is insufficient for future high integration, and even better insulating materials are needed. requested.

このような高度の要求に応るべく、ダイヤモンドの持つ
高熱伝導性に着目した絶縁性部材の開発か進んでいるが
、種々の問題点が発生している。
In order to meet such high demands, progress is being made in the development of insulating materials that take advantage of the high thermal conductivity of diamond, but various problems have arisen.

たとえば、天然ダイヤモンドは熱伝導性の非常にすぐれ
たものである反面、何といっても高価であり、しかも薄
膜の大面積化を図ることが困難である。また、セラミ・
ンクスからなるマトリックス中に粒状や粉状のダイヤモ
ンドを分散してなる部材が知られている。しかし、この
絶縁性部材は粒状や粉状ダイヤモンドの配合量を増やし
ても、その割には熱伝導性が向上しないという問題があ
る。
For example, while natural diamond has excellent thermal conductivity, it is expensive, and furthermore, it is difficult to make a large-area thin film. In addition, ceramic
A member is known in which granular or powdered diamond is dispersed in a matrix made of diamond. However, this insulating member has a problem in that even if the amount of granular or powdered diamond added is increased, the thermal conductivity does not improve accordingly.

さらに従来から知られている高温・高圧合成法によるダ
イヤモンドでは、製造も薄膜化も困難である。
Furthermore, it is difficult to manufacture diamonds using the conventionally known high-temperature, high-pressure synthesis method and to make them into thin films.

一方、天然ダイヤモンドや高温、高圧合成法のダイヤモ
ンドに替るものとして、気相合成法によるダイヤモンド
がある。
On the other hand, as an alternative to natural diamonds and diamonds synthesized at high temperatures and high pressures, there are diamonds produced by vapor phase synthesis.

しかし、このダイヤモンドの薄膜で天然ダイヤモンド並
の高熱伝導性を得るには、たとえばCH4/ Hl比を
0.5.好ましくは8.3以下に抑える必要があり、1
%ではその不純物生成により性fI@が1/loに低下
する。このため、100OW /m・に程度の高性能の
ダイヤモンドを得るためには成膜速度が非常に遅くなり
、実用性のあるものを工業的に製造することは困難であ
る。したがって20gm以上の厚みを有する放熱膜の製
造は実質的に困難である。
However, in order to obtain high thermal conductivity comparable to natural diamond with this diamond thin film, for example, the CH4/Hl ratio must be set to 0.5. It is necessary to keep it preferably below 8.3, and 1
%, the property fI@ decreases to 1/lo due to the formation of impurities. For this reason, in order to obtain diamond with a high performance of about 100 OW 2 /m, the film formation rate becomes extremely slow, making it difficult to industrially produce something of practical use. Therefore, it is substantially difficult to manufacture a heat dissipation film having a thickness of 20 gm or more.

他方、比較的最近になって金属やセラミックスからなる
基板に多数の貫通孔を設け、その内部と基板の表面とに
気相法によるダイヤモンドを形成してなる集積回路基板
が提案されている(特開昭62−154651号公報)
On the other hand, relatively recently, an integrated circuit board has been proposed in which a large number of through holes are provided in a substrate made of metal or ceramics, and diamond is formed inside the holes and on the surface of the substrate by a vapor phase method (in particular, Publication number 62-154651)
.

しかしながら、この回路基板では熱伝導率の向上も限界
があるうえ、製造も困難である。
However, with this circuit board, there is a limit to the improvement in thermal conductivity, and it is also difficult to manufacture.

また、アスペクト比が2以上の、高温・高圧下で製造さ
れた粒子が規則的に配列された高熱伝導性部品が提案さ
れている(特開昭64−9869号公報)。
Further, a highly thermally conductive component having an aspect ratio of 2 or more and having regularly arranged particles manufactured under high temperature and high pressure has been proposed (Japanese Patent Application Laid-Open No. 64-9869).

しかし、このものは製造に高圧を必要とするうえ、薄膜
化、広面積化が困難である。
However, this requires high pressure to manufacture, and it is difficult to make it thin and wide.

本発明は上記事情に鑑みてなされたもので、熱伝導率が
高く、用途により任意の厚みの部材を容易に製造でき、
安価な絶縁性放熱板として好適に使用できる高熱伝導性
部材を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has high thermal conductivity and can easily produce members of any thickness depending on the application.
It is an object of the present invention to provide a highly thermally conductive member that can be suitably used as an inexpensive insulating heat sink.

[問題点を解決するための手段] 本発明の高熱伝導性部材は、熱伝導性物質からなるマト
リックス中に針状ダイヤモンドを含有してなることを特
徴とする。
[Means for Solving the Problems] The highly thermally conductive member of the present invention is characterized in that it contains acicular diamonds in a matrix made of a thermally conductive substance.

本発明において、マトリックスとして用いる熱伝導性物
質として一般的には金属やセラミックスなどを使用する
ことができるのであるが、その熱伝導率か50W/−・
に以上である熱伝導物質か好ましい、具体的には、銀、
銅、金、アルミニウム、シリコン、アルミナ、SiC,
AiN等を挙げることができる。なかても、SiC,A
!LNなどの絶縁性のセラミックスが好適に用いられる
In the present invention, metals, ceramics, etc. can generally be used as the thermally conductive material used as the matrix, but their thermal conductivity is 50W/-.
It is preferable to use a thermally conductive material that is more than or equal to
Copper, gold, aluminum, silicon, alumina, SiC,
Examples include AiN. Among others, SiC, A
! Insulating ceramics such as LN are preferably used.

本発明では上記熱伝導性物質からなるマトリックス中に
針状ダイヤモンドを含有もしくは分散させる。
In the present invention, acicular diamonds are contained or dispersed in a matrix made of the above thermally conductive substance.

針状ダイヤモンドは、天然ダイヤモンドに等しい結晶構
造を有し、そのアスペクト比は通常2〜100であり、
平均直径は1〜lOμmである。この針状ダイヤモンド
は、後述する製造方法によって製造することができる。
Acicular diamond has a crystal structure similar to that of natural diamond, and its aspect ratio is usually 2 to 100.
The average diameter is 1-10 μm. This acicular diamond can be manufactured by the manufacturing method described below.

マトリックス中での針状ダイヤモンドの分散状態は、ラ
ンダム状態であっても良いが、一方向に配向した分散状
態であるのがはるかに好ましい。
The acicular diamonds may be dispersed in the matrix in a random manner, but a unidirectionally oriented distribution is much more preferred.

この一方向と言うのは熱伝導方向において平行あるいは
直交する方向であると言うことができる。いずれの方向
に沿って針状ダイヤモンドを配向させると良いかは、こ
の高熱伝導性部材をどのような用途に供するかに応じて
決定することができる。
This one direction can be said to be a direction parallel or perpendicular to the direction of heat conduction. The direction in which the acicular diamond should be oriented can be determined depending on the purpose for which this highly thermally conductive member is to be used.

特に厚み方向に針状ダイヤモンドを容易に配列すること
ができることも、本発明の大きな特徴である。
Another major feature of the present invention is that needle-shaped diamonds can be easily arranged, especially in the thickness direction.

また、本発明の高熱伝導性部材における針状ダイヤモン
ドの含有量は通常10〜6G!li量%、好ましくは2
0〜40重量%である。その含有量が18重置火を下回
るときは、目的とする高熱伝導度が得られなくなり、ま
た含有量が60重量%を上回るときは針状ダイヤモンド
の量が多くなり1部材の機械的強度が低下し、使用上問
題となって好ましくない。
Further, the content of needle-like diamond in the highly thermally conductive member of the present invention is usually 10 to 6G! li amount%, preferably 2
It is 0 to 40% by weight. When the content is less than 18% by weight, the desired high thermal conductivity cannot be obtained, and when the content exceeds 60% by weight, the amount of acicular diamond increases and the mechanical strength of one member decreases. This is not preferable as it causes problems in use.

次に本発明の高熱伝導性部材の製法について、図面を参
照しながら説明する。
Next, a method for manufacturing the highly thermally conductive member of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施態様である高熱伝導性部材の概
略構造を示す。
FIG. 1 shows a schematic structure of a highly thermally conductive member that is an embodiment of the present invention.

第1因に示す高熱伝導性部材は、たとえばSiからなる
基板lの上に熱伝導性物質として5LCII!12が植
層され、さらにこの上に針状ダイヤモンド3が基板1に
対して略垂直に配列され、そして、さらにその上にSi
C膜2aが針状ダイヤモンド3間の隙間をも充填して被
覆している。なお、基板lは最後にエツチングや研磨等
の手段により取除かれるが、用途によってはそれを残し
ておいてもよい。
The highly thermally conductive member shown in the first factor is, for example, 5LCII! as a thermally conductive material on a substrate l made of Si! 12 is planted thereon, needle-like diamonds 3 are arranged substantially perpendicularly to the substrate 1, and then Si
The C film 2a also fills and covers the gaps between the acicular diamonds 3. Although the substrate l is finally removed by means such as etching or polishing, it may be left in place depending on the purpose.

このような高熱伝導性部材は次のようにして製造するこ
とができる。
Such a highly thermally conductive member can be manufactured as follows.

まず、Siかうなる基板1の上に5iCWJ2を気相合
成法により被覆させる。具体的にはたとえばCH,ガス
とH,ガスとSiH,ガスとからなる原料ガスを励起さ
せて活性ガスを得、それを基板lに接触させてその表面
に5iC7l12を被覆する。
First, a substrate 1 made of Si is coated with 5iCWJ2 by vapor phase synthesis. Specifically, a raw material gas consisting of, for example, CH, gas and H, gas and SiH, and gas is excited to obtain an active gas, which is brought into contact with the substrate 1 to coat its surface with 5iC7l12.

原料ガスの励起手段としては、たとえばマイクロ波プラ
ズマCVD法、RFプラズマCVD法、DCプラズマC
VD法、熟フィラメント法、熱CVD法、光CVD法、
燃焼法、スパッタリング法などがあるが、これらのうち
でも好ましいのは各種プラズマCVD法(有磁場プラズ
マ法を含む)である。
Examples of excitation means for the source gas include microwave plasma CVD, RF plasma CVD, and DC plasma CVD.
VD method, mature filament method, thermal CVD method, photoCVD method,
There are combustion methods, sputtering methods, and the like, but among these, various plasma CVD methods (including magnetic field plasma methods) are preferable.

次にSiC膜2の上に針状ダイヤモンド3からなる膜を
形成する。A体重にはたとえばCOガスとHtガス、メ
タンと水素ガス等からなる原料ガスを前記手段と同様に
して励起させて活性ガスを得てから、それをSiC膜2
に接触させてダイヤモンド膜を被覆する。
Next, a film made of acicular diamond 3 is formed on the SiC film 2. For weight A, for example, raw material gas consisting of CO gas and Ht gas, methane and hydrogen gas, etc. is excited in the same manner as in the above method to obtain an active gas, and then it is applied to the SiC film 2.
coated with a diamond film.

かくして形成されたダイヤモンド膜に含m素エツチング
ガスを励起して得られるガスを接触させると、tJ記ダ
イヤモンド膜に含有されるダイヤモンド状炭素、グラフ
ァイト等の非ダイヤモンド成分が除去されて、針状ダイ
ヤモンド3が形成される。
When the thus formed diamond film is brought into contact with a gas obtained by exciting a m-containing etching gas, non-diamond components such as diamond-like carbon and graphite contained in the diamond film are removed, forming acicular diamonds. 3 is formed.

次に、針状ダイヤモンド3問および膜の上に前記と同様
にしてSiCを気相合成法により形成すると1表面がS
iCからなり、針状ダイヤモンドとSiCが一体化した
。高熱伝導性部材を得ることができる。
Next, when SiC is formed on the three acicular diamonds and the film by vapor phase synthesis in the same manner as described above, one surface becomes S.
It is made of iC, and acicular diamond and SiC are integrated. A highly thermally conductive member can be obtained.

本発明は前記実施態様に限定されるものではなく、気相
合成法における原料ガスを適宜に選択することにより所
望の高熱伝導性部材を得ることができる。
The present invention is not limited to the embodiments described above, and a desired highly thermally conductive member can be obtained by appropriately selecting the raw material gas in the vapor phase synthesis method.

また、本発明では気相合成法以外に焼結や溶融含浸など
の方法による高熱伝導性部材も提供することができる。
Furthermore, the present invention can also provide highly thermally conductive members by methods such as sintering and melt impregnation in addition to the vapor phase synthesis method.

たとえば第2図は本発明の他の実施態様である高熱伝導
性部材を示すもので、セラミックスや金属からなるマト
リックス4の中に針状ダイヤモンド5が部材の底面に対
し略平行に分散されている。
For example, FIG. 2 shows a highly thermally conductive member according to another embodiment of the present invention, in which acicular diamonds 5 are dispersed approximately parallel to the bottom surface of the member in a matrix 4 made of ceramic or metal. .

このような高熱伝導性部材は、セラミックスに針状ダイ
ヤモンドを配合して焼結するか、あるいは金属に針状ダ
イヤモンドを配合して焼結もしくは溶融含浸して製造す
ることができる。
Such a highly thermally conductive member can be manufactured by mixing acicular diamond with ceramics and sintering it, or by mixing acicular diamond with metal and sintering or melt-impregnating the mixture.

この場合、配合する針状ダイヤモンドとしては、たとえ
ば基板上に気相合成法およびエツチングによって形成し
た針状ダイヤモンドを、基板を溶解除去することにより
、容易に調製することができる。
In this case, the needle-shaped diamond to be blended can be easily prepared by, for example, forming needle-shaped diamond on a substrate by vapor phase synthesis and etching, and then dissolving and removing the substrate.

また、金属やセラミックスからなるマトリックス中に針
状ダイヤモンドを略平行に分散させるためには、針状ダ
イヤモンドを内部に分散させた金属、または針状ダイヤ
モンドと金属等の混合粉を圧縮、圧延、延伸などすれば
良い。
In order to disperse needle-shaped diamonds approximately parallel to each other in a matrix made of metal or ceramics, it is necessary to compress, roll, or stretch the metal with needle-shaped diamonds dispersed therein, or the mixed powder of needle-shaped diamonds and metal. You can do something like that.

本発明の高熱伝導性部材は、熱伝導性物質からなるマト
リックス中に針状ダイヤモンドか含有されているので、
粒状や粉状のダイヤモンドを配合した場合と違って熱伝
導性fs賀の配合量を増さずに高い熱伝導性を得ること
ができる。しかも製造手段として気相合成法や焼結法、
溶融金療法などを適用することができるので、厚みの大
きい部材を安価に短時間で得ることがてきる。
Since the highly thermally conductive member of the present invention contains acicular diamond in the matrix made of a thermally conductive substance,
Unlike when granular or powdered diamond is mixed, high thermal conductivity can be obtained without increasing the amount of thermally conductive fs. Moreover, the manufacturing methods include vapor phase synthesis method and sintering method.
Since molten metal therapy can be applied, thick members can be obtained at low cost and in a short time.

次に、実施例に基づいて本発明をさらに具体的に説明す
る。
Next, the present invention will be explained in more detail based on Examples.

[実施例] Siからなる基板をマイクロ波プラズマCVD装置の反
応室内に設置し、次いでこの反応室内にSiH4ガスを
IOsecg+、CH4ガスを20scc−1H2ガス
を70scc−でそれぞれ導入し1反応室内の圧力を4
0Torr、基板温度900°Cの条件下に周波数2・
45GHzのマイクロ波電源の出力を400Wに設定し
た。
[Example] A substrate made of Si was placed in a reaction chamber of a microwave plasma CVD apparatus, and then SiH4 gas was introduced into the reaction chamber at IOsecg+, CH4 gas at 20scc, and H2 gas at 70scc-, respectively, to reduce the pressure in one reaction chamber. 4
Frequency 2・under conditions of 0 Torr and substrate temperature of 900°C.
The output of the 45 GHz microwave power source was set to 400 W.

この条件でマイクロ波放電方式によるプラズマ処理を2
時間行なって、基板の表面にSiC膜を推持させた。
Under these conditions, plasma treatment using the microwave discharge method was performed.
The SiC film was held on the surface of the substrate for a certain period of time.

次に5反応室内にCOガスを20scc■、H2ガスを
80scc園でそれぞれ導入し、反応室内の圧力を20
Torr、基板温度800°Cの条件下で上記と同様に
プラズマ処理を10時間行なって、上記SiC膜上にダ
イヤモンド膜を形成した。
Next, 20 scc of CO gas and 80 scc of H2 gas were introduced into the 5 reaction chambers, and the pressure inside the reaction chamber was reduced to 20 scc.
A diamond film was formed on the SiC film by performing plasma treatment for 10 hours in the same manner as above under conditions of Torr and substrate temperature of 800°C.

続いて反応室内に0□ガスを20secmで導入し、反
応室内の圧力を10Torr、基板温度を800℃に保
ってエツチング処理を30分行ない、針状ダイヤモンド
膜を形成した。
Subsequently, 0□ gas was introduced into the reaction chamber at a rate of 20 sec, and an etching process was performed for 30 minutes while maintaining the pressure in the reaction chamber at 10 Torr and the substrate temperature at 800° C. to form an acicular diamond film.

次に反応室内の混合ガス比をS i H410%、CH
420%、Ht7Q%とし、圧力を0.1〜101)T
orrに保ち、基板温度を900℃に維持して、1口0
Torr1秒−0,1Torr 2秒の周期3秒で5時
間2パルスCVIを行なった。
Next, the mixed gas ratio in the reaction chamber was changed to S i H410%, CH
420%, Ht7Q%, pressure 0.1-101)T
orr, maintain the substrate temperature at 900℃, and
Two-pulse CVI was performed for 5 hours with a period of 3 seconds, ie, Torr 1 second - 0,1 Torr 2 seconds.

しかるのち、基板な工・ンチングにより除去して、放熱
板を得た。
Thereafter, the substrate was removed by machining and nitching to obtain a heat sink.

一方、比較のためにこの放熱板と同じ厚みの5iC1i
を前記と同様の手段により製造し、放熱板を得た。
On the other hand, for comparison, 5iC1i with the same thickness as this heat sink
was manufactured by the same method as above to obtain a heat sink.

これらの放熱板の熱伝導度(相対値)を、エツチング処
理前の前記ダイヤモンド膜のそれと比較して、表1に示
す。
The thermal conductivities (relative values) of these heat sinks are shown in Table 1 in comparison with that of the diamond film before etching.

表  1 [発明の効果] 本発明の部材は、熱伝導性物質からなるマトリッス中に
針状ダイヤモンドが含有されているため、高い熱伝導性
に有し、しかも気相合成法、焼結法、溶融含浸法により
容易に任意の厚みのものを、特に薄膜から厚みの大きい
ものまで製造することができる。
Table 1 [Effects of the Invention] The member of the present invention has high thermal conductivity because the matrix made of a thermally conductive substance contains acicular diamond, and moreover, it can be manufactured using vapor phase synthesis method, sintering method, By the melt impregnation method, films of any desired thickness can be easily produced, particularly from thin films to thick films.

したがワて安価な絶縁性放熱板としてレーザー、ダイオ
ード、パワーIC等の分野に好適に使用することができ
る。
However, it can be suitably used as an inexpensive insulating heat sink in fields such as lasers, diodes, and power ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図およびi2図は、本発明の互に異なる実施態様を
示す高熱伝導性部材の模式図である。 l・・・基板、2・=SiC膜、3.5−・・針状ダイ
ヤモンド・4・・・マトリックス。 第1図 第2図
FIG. 1 and FIG. i2 are schematic diagrams of highly thermally conductive members showing mutually different embodiments of the present invention. l...Substrate, 2-=SiC film, 3.5--acicular diamond, 4--matrix. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)熱伝導性物質からなるマトリックス中に針状ダイ
ヤモンドを含有してなることを特徴とする高熱伝導性部
材。
(1) A highly thermally conductive member characterized by containing needle-shaped diamonds in a matrix made of a thermally conductive substance.
(2)前記針状ダイヤモンドが前記マトリックスル中で
一方向に配向している前記請求項1に記載の高熱伝導性
部材。
(2) The high thermal conductivity member according to claim 1, wherein the acicular diamond is oriented in one direction in the matrix.
(3)前記熱伝導性物質はその熱伝導率が50W/m・
K以上である特許請求の範囲第1項記載の高熱伝導性部
材。
(3) The thermal conductivity of the thermally conductive substance is 50 W/m・
The high thermal conductive member according to claim 1, which has a thermal conductivity of K or more.
JP1145977A 1989-06-07 1989-06-07 Member with high thermal conductivity Pending JPH039552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145977A JPH039552A (en) 1989-06-07 1989-06-07 Member with high thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145977A JPH039552A (en) 1989-06-07 1989-06-07 Member with high thermal conductivity

Publications (1)

Publication Number Publication Date
JPH039552A true JPH039552A (en) 1991-01-17

Family

ID=15397349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145977A Pending JPH039552A (en) 1989-06-07 1989-06-07 Member with high thermal conductivity

Country Status (1)

Country Link
JP (1) JPH039552A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
US6270848B1 (en) 1997-02-06 2001-08-07 Sumitomo Electric Industries, Ltd. Heat sink material for use with semiconductor component and method for fabricating the same, and semiconductor package using the same
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
WO2021143674A1 (en) * 2020-01-14 2021-07-22 荣耀终端有限公司 Mobile terminal, vapor chamber and preparation method therefor, and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270848B1 (en) 1997-02-06 2001-08-07 Sumitomo Electric Industries, Ltd. Heat sink material for use with semiconductor component and method for fabricating the same, and semiconductor package using the same
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
US7252795B2 (en) 2003-08-26 2007-08-07 Matsushita Electric Industrial Co., Ltd. High thermal conductivite element, method for manufacturing same, and heat radiating system
US7402340B2 (en) 2003-08-26 2008-07-22 Matsushita Electric Industrial Co., Ltd. High thermal conductive element, method for manufacturing same, and heat radiating system
WO2021143674A1 (en) * 2020-01-14 2021-07-22 荣耀终端有限公司 Mobile terminal, vapor chamber and preparation method therefor, and electronic device

Similar Documents

Publication Publication Date Title
US5783316A (en) Composite material having high thermal conductivity and process for fabricating same
EP0619282B1 (en) Diamond/carbon/carbon composite useful as an integral dielectric heat sink and method for making same
KR101499409B1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US5277975A (en) High thermal-conductivity diamond-coated fiber articles
US5271971A (en) Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5273790A (en) Method for consolidating diamond particles to form high thermal conductivity article
TW268147B (en) Heat dissipation seat and its production process
GB2311539A (en) Substrates coated with polycrystalline diamond
US5332629A (en) Boron nitride system including an hBN starting material with a catalyst and a sintered cNB body having a high heat conductivity based on the catalyst
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
JPH039552A (en) Member with high thermal conductivity
US5270114A (en) High thermal conductivity diamond/non-diamond composite materials
JP2913796B2 (en) Vapor phase synthetic diamond
US5273825A (en) Article comprising regions of high thermal conductivity diamond on substrates
KR101063576B1 (en) Diamond composite heat sink and its manufacturing method
JP3138222B2 (en) Method for producing free-standing diamond film
JPH07121835B2 (en) Cubic boron nitride coating
CN209176261U (en) A kind of composite sheet of the excellent diamonds particle using Microwave Plasma CVD Method preparation
Chung et al. The rapid growth of thin transparent films of diamond
TW202400859A (en) Single crystal diamond wafer and method for manufacturing single crystal diamond
JP2003213351A (en) High thermal conductivity composite material and production method therefor
JPH0497988A (en) Production of diamond having high thermal conductivity
JPH0292532A (en) Laminate and its manufacture
JPH05299478A (en) Bonding tool and its manufacture
JPS63256585A (en) High heat conductivity radiation material