JPH0394857A - Method and device for producing organic molecule ultrathin-film and surface pressure gage - Google Patents

Method and device for producing organic molecule ultrathin-film and surface pressure gage

Info

Publication number
JPH0394857A
JPH0394857A JP22882989A JP22882989A JPH0394857A JP H0394857 A JPH0394857 A JP H0394857A JP 22882989 A JP22882989 A JP 22882989A JP 22882989 A JP22882989 A JP 22882989A JP H0394857 A JPH0394857 A JP H0394857A
Authority
JP
Japan
Prior art keywords
water
surface pressure
water surface
solid plate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22882989A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENDAI DENPA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Original Assignee
SENDAI DENPA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENDAI DENPA KOGYO KOUTOU SENMON GATSUKOUCHIYOU filed Critical SENDAI DENPA KOGYO KOUTOU SENMON GATSUKOUCHIYOU
Priority to JP22882989A priority Critical patent/JPH0394857A/en
Publication of JPH0394857A publication Critical patent/JPH0394857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

PURPOSE:To isotropically compress an ultrathin-film and to produce a high quality LB film by changing water level utilizing the conical shape of a water tank. CONSTITUTION:The truncated conical water tank 11 is prepared, and the truncated conical part is narrowed toward the upper part or widened toward the upper part. The pure water in a second pure water reservoir 13 is then injected into the tank 11 to a specified level, and an org. molecule ultrathin-film forming material is dripped on the water surface at the specified level to form the thin film thereon. Pure water is again injected into or extracted from the tank 11 to move the water level to reduce the area of the water surface, hence the ultrathin-film is isotropically compressed, and the compressed ultrathin-film is collected by a collector 16.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、等方的に圧縮可能な有機分子超薄膜の製造方
法、その製造装置、及びこの製造方法に使用される表面
圧力計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an isotropically compressible ultra-thin film of organic molecules, an apparatus for producing the same, and a surface pressure gauge used in this production method.

[従来の技術およびその問題点] 有機分子超薄膜( Langmuir−Blodget
t膜:以ドLB膜と略記)作成装置では、完全に分子〕
層(厚さ約10億分の1メートル)からなる単分子膜を
形成するプロセスを繰返しおこなって単分子膜を積み重
ねて、超薄膜の多層膜を形成している。
[Prior art and its problems] Ultra-thin organic molecule film (Langmuir-Blodget
T-film: Hereafter abbreviated as LB film) In the production device, it is completely molecular]
The process of forming a monomolecular film consisting of layers (approximately one billionth of a meter thick) is repeated and the monomolecular films are stacked to form an ultra-thin multilayer film.

以下、このような完全に分子1層からなる理想的な単分
子膜を作成するための従来の問題点を述べる。
Hereinafter, conventional problems in creating such an ideal monolayer consisting of a single layer of molecules will be described.

有機分子超薄膜を作成するためには、水面上に何機分子
材料を滴下した後、水面上の有機分子層を適切に圧縮し
て、個々の分子を互いに密着させると同時に、分r層が
折れ重ならないようにし,なければならない。従って、
水面の圧縮は、均質なLB膜を作成するための1つのき
わめて重要なプロセスと考えられている。
In order to create an ultra-thin film of organic molecules, several molecules of material are dropped onto the water surface, and then the organic molecule layer on the water surface is appropriately compressed to bring the individual molecules into close contact with each other. They must be made so that they do not overlap. Therefore,
Water surface compaction is considered one crucial process to create homogeneous LB films.

従来のLB膜作或装置では、水面を圧縮する際に、一般
に1方向のみの水面の圧縮が行われている。このため、
水面上LB膜に対して、不均一な応力が印加され、特に
剛性の高い膜については、均質な模を採取することが困
難であった。この問題を解決するために、近時、多方向
から水面圧縮を行う作成装置が考案され、実用に供され
つつある。
In conventional LB film forming apparatuses, when compressing the water surface, the water surface is generally compressed in only one direction. For this reason,
Nonuniform stress was applied to the LB film on the water surface, and it was difficult to take a homogeneous pattern, especially for a highly rigid film. In order to solve this problem, a production device that compresses the water surface from multiple directions has recently been devised and is being put into practical use.

第1図はその1例で、2方向から水面を圧縮する方式の
LB膜作成装置の構成図を示している。
FIG. 1 is an example of this, and shows the configuration of an LB film forming apparatus that compresses the water surface from two directions.

この2方向圧縮型LB膜作或装置は、水}!1上に、水
面上を左方から右方へと動く水面圧縮用バリア2を設け
、さらに左方から右方に向かって次第に幅が狭くなる1
対の壁板の周りを回るムービングウオール3(テープ製
の壁)を設けている。そして、水槽1に設けた水面圧縮
用バリア2が水面上を左方から右方へと静かに動き、そ
れと同時にテープ製の壁3も矢印で示されるように動い
て、水面上に存在する有機分子が右方へ掃き寄せられ、
水面圧縮用バリア2とムービングウオール3によって2
方向の圧縮を達或している。
This two-way compression type LB film production device uses water}! 1 is provided with a water surface compression barrier 2 that moves on the water surface from left to right, and further narrows in width from left to right.
A moving wall 3 (wall made of tape) is provided that goes around the pair of wall plates. Then, the water surface compression barrier 2 installed in the aquarium 1 moves quietly on the water surface from left to right, and at the same time, the tape wall 3 also moves as shown by the arrow to remove the organic matter present on the water surface. Molecules are swept to the right,
2 by water surface compression barrier 2 and moving wall 3
Achieves directional compression.

この方式はムービングウオール3のないバリアのみによ
る水面圧縮法(1方向圧縮法)に比べると、水面上の超
薄膜に作用する応力の均一性が向上し、高品質のLB膜
の作成が可能となっている。
Compared to the water surface compression method (unidirectional compression method) using only a barrier without the moving wall 3, this method improves the uniformity of the stress acting on the ultra-thin film on the water surface, making it possible to create a high-quality LB film. It has become.

しかしながら、この方式によっても有機分子の完全な等
方圧縮は不可能であって、分子レベルで完全な単分子膜
の作成は困難であることが大きな問題の1つと考えられ
る。
However, even with this method, complete isotropic compression of organic molecules is impossible, and one of the major problems is considered to be that it is difficult to create a monolayer that is perfect at the molecular level.

また、従来の超薄膜作或装置では、水面の圧縮が開始さ
れても水面の上昇が全く生じないため、水面上LB膜を
ガラス板などの基板上に採取するためには、そ一夕駆動
式の膜採取装置5を使用して、基板を水面の上方から水
面に密着するまで下ろして来る必要があるが、モータ駆
動に起因する水面の振動があり、水面上の超薄膜の品質
管理上問題があった。
In addition, with conventional ultra-thin film production equipment, the water level does not rise at all even when the water surface begins to compress, so in order to collect the LB film on the water surface onto a substrate such as a glass plate, it is necessary to drive It is necessary to lower the substrate from above the water surface until it is in close contact with the water surface using the type film collecting device 5, but there is vibration of the water surface due to the motor drive, and it is difficult to control the quality of the ultra-thin film on the water surface. There was a problem.

また、従来のLB膜作成装置は圧縮にともなって水面が
変動しない。これに使用されている表面圧力ニ1を例え
ば業2図に示して説明する。第2図は、最も一般的に使
用されているつり板法山原理図であり、親水性のガラス
や雲母などの固体板6を、測定しようとする水面上に吊
し、一部を水中に浸す。このとき板6に働く力は、下向
きに重力ε表面張力の和、上向きに水中に浸されている
部分の浮力が働くと考えられる。但し、同定板6の空気
中における浮力は無視する。そして金i線のねじり応力
を利用したねじり秤7で、表面圧力(表面張力)を測定
するものである。この時、上に述べた動作原理からも分
かるように、表面圧力を測定するためには、板に働く力
のうち、表面張力以外の力は、測定中常に一定でなけれ
ばならない。この条件は、水面の圧縮にともなって水面
が上界しない従来のLB膜作或装置では自動的に満足さ
れている。
Furthermore, in the conventional LB film forming apparatus, the water level does not change due to compression. The surface pressure 21 used for this purpose will be explained with reference to FIG. 2, for example. Figure 2 shows the principle of the most commonly used hanging plate method, in which a solid plate 6 made of hydrophilic glass or mica is suspended above the water surface to be measured, and a portion is immersed in the water. Soak. At this time, the force acting on the plate 6 is considered to be the sum of gravity ε surface tension acting downward and the buoyant force of the portion immersed in water acting upward. However, the buoyancy of the identification plate 6 in the air is ignored. The surface pressure (surface tension) is then measured using a torsion balance 7 that utilizes the torsional stress of the gold i-wire. At this time, as can be seen from the operating principle described above, in order to measure the surface pressure, among the forces acting on the plate, forces other than the surface tension must always remain constant during measurement. This condition is automatically satisfied in conventional LB film forming apparatuses in which the water surface does not rise due to compression of the water surface.

[発明が解決しようとする課題] 本発明は、上記問題点を解決するためになされたもので
、その園的とするεころは、高品質のLB膜を作成する
ために不可欠な水面上超薄膜に対して、完全に等方的な
応力印加及び圧縮が行える有機分子超薄膜の製造方法及
びその製造装置を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems. It is an object of the present invention to provide a method for manufacturing an ultra-thin organic molecule film and an apparatus for manufacturing the same, in which stress can be applied and compressed completely isotropically to the thin film.

四に本発明の目的は、水面を振動させることなく、作成
された有機分子超薄膜を取出すことができる有機分子超
薄膜の製造方法及びその製造装置を提供することにある
Fourth, it is an object of the present invention to provide a method for producing an ultra-thin organic molecule film and an apparatus for producing the same, which allows the produced ultra-thin organic molecule film to be taken out without vibrating the water surface.

さらに本発明の11的は、本発明の有機分f一超薄膜の
製造方法及びその製造装置に適した表面圧力計を提供す
ることにある。
Furthermore, an eleventh object of the present invention is to provide a surface pressure gauge suitable for the method for producing an ultra-thin film of organic component f1 and the apparatus for producing the same according to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

止記月的を達成するための本発明のa機分子超薄膜の製
造方法は、少なくとも一部の形状を断頭錘体形状εした
水槽を用意し、その断頭錘体形状部分が上方に向かって
狭まるように、存しくは止方に向かって広がるように配
置する上程と、前記断頭錘体形状部の所定レベルになる
まで前期水槽内に純水を注入する王程と、前期所定レベ
ルの水面上に、有機分子超薄膜を形成するための材料を
滴下して、そこに有機分子超薄膜を形成する工程と、水
槽内への純水の再注入又は抜出しをおこなうことにより
、a機分子超薄脱を形成している水面の表面積が小さく
なるように水面レベルを移動させ、このこ表により前記
有機分子超薄膜を等方的に圧縮するエ程と、圧縮された
有機分子超薄膜を採取する工程と、を具何している。
The method for producing an ultra-thin film of a-molecules according to the present invention for achieving the desired results includes preparing a water tank in which at least a portion of the tank is shaped like a truncated pyramid, and the truncated-pyramid-shaped portion is directed upward. an upper part arranged so as to narrow or spread toward a stop; a lower part to inject pure water into the water tank until it reaches a predetermined level of the truncated cone shaped part; and a water surface at the predetermined level. By dropping a material for forming an ultra-thin film of organic molecules onto the top of the tank and forming an ultra-thin film of organic molecules there, and by re-injecting or extracting pure water into the water tank, The water surface level is moved so that the surface area of the water surface forming the thinning is reduced, and the ultra-thin film of organic molecules is isotropically compressed using this table, and the compressed ultra-thin film of organic molecules is collected. What is the process and what is done?

また上記0的を達或するための本発明の有機分子超薄膜
製造装置は、少なくとも一部の形状を断頭錘体形状とし
て、その断頭錘体形状部が止方に向かって狭まるように
、若し《は上方に向かって広がるように配置された水槽
と、前記水槽内に純水を注入及び抜出しする手段と、水
槽内の水面上に、有機分子超薄膜を形戊するための材料
を滴下する手段と、水槽内の水面上に形成された有機分
子超薄膜を採取する手段とを具備し、この採取手段は、
好ましくは所定位置に固定されている。
Further, the organic molecule ultra-thin film manufacturing apparatus of the present invention for achieving the above-mentioned goal has at least a part of the shape in a truncated pyramid shape, and the truncated pyramid shape part narrows toward the end. A water tank arranged to spread upward, a means for injecting and extracting pure water into the water tank, and a material for forming an ultra-thin film of organic molecules dripping onto the water surface in the water tank. and a means for collecting an ultra-thin film of organic molecules formed on the water surface in the aquarium, the collecting means comprising:
Preferably it is fixed in place.

上記目的を達成するための本発明の表面圧力計は、水商
上に形成された膜の表面圧力をdl定する表面圧力計に
おいて、前記水面十4に吊され、一部が水中に浸される
固体板た、前記固体板に接続され、固体板に加わる表面
圧力を検田し、測定する手段と、前記水面の高さを監視
し、水商の、Ωiさに対応した出力信号を出す水面高さ
センサ手段と、前記センサ手段に接続され、センサ手段
からの出力信号に基づいてモータ駆動信号を出力するモ
ータコントローラと、前記モータコントローラに接続さ
れ、モータコンhローラからの出力信号に基づ(Sで前
記固体板の水中浸漬深さが所定深さとなるように固体板
を上昇又は下降せしめるモータと、を具備している。
To achieve the above object, the surface pressure gauge of the present invention is a surface pressure gauge for determining the surface pressure of a membrane formed on water, which is suspended above the water surface and partially immersed in water. a solid plate connected to the solid plate, a means for detecting and measuring the surface pressure applied to the solid plate, and a means for monitoring the height of the water surface and outputting an output signal corresponding to Ωi of the water quotient. water surface height sensor means; a motor controller connected to the sensor means and outputting a motor drive signal based on an output signal from the sensor means; connected to the motor controller and outputting a motor drive signal based on an output signal from the motor controller h roller; (The solid plate is equipped with a motor that raises or lowers the solid plate so that the immersion depth of the solid plate in water becomes a predetermined depth at S.

上記目的を達成するための本発明の別の表面圧力計は、
水面上に形戊された膜の表面圧力を測定する表面圧力計
において、前記水面上に吊され、一部が水中に浸される
固体板と、前記固体板に接続され、固体板に加わる表面
圧力を検出する手段と、前記水面の高さを監視し、水面
の高さに対応した出力信号を出す水面高さセンサ手段と
、前記センサ手段及び前記表崗圧力検出手段にそれぞれ
接続され、前記センサf,段からの出力信号に基づいて
前記固体板の水中漫漬深きを演算し、前記表面圧力検出
手段から表面圧力検出信号を人力し、表面圧力検出信号
ε水中浸漬深さ演算値とから、同体板に加わる表面圧力
を測定する演算処理装置L、を具備している。
Another surface pressure gauge of the present invention for achieving the above object is as follows:
A surface pressure gauge that measures the surface pressure of a membrane formed on the water surface includes a solid plate suspended above the water surface and partially immersed in water, and a surface connected to the solid plate and applied to the solid plate. means for detecting pressure; water surface height sensor means for monitoring the height of the water surface and outputting an output signal corresponding to the height of the water surface; connected to the sensor means and the surface pressure detection means, respectively; Calculate the underwater immersion depth of the solid plate based on the output signals from the sensor f and stage, manually input the surface pressure detection signal from the surface pressure detection means, and calculate the surface pressure detection signal ε from the underwater immersion depth calculation value. , and an arithmetic processing device L that measures the surface pressure applied to the same body plate.

[作用、効果] 本発明の有機分子超薄膜製造方法、装置によれば、水槽
の錘体形状を利用して、水面を変えるこ色により、超薄
膜を等方庄縮することができ、,3品質的LB膜を作成
することができる。しかも、その操作は水面レベルの変
動だけであるので、装置が簡+1であるとともに、操業
時の制御も容易である。
[Operations and Effects] According to the method and apparatus for producing an ultra-thin film of organic molecules of the present invention, the ultra-thin film can be isotropically compressed by utilizing the conical shape of the water tank and changing the water surface. 3 quality LB films can be created. Moreover, since the only operation involved is changing the water surface level, the device is simple and easy to control during operation.

また、膜採取装置を固定しておくことができるため、水
面の振動の問題が゛なくなる利点がある。
Furthermore, since the membrane collecting device can be fixed, there is an advantage that the problem of water surface vibration is eliminated.

更にまた、本発明の表曲厘力計によれば、水西レベルの
変動に対応して、同体板をA iE位置に動かし,、若
しくはその水中の浸漬皿を算出i, ’r ,表翻圧力
を的確に測定する,二εができる。
Furthermore, according to the table bending force meter of the present invention, the plate can be moved to the A iE position in response to changes in the water level, or the submerged plate can be calculated i, 'r, table translation. It is possible to measure pressure accurately.

[実施例] 第3図は、本発明にかかる完全等6圧縮型のイi機分子
超薄膜を作成する装置の一例を示す。本装置は、上部及
び底部を開口した断頭円錐形状の水槽11を、七方に向
かって狭まるように配置している。この水槽11の丁に
は、第・一純水溜〕2が設けられ、この第一純水溜12
は水槽11色フランジ部分でボルト締めされている。水
槽及び純水溜εも全てスデンレスm (SUS304)
製であって、その内面にテフロンコーティングを施し゜
C,撥水性を向上させるε同時に、金属イオンが水槽及
び純水溜から純水中に溶解しないようにしている。第一
純水溜12は、テフロン製バイブ]4を介して、水槽1
1に純水を供給するための第二純水溜13に接続されて
いる。バイブ14には、テフロン製バルブ15が取付け
られている。更に上紀水槽11の」二方には、上記水槽
内に挿入された膜採取装置16を固定して設けている。
[Example] FIG. 3 shows an example of an apparatus for producing an ultra-thin film of perfectly homogeneous 6-compressed molecules according to the present invention. In this device, a truncated cone-shaped water tank 11 with an open top and bottom is arranged so as to narrow in seven directions. A first pure water reservoir] 2 is provided at the bottom of this water tank 11, and this first pure water reservoir 12
is bolted to the 11-color flange part of the aquarium. The water tank and pure water reservoir ε are all stainless steel (SUS304)
The inner surface is coated with Teflon to improve water repellency and at the same time prevent metal ions from dissolving in the pure water from the water tank and pure water reservoir. The first pure water reservoir 12 is connected to the water tank 1 via a Teflon vibrator 4.
1 is connected to a second pure water reservoir 13 for supplying pure water. A Teflon valve 15 is attached to the vibrator 14. Further, on both sides of the upper water tank 11, a membrane collecting device 16 inserted into the tank is fixedly provided.

本発明方法では、始めに第二純水溜13に純水を満たし
ておき、バルブ15を開いて第二純水溜13の純水を第
一純水溜12に注入し、第一純水溜12の水面の高さが
その上方のフランジ而ε一致したときにL8膜材料を水
而に滴下する。その後、水禎11内の水面を上昇させて
水面の表面積を小キ<シていくことにより、水面上LB
膜を完全に等方的に圧縮する。そして、水面上LB膜が
所望量圧縮された時点で、その上方に設置された固定式
の膜採取装置16によって膜を採取する。
In the method of the present invention, the second pure water reservoir 13 is first filled with pure water, the valve 15 is opened, the pure water from the second pure water reservoir 13 is injected into the first pure water reservoir 12, and the water level of the first pure water reservoir 12 is When the height of ε matches that of the upper flange, drop the L8 membrane material into the water. After that, by raising the water level in the water table 11 and reducing the surface area of the water surface, the LB above the water surface is
Compress the membrane completely isotropically. Then, when the LB membrane above the water surface is compressed by a desired amount, the membrane is collected by a fixed type membrane collecting device 16 installed above the LB membrane.

このように本発明袋置では、水面が圧縮に伴って上界す
るため、吸{”々、取装霞を移動しなくてもよく、LB
膜作成上大きな問題の1つである水面の振動を防止する
ことが出来る。
In this way, in the bag holder of the present invention, since the water level rises as it is compressed, there is no need to move the loading haze repeatedly, and the LB
Vibration of the water surface, which is one of the major problems in film production, can be prevented.

尚、本発明の水槽は、少な《とも形状が断頭錘体の部分
があればよい。また水槽は、上方にいくにしたがって広
がるように配置してもよい。この場=、t,B膜を形成
した水面レベルを下降きせることによりLB膜が等方的
に圧縮きれる。
The aquarium of the present invention only needs to have at least a portion with a truncated weight shape. Further, the water tank may be arranged so as to expand upward. In this case, the LB film is isotropically compressed by lowering the water surface level on which the B film was formed.

次に、本発明の表面圧力=1について説明する。Next, the case where the surface pressure of the present invention is 1 will be explained.

上述のように、従来のLB膜作成装置は圧縮にともなっ
て水面が変動しないため、「板に働く力のうち、表面張
力以外の力は、測定中常に一定でなければならない」と
い・5条件を自動的に満足するが、本発明装置では、圧
縮にともなって水面が変動するため、この条件は満足さ
れない。
As mentioned above, in conventional LB film production equipment, the water level does not fluctuate due to compression, so ``forces acting on the plate other than surface tension must always remain constant during measurement.'' 5 conditions However, in the device of the present invention, this condition is not satisfied because the water level changes with compression.

以上の問題点を踏まえて、本発明装置のために提案した
表面圧力計の構成を第4図及び第5図に示す。第4図の
表面圧力計は、固体板20を備え、この固走板は、水面
21上に金属線22で吊され、一部が水中に浸されてい
る。金属線には、ねじり秤23が接続されでおり、この
ねじり秤で水面上のLB膜の表面圧力を検出し、測定で
きるようになっている。このねじり秤の構成は公知であ
る(日本化学会編、新実験化学講座、界向とコロイド、
丸善株式会社、昭和52年、449〜452頁参照)。
In view of the above problems, the configuration of a surface pressure gauge proposed for the device of the present invention is shown in FIGS. 4 and 5. The surface pressure gauge shown in FIG. 4 includes a solid plate 20, which is suspended above the water surface 21 by a metal wire 22 and partially immersed in water. A torsion balance 23 is connected to the metal wire, and the surface pressure of the LB membrane above the water surface can be detected and measured by this torsion balance. The configuration of this torsion balance is well known (edited by the Chemical Society of Japan, New Experimental Chemistry Course, Boundaries and Colloids,
(See Maruzen Co., Ltd., 1978, pp. 449-452).

本発明では、前記水面の高さを機械的または光学的な方
法で常に監視し、水面の高さにχ・ナ応した出力信号を
出す水面高さセンサ手段24を備えている。このセンサ
手段24には、センサ手段からの出力信号に基づいてモ
ータ駆動1d号を出力する七一タコントローラ25が接
続され、更に前記モータコントローラ25には、モータ
フンl・ローラからの出力ら号に基イいて駆動するモー
タ26が接続されている。このモータは、前期i』じり
秤2うの一端に取付けられ、モータのケーシング内を、
螺旋状の溝を外周面に形成した案内捧27が垂直に貫通
している。モしてモータの駆動により、モータとともに
ねじり秤が上昇または下降し、前記同体板の水中浸漬深
さが常に所定深さとなるようにしている。
The present invention includes a water surface height sensor means 24 that constantly monitors the height of the water surface using a mechanical or optical method and outputs an output signal corresponding to the height of the water surface. A seventh controller 25 is connected to this sensor means 24, which outputs a motor drive number 1d based on the output signal from the sensor means, and the motor controller 25 is further connected to an output number 1d from the motor fan l/roller. A motor 26 is connected to the motor 26, which is driven by the motor. This motor is attached to one end of the scale 2, and inside the motor casing,
A guide bar 27 having a spiral groove formed on the outer circumferential surface passes through the guide bar 27 vertically. When the motor is driven, the torsion scale is raised or lowered together with the motor, so that the immersion depth of the same body plate in water is always a predetermined depth.

一方、第5図の表面JE力計は、基本的には、第4図と
同じ・つり板法によるものであるが、第4図とはり4な
り、ねじり秤は上下に移動せず、水曲2]の高さの変化
によって固体板20が水中に沈む深さが変化する。本発
明の表面圧力計は、固体板20を備え、この固定板は水
面上に金属線22により吊され、一部が水中に浸されて
いる。金14線には、ねじり秤23が接続され、このt
」じり秤はl^1体板に加わる表向圧カタ・測定I,て
いる。またねじり秤23には、表面圧力を検出する検出
手段30が接続され、この検出手段から検出II言号を
演算処理装置31に出力している。この表面圧力;1は
、更に萌記水面の高さを監視し,、水面の高さに対応し
た田力信号を出す水顔高さセンサ手段24を備えている
。前記センサ手段は前記演算処理装置31に接続きれ、
その検出信号を演算処理装置31に山力している。この
演算処理装置31は、前紀センサ手段24からの出力信
号に基づいて前記固体板の水中浸?rX深さから固体板
にかかるif力の変化分を補正する演算をし、前記表曲
JE力検出手段から表面圧力検出信号を人力し、表面圧
力検出信号を前記補正値で修正して、間体板に加わる表
面圧力を測定するものである。その測定結果は、表示装
置32に表示される。すなわち、7lt算処理装置31
では、水面の高さが変化すると、固体板20に作用する
水による浮力が変化するが、そ山浮力の変化は固定板が
水面に没している長さに比例するので、水面の高さに比
例した電気信号を演算処理装置31に人力し、演算処理
により、浮力の変化分を補正するものである。
On the other hand, the surface JE force meter shown in Fig. 5 is basically the same as that shown in Fig. 4. It uses the hanging plate method, but it has four beams as shown in Fig. 4, and the torsion scale does not move up and down, but instead uses water. The depth at which the solid plate 20 sinks into the water changes depending on the height of the song 2]. The surface pressure gauge of the present invention includes a solid plate 20, which is suspended above the water surface by a metal wire 22 and partially immersed in water. A torsion scale 23 is connected to the gold 14 wire, and this t
The scale measures the surface pressure applied to the body plate. Further, a detection means 30 for detecting surface pressure is connected to the torsion balance 23, and a detection II word is outputted from the detection means to an arithmetic processing unit 31. This surface pressure 1 is further equipped with a water face height sensor means 24 which monitors the height of the water surface and outputs a force signal corresponding to the height of the water surface. The sensor means is connected to the arithmetic processing device 31,
The detection signal is sent to the arithmetic processing unit 31. This arithmetic processing unit 31 determines whether the solid plate is immersed in water based on the output signal from the previous sensor means 24. A calculation is performed to correct the change in the if force applied to the solid plate from the r It measures the surface pressure applied to the body plate. The measurement results are displayed on the display device 32. That is, the 7lt calculation processing device 31
Then, when the height of the water surface changes, the buoyancy force due to water acting on the solid plate 20 changes, but the change in the buoyancy force is proportional to the length of the fixed plate submerged in the water surface, so the height of the water surface changes. An electric signal proportional to the buoyancy force is manually inputted to the arithmetic processing unit 31, and the change in buoyancy is corrected through arithmetic processing.

演尭処理による補正原理をつり板法を例にとり、以下に
示す。つり板法では、板に働く力は、下向きに重力上表
面張力の和、上向きに水中に浸されている部分の浮力が
働くと考えられる。{jl t,、固体板の空気中にお
ける浮力は無視する。これを式で表わすL次のようにな
る。
The principle of correction based on the deduction process will be described below, taking the hanging plate method as an example. In the suspended plate method, the forces acting on the plate are thought to be the sum of gravity and surface tension acting downward, and the buoyancy of the part immersed in water acting upward. {jl t,, the buoyancy of the solid plate in air is ignored. This can be expressed as an L-order equation.

F−mg+27( w + t )eosθ−ρ,gw
ih(1)式 ただし、Fはド商きに板に働く力、mはつり板の質量、
gは重力加速度、γは表面張力、w,i,hはそれぞれ
つり板の幅、厚さ及びつり板が水中に没する部分の長さ
である。一般には、θ−0の条件で使用するので、(1
)式は次のように書ける。
F-mg+27(w+t)eosθ-ρ,gw
ih (1) formula, where F is the force acting on the plate at the same time, m is the mass of the suspended plate,
g is the gravitational acceleration, γ is the surface tension, and w, i, and h are the width and thickness of the suspension plate, and the length of the portion of the suspension plate submerged in water, respectively. Generally, it is used under the condition of θ-0, so (1
) can be written as follows.

F−mg+2γ (w十t)一ρ.gwti(2)式 この(2)式において、石辺第1項がつり板にかかる逍
力、第2項が表商張力、第3項がつり板が水中に没して
いる部分にかかる浮力である。
F-mg+2γ (w 10t)-ρ. gwti (2) formula In this formula (2), the first term on the stone side is the force applied to the suspension plate, the second term is the surface tension, and the third term is the buoyant force applied to the part of the suspension plate submerged in water. It is.

さて、本装置では、水面の圧縮につれて、水面の高さが
変化するが、水面の高さがh1のときにつり板にかかる
力をF,とし、水面の畠さが変化してh2.!:.なっ
たときに一つり板にかかる力をF2とする。これらの状
況を式で表わすと、(2)式を応用して、次のようにな
る。
Now, in this device, the height of the water surface changes as the water surface is compressed, but when the height of the water surface is h1, the force applied to the suspension plate is F, and as the height of the water surface changes, h2. ! :. Let F2 be the force applied to the single plate when this happens. These situations can be expressed using equations as follows by applying equation (2).

F1  −rr+g+2 7  (w+ t)  ’ 
 D −  gw j h,(3)式 F2 −mg+27 (w+t)  一ρ,gwth2
(4)式 水面七に超薄膜分子材料が存在しないεき、F1とF2
が等し《むるように補正を施せば良1,sから、これを
計算すると、 F2−F.→−ρ− gwt (h2 h+ )(5)
式 となる。本装置では、水面高さセンサにより、h2およ
びh1の値に応じた電気信号が出力されるので、演算処
理装置によって(5)式に基づく演算を行って、補正を
施せば、上記の測定方法が実現される。
F1 -rr+g+2 7 (w+t)'
D − gw j h, (3) formula F2 −mg+27 (w+t) -ρ, gwth2
(4) Equation ε where there is no ultra-thin molecular material on the water surface 7, F1 and F2
If we make corrections so that they are equal, we can calculate this from s, F2-F. →−ρ− gwt (h2 h+) (5)
The formula becomes In this device, the water surface height sensor outputs electrical signals according to the values of h2 and h1, so if the arithmetic processing unit performs calculations based on equation (5) and makes corrections, the above measurement method can be applied. is realized.

次ぎに、これらの装置を使用しておこなった実験につい
て説明する。水面の圧縮に伴う応力の印加分布状態を観
察する方法としてタルク粉末を有機分子材料の代わりに
水面に浮かべて、タルクが掃き寄せられる様子を目視観
察する方法が一般的に行われている。この方法を用いて
、本試作装置の水面圧縮の様fを観察した結果、従来の
装置では観察されていた水槽の端やバリア周辺に於ける
応力集中が全く観察されなかった。
Next, experiments conducted using these devices will be explained. A commonly used method for observing the applied stress distribution state due to compression of the water surface is to float talc powder on the water surface instead of the organic molecular material and visually observe how the talc is swept up. Using this method, we observed the water surface compression of this prototype device. As a result, no stress concentration was observed at the edges of the water tank or around the barrier, which was observed in the conventional device.

次に、ジアセチレン誘導体(和光純薬製、商品名、L8
203)を材料として、実際にLB膜作成をおこな−)
た。この結果、水面上LB膜に対して紫外線を照射して
剛性を高めた重合膜に対しても、応力集中がみられず、
高品質のLB膜が採取できる事が確認された。
Next, a diacetylene derivative (manufactured by Wako Pure Chemical Industries, Ltd., trade name, L8
203) was used as the material to actually create an LB film.
Ta. As a result, no stress concentration was observed in the polymer film, which had increased rigidity by irradiating the LB film on the water surface with ultraviolet rays.
It was confirmed that high quality LB membrane could be collected.

フーリエ変換赤外分光光度計(FTIR)を用いて超薄
摸を構或している分子の配向を側定した結果、実験に使
用した製膜分子に対しては、第1図に示す従来の装置で
は、基板に対して60度乃至70度の角度をなしていた
のに対して、本装置を使用した場合には、約80度の角
度をなしていることが測定され、応力が均一であるため
に、高品質の超薄膜を得ることができることが定量的に
確認きれた。
Using a Fourier transform infrared spectrophotometer (FTIR) to determine the orientation of the molecules that make up the ultra-thin model, we found that the film-forming molecules used in the experiment were different from the conventional method shown in Figure 1. With the device, the angle was 60 to 70 degrees to the substrate, but when this device was used, it was measured to be at an angle of about 80 degrees, indicating that the stress was uniform. Therefore, it was quantitatively confirmed that a high-quality ultra-thin film could be obtained.

なお」二記実施例では、表面圧力計は、つり板法に分類
されるも山であるが、本発明は上記実施例に限らず、他
のつり板法に分類される表面圧カニ1、若しくはフロー
ト法に分類される表面圧力if1アネロイド型表面圧力
計など公知の表面圧力計にも適用できる。
In addition, in the second embodiment, the surface pressure gauge is classified as a suspension plate method, but the present invention is not limited to the above embodiments, and can be applied to other surface pressure gauges classified as a suspension plate method. Alternatively, it can also be applied to a known surface pressure gauge such as a surface pressure if1 aneroid type surface pressure gauge classified as a float method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の有機分子超薄膜の製造装置を承す斜視図
、第2図は従来の表面圧力:1′を示す線図、.第3図
は本発明の有機分子超薄膜の製造装置の一例を示す斜視
図、第4図は本発明の表面圧力計の1例を示す線図、第
5図は本発明の表面圧力計の他の例を示す線図である。 11・・・水槽、12・・・第一純水溜、13・・・第
二純水溜、14・・・バイブ、15・・・バルブ、16
・・・膜採取装置、20・・・固定択、21・・・水面
、22・・・金屈線、23・・・ねじり秤、24・・・
センサ手段、25・・・セータコント口ーラ、26・・
・モータ、27・・・案内棒、30・・・表面圧力検出
r段、31・・・演算処理装置、32・・・表示装置。
Fig. 1 is a perspective view of a conventional apparatus for producing ultra-thin organic molecule films, and Fig. 2 is a diagram showing a conventional surface pressure of 1'. FIG. 3 is a perspective view showing an example of an apparatus for producing an ultra-thin organic molecule film of the present invention, FIG. 4 is a diagram showing an example of a surface pressure gauge of the present invention, and FIG. 5 is a diagram showing an example of a surface pressure gauge of the present invention. It is a diagram showing another example. 11... Water tank, 12... First pure water reservoir, 13... Second pure water reservoir, 14... Vibrator, 15... Valve, 16
...Membrane sampling device, 20...Fixed option, 21...Water surface, 22...Gold bending wire, 23...Torsion balance, 24...
Sensor means, 25...Sweater jacket, 26...
- Motor, 27... Guide rod, 30... Surface pressure detection r stage, 31... Arithmetic processing unit, 32... Display device.

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも一部の形状を断頭錘体形状とした水槽
を用意し、その断頭錘体形状部分が上方に向かって狭ま
るように、若しくは上方に向かって広がるように配置す
る工程と、 前記断頭錘体形状部の所定レベルになるまで前期水槽内
に純水を注入する工程と、 前期所定レベルの水面上に、有機分子超薄膜を形成する
ための材料を滴下して、そこに有機分子超薄膜を形成す
る工程と、 水槽内への純水の再注入又は抜出しをおこなうことによ
り、有機分子超薄膜を形成している水面の表面積が小さ
くなるように水面レベルを移動させ、このことにより前
記有機分子超薄膜を等方的に圧縮する工程と、 圧縮された有機分子超薄膜を採取する工程と、を具備し
てなる有機分子超薄膜の製造方法。
(1) A step of preparing an aquarium having at least a portion shaped like a truncated cone and arranging it so that the truncated cone shaped portion narrows upward or widens upward; and the decapitation. There is a process of injecting pure water into the water tank until it reaches a predetermined level in the cone-shaped part, and dropping a material to form an ultra-thin film of organic molecules onto the water surface at the predetermined level. By forming the thin film and re-injecting or withdrawing pure water into the water tank, the water surface level is moved so that the surface area of the water surface on which the ultra-thin film of organic molecules is formed becomes smaller, and this results in the above-mentioned A method for producing an ultra-thin organic molecule film, comprising: isotropically compressing the ultra-thin organic molecule film; and collecting the compressed ultra-thin organic molecule film.
(2)少なくとも一部の形状を断頭錘体形状として、そ
の断頭錘体形状部が上方に向かって狭まるように、若し
くは上方に向かって広がるように配置された水槽と、 前記水槽内に純水を注入及び抜出しする手段と、 水槽内の水面上に、有機分子超薄膜を形成するための材
料を滴下する手段と、 水槽内の水面上に形成された有機分子超薄膜を採取する
手段と、 を具備した有機分子超薄膜の製造装置。
(2) A water tank having at least a part of the shape shaped like a truncated cone and arranged so that the truncated cone shape part narrows upward or widens upward, and pure water is contained in the water tank. means for injecting and extracting the organic molecule ultra-thin film formed on the water surface in the aquarium; An apparatus for producing ultra-thin films of organic molecules.
(3)前記膜採取手段は、所定位置に固定されている請
求項1に記載の有機分子超薄膜の製造装置。
(3) The apparatus for producing an ultra-thin film of organic molecules according to claim 1, wherein the film collecting means is fixed at a predetermined position.
(4)水面上に形成された膜の表面圧力を測定する表面
圧力計において、 前記水面上に吊され、一部が水中に浸される固体板と、 前記固体板に接続され、固体板に加わる表面圧力を検出
し、測定する手段と、 前記水面の高さを監視し、水面の高さに対応した出力信
号を出す水面高さセンサ手段と、 前記センサ手段に接続され、センサ手段からの出力信号
に基づいてモータ駆動信号を出力するモータコントロー
ラと、 前記モータコントローラに接続され、モータコントロー
ラからの出力信号に基づいて前記固体板の水中浸漬深さ
が所定深さとなるように固体板を上昇又は下降せしめる
モータと、 を具備した表面圧力計。
(4) A surface pressure gauge that measures the surface pressure of a membrane formed on a water surface, comprising: a solid plate suspended above the water surface and partially immersed in water; and a solid plate connected to the solid plate and connected to the solid plate. means for detecting and measuring applied surface pressure; water surface height sensor means for monitoring the height of the water surface and producing an output signal corresponding to the height of the water surface; a motor controller that outputs a motor drive signal based on the output signal; and a motor controller that is connected to the motor controller and raises the solid plate so that the immersion depth of the solid plate in water becomes a predetermined depth based on the output signal from the motor controller. or a surface pressure gauge equipped with a motor that lowers the surface pressure.
(5)水面上に形成された膜の表面圧力を測定する表面
圧力計において、 前記水面上に吊され、一部が水中に浸される固体板と、 前記固体板に接続され、固体板に加わる表面圧力を検出
する手段と、 前記水面の高さを監視し、水面の高さに対応した出力信
号を出す水面高さセンサ手段と、 前記センサ手段及び前記表面圧力検出手段にそれぞれ接
続され、前記センサ手段からの出力信号に基づいて前記
固体板の水中浸漬深さを演算し、前記表面圧力検出手段
から表面圧力検出信号を入力し、表面圧力検出信号と水
中浸漬深さ演算値とから、固体板に加わる表面圧力を測
定する演算処理装置と、 を具備した表面圧力計。
(5) A surface pressure gauge that measures the surface pressure of a membrane formed on a water surface, comprising: a solid plate suspended above the water surface and partially immersed in water; and a solid plate connected to the solid plate and connected to the solid plate. means for detecting applied surface pressure; water surface height sensor means for monitoring the height of the water surface and outputting an output signal corresponding to the height of the water surface; connected to the sensor means and the surface pressure detection means, respectively; Calculating the underwater immersion depth of the solid plate based on the output signal from the sensor means, inputting a surface pressure detection signal from the surface pressure detection means, and using the surface pressure detection signal and the underwater immersion depth calculation value, A surface pressure gauge equipped with a calculation processing device that measures the surface pressure applied to a solid plate.
JP22882989A 1989-09-04 1989-09-04 Method and device for producing organic molecule ultrathin-film and surface pressure gage Pending JPH0394857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22882989A JPH0394857A (en) 1989-09-04 1989-09-04 Method and device for producing organic molecule ultrathin-film and surface pressure gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22882989A JPH0394857A (en) 1989-09-04 1989-09-04 Method and device for producing organic molecule ultrathin-film and surface pressure gage

Publications (1)

Publication Number Publication Date
JPH0394857A true JPH0394857A (en) 1991-04-19

Family

ID=16882513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22882989A Pending JPH0394857A (en) 1989-09-04 1989-09-04 Method and device for producing organic molecule ultrathin-film and surface pressure gage

Country Status (1)

Country Link
JP (1) JPH0394857A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261569A (en) * 1984-06-11 1985-12-24 Canon Inc Film forming device
JPS61278374A (en) * 1985-06-05 1986-12-09 Hitachi Ltd Preparation of lb membrane
JPS63236558A (en) * 1987-03-25 1988-10-03 Mitsubishi Electric Corp Lb film forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261569A (en) * 1984-06-11 1985-12-24 Canon Inc Film forming device
JPS61278374A (en) * 1985-06-05 1986-12-09 Hitachi Ltd Preparation of lb membrane
JPS63236558A (en) * 1987-03-25 1988-10-03 Mitsubishi Electric Corp Lb film forming apparatus

Similar Documents

Publication Publication Date Title
CN108414560A (en) A kind of method of the fine and close oily filling process of nuclear-magnetism-displacement combined apparatus evaluation
CN207991970U (en) Grain heap compressive deformation and grain heap-bulkhead interfacial pressure test device
CN104132870A (en) Surface tension and surface area viscosity measuring device
CN108827827B (en) 3D printing concrete constructability testing device and method
CN108414364A (en) A kind of grain heap test device and the method using device measurement grain heap compressive deformation and grain heap interfacial pressure
Lade et al. Characterization of cross-anisotropic soil deposits from isotropic compression tests
Viggiani et al. Experimental observations of strain localisation in plane strain compression of a stiff clay
CN102680076B (en) Device for simulating human vocal cord vibration and implementation method thereof
CN104849143B (en) A kind of uniaxial tension device and its test method
CN108169079B (en) Dynamic measurement method for interfacial tension between two liquids
CN104949791B (en) A kind of balanced type gas pressure pressure testing method and device
CN203858181U (en) Novel liquid surface tension coefficient tester
JPH0394857A (en) Method and device for producing organic molecule ultrathin-film and surface pressure gage
CN207600815U (en) Dual compression preparation of soil sample device
US10281269B2 (en) Method and device for determining a height of a settled bed in a mixture in a loading space
CN101319988B (en) Buoyancy loss test device and method for buoyancy material under high hydrostatic pressure
CN106468720A (en) The thin magnetic force thixotropy generating meanss seeing flow observation and test method between granule
CN210982119U (en) Floating body density measuring device
CN108548478A (en) A kind of quantization method of capsule surface smoothness
CN206387373U (en) The measurement apparatus of unsaturated soil consolidation deformation amount and displacement
JPS6236537A (en) Linkage measurement for surface tension, viscosity and density of solution
CN205642966U (en) A device for small -size geotechnical test sample preparation
RU2747460C1 (en) Method for determining the surface tension coefficient of a liquid by comparative analysis
CN111693676A (en) System and method for measuring bubble point pressure of crude oil in porous medium
Linden The flow of a stratified fluid in a rotating annulus